METRIC SPACES WHICH CANNOT BE ISOMETRICALLY EMBEDDED IN HILBERT SPACE

Yang Lu and Zhang Jing-zhong

Let $A_{1} A_{2} A_{3} A_{4}$ be a planar convex quadrangle with diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$. Is there a quadrangle $B_{1} B_{2} B_{3} B_{4}$ in Euclidean space such that $A_{1} A_{3}<B_{1} B_{3}, A_{2} A_{4}<B_{2} B_{4}$ but $A_{i} A_{j}>B_{i} B_{j}$ for other edges?

The answer is "no". It seems to be obvious but the proof is more difficult. In this paper we shall solve similar more complicated problems by using a higher dimensional geometric inequality which is a generalisation of the well-known Pedoe inequality (Proc. Cambridge Philos. Soc. 38 (1942), 397-398) and an interesting result by L.M. Blumenthal and B.E. Gillam (Amer. Math. Monthly 50 (1943), 181-185).

1. Definitions and main result

DEFINITION 1. Let $G=\left\{A_{1}, A_{2}, \ldots, A_{n+2}\right\}$ be an ($n+2$)-tuple in E^{n}. An edge $A_{i} A_{j}$ of G is called "red" or "blue" if there exists uniquely a hyperplane $\pi_{i j}(G)$ containing $G \backslash\left\{A_{i}, A_{j}\right\}$ such that A_{i} and A_{j} lie to the opposite sides or the same side of $\pi_{i j}(G)$, respectively.

Received 8 Harch 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.

Some edges, of course, may be neither red nor blue.
DEFINITION 2. Let G be an $(n+2)$-tuple in E^{n}, ($\left.M, d\right)$ a semimetric space. A mapping $f: G \rightarrow(M, d)$, satisfying
(i) $\left|A_{i}-A_{j}\right| \leq d\left(f\left(A_{i}\right), f\left(A_{j}\right)\right)$ if $A_{i} A_{i, j}$ is a red edge of G,
(ii) $\left|A_{i}-A_{j}\right| \geq d\left(f\left(A_{i}\right), f\left(A_{j}\right)\right)$ if $A_{i} A_{j}$ is a blue edge of G, and the strict inequality holding at least for one edge red or blue, is called a "skew mapping" of G into $(M, d) . f(G)$ is called a "skew image" of G, and G is called a "skew inverse image" of $f(G)$.

The following theorem gives a geometric condition under which a metric space (M, d) cannot be isometrically embedded in Hilbert space.

THEOREM 1. If a metric space (M, d) contains a finite subset R which has a skew inverse image in Euclidean space, then (M, d) cannot be isometrically embedded in Hilbert space l^{2}.

We shall prove this assertion in Section 3. Furthermore, its converse theorem is true for separable metric spaces. In fact, the authors have proved in [6] that a separable metric space which cannot be isometrically embedded in Z^{2} must contain a finite subset which has a skew inverse image in Euclidean space.

The proof [6] of the converse theorem, however, is very long and much more difficult than Theorem l itself so we need not repeat it here. The purpose of this note is only to prove Theorem l which is sufficient to answer the type of problems analogous to the one posed at the beginning of the present paper.

2. Notations and lemmas

Let $G=\left\{A_{1}, A_{2}, \ldots, A_{n+2}\right\}$ and $R=\left\{B_{1}, B_{2}, \ldots, B_{n+2}\right\}$ be two $(n+2)$-tuples in $E^{n+1}, a_{i j}=\left|A_{i}-A_{j}\right|, b_{i j}=\left|B_{i}-B_{j}\right|$ ($i, j=1,2, \ldots, n+2$). By A, B denote the values of the determinants of the following two bordered matrices. respectively:
Metric spaces
(1)

$$
A=\left|\begin{array}{cccccc}
0 & 1 & 1 & \ldots & 1 & 1 \\
1 & & & & & \\
1 & & & -\frac{1}{2} a_{i j}^{2} & & \\
\vdots & & & &
\end{array}\right|, B=\left|\begin{array}{cccccc}
0 & 1 & 1 & \ldots & 1 & 1 \\
1 & & & & \\
1 & & & -\frac{1}{2} b b_{i j}^{2} & & \\
\vdots & & & & & \\
1 & & & & &
\end{array}\right| .
$$

By $A_{i j}$ and $B_{i j}$ denote the cofactors of $-\frac{1}{2} a_{i j}^{2}$ in A and $-\frac{1}{2} b_{i j}^{2}$ in B ($i, j=1,2, \ldots, n+2$) , respectively.

LEMMA 1.
(2)

$$
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{i, j}^{2} B_{i j} \geq 0, \quad \sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{i j}^{2} A_{i j} \geq 0
$$

Proof. If G and R span two non-degenerate simplices in E^{n+1}, denoting by $V(G)$ and $V(R)$ the volumes of G and R, we have ([4], p. 204, Theorem 1, or [5])

$$
\begin{equation*}
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{i j}^{2} B_{i j} \geq 2(n+1)((n+1)!)^{2} V(G)^{2 /(n+1)} V(R)^{2-2 /(n+1)} \tag{3}
\end{equation*}
$$

This is a generalisation of the Neuberg-Pedoe inequality which is the case $n=1$ in (3).

It is obvious by continuity that (3) holds still when G or R is degenerate; hence

$$
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{i j}^{2} B_{i j} \geq 0
$$

analogously

$$
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{i j}^{2} A_{i j} \geq 0
$$

LEMMA 2. If $G=\left\{A_{1}, A_{2}, \ldots, A_{n+2}\right\}$ is an $(n+2)$-tuple in E^{n} and some cofactor $A_{i j}$ in A is non-vanishing, then A_{i} and A_{j} lie to the opposite sides or the same side of the hyperplane $\pi_{i j}(G)$ when $A_{i j}<0$ or $A_{i j}>0$.

This lemma is due to Blumenthal and Gillam ([2], p. 183, Theorem 3.1). There aremerely a few differences of notation between the two statements.

LEMMA 3. Let $G=\left\{A_{1}, A_{2}, \ldots, A_{n+2}\right\}$ be an $(n+2)$-tuple in E^{n}. If an edge $A_{i} A_{j}$ is red or blue, then the corresponding cofactor $A_{i j}$ is non-vanishing.

Proof. We apply the following algebraic identity (4) which is very useful in distance geometry ([1], \$41, p. 100). Let D be a symmetric determinant, $D_{i i}, D_{j j}$ and $D_{i j}$ be the corresponding cofactors in D, and $D_{j j}^{i i}$ be the sub-determinant obtained by deleting the i th row, the i th column, the j th row and the j th column from D. Then, for $i \neq j$,

$$
\begin{equation*}
D_{i i} D_{j j}-D_{i j}^{2}=D \cdot D_{j j}^{i i} \tag{4}
\end{equation*}
$$

Now we apply this well-known identity to determinant A. It has been shown ([4], p. 206, (1.j.0)) that

$$
\begin{equation*}
A=-(i n+1)!V(G))^{2} \tag{5}
\end{equation*}
$$

where $V(G)$ denotes the $(n+1)=$ dimensional volume of the simplex spanned by G. Since G is an $(n+2)$-tuple in E^{n} this simplex must be degenerate; hence $V(G)=0$ and so $A=0$. It follows that

$$
\begin{equation*}
A_{i i} A_{j j}-A_{i j}^{2}=0 \tag{6}
\end{equation*}
$$

Suppose $A_{i j}=0$ for a certain i and a certain j; then either $A_{i i}=0$ or $A_{j j}=0$. Hence either A_{j} or A_{i} lies in the hyperplane $\pi_{i j}(G)$. (Since, by analogue with (5) we have $A_{i i}=-\left(n!V\left(G \backslash\left\{A_{i}\right\}\right)\right)^{2}$, $A_{i i}=0$ implies that the simplex spanned by $G \backslash\left\{A_{i}\right\} \quad$ is degenerate and the points of $G \backslash\left\{A_{i}\right\}$ including A_{j} lie in the same hyperplane which is just $\left.\pi_{i j}(G).\right)$

But, in this case, according to Definition 1 , the edge $A_{i} A_{j}$ is neither red nor blue, contradicting the hypothesis, and Lemma 3 has been proved.

3. Proof of Theorem 1

We use reduction to absurdity. Suppose a metric space (M, d) has been isometrically embedded in Z^{2} and there exists a finite subset R of M with a skew inverse image G in Euclidean space. From this we conclude that there exists $G=\left\{A_{1}, A_{2}, \cdots, A_{n+2}\right\}$ in E^{n} and $R=\left\{B_{1}, B_{2}, \ldots, B_{n+2^{\prime}}\right.$ in z^{2} such that
(i) $\left|A_{i}-A_{j}\right| \leq\left|B_{i}-B_{j}\right|$ if $A_{i} A_{j}$ is red,
(ii) $\left|A_{i}-A_{j}\right| \geq\left|B_{i}-B_{j}\right|$ if $A_{i} A_{j}$ is blue, and the strict inequality holds at least for one edge $A_{i} A_{j}$ red or blue.

Clearly, $G \subset E^{n} \subset E^{n+1}$ and $R \subset E^{n+1}$ because the widest position occupied by $n+2$ points of τ^{2} is only $(n+1)$-dimensional. We use the same notation as in Lemma $1: a_{i j}=\left|A_{i}-A_{j}\right|, b_{i j}=\left|B_{i}-B_{j}\right|$, and so on.

Since $G \subset E^{n}$ implies $A=0$ (by formula (5)), by simple calculation we have

$$
\begin{equation*}
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{i j}^{2} A_{i j}=0 \tag{7}
\end{equation*}
$$

and applying Lemma 1 we obtain

$$
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{i, j}^{2} A_{i, j} \geq 0=\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{i, j}^{2} A_{i j} \text {; }
$$

that is

$$
\begin{equation*}
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2}\left(b_{i j}^{2}-a_{i j}^{2}\right) A_{i j} \geq 0 \tag{8}
\end{equation*}
$$

First it is easy to verify that every term of the left side of (8) is non-positive:
when $A_{i j}=0,\left(b_{i j}^{2}-a_{i j}^{2}\right) A_{i j}=0$ and when $A_{i j}>0$, by Lemma 2 we know that $A_{i} A_{j}$ is blue and by hypothesis $a_{i, j} \geq b_{i, j}$, so we
have $\left(b_{i j}^{2}-a_{i j}^{2}\right) A_{i j} \leq 0 ;$
when $A_{i j}<0, A_{i} A_{j}$ is red and by hypothesis $a_{i j} \leq b_{i j}$ and we have $\left(b_{i j}^{2}-a_{i j}^{2}\right) A_{i j} \leq 0$.

Then, according to the hypothesis of Theorem 1 and Definition 2, there exists at least one red or blue edge $A_{i} A_{j}$ such that $a_{i j} \neq b_{i j}$. By Lemma 3 there exists at least one non-vanishing term of the left side of (8). We obtain

$$
\begin{equation*}
\sum_{i=1}^{n+2} \sum_{j=1}^{n+2}\left(b_{i, j}^{2}-a_{i, j}^{2}\right) A_{i, j}<0 \tag{9}
\end{equation*}
$$

which contradicts (8). This contradiction shows that (M, d) cannot be isometrically embedded in z^{2} and the proof of Theorem 1 is complete.

4. A type of problem involving two metric point sets

Now let us answer the quadrangles problem which was posed at the beginning of the paper. Clearly, the mapping $A_{1} A_{2} A_{3} A_{4} \rightarrow B_{1} B_{2} B_{3} B_{4}$ is a skew mapping. According to Theorem l, it is not possible to realize such a quadrangle in Euclidean space.

Of course, Theorem 1 may be applied to solve more complicated problem problems. For example: let Ω be a convex 6 -faced polyhedron with vertices $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ in E^{3}, such that Ω can be dissected into two tetrahedrons $A_{1} A_{2} A_{3} A_{4}$ and $A_{1} A_{2} A_{3} A_{5}$. Is there a 5-tuple $\Omega^{*}=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right\}$ in E^{4} such that $A_{1} A_{2}<B_{1} B_{2}, A_{2} A_{3}<B_{2} B_{3}$, $A_{3} A_{1}<B_{3} B_{1}, A_{4} A_{5}<B_{4} B_{5}$ but $A_{i} A_{j}>B_{i} B_{j}$ for other edges?

It can be seen easily that $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{1}, A_{4} A_{5}$ are red edges of Ω and other edges of Ω are blue. The mapping $A_{1} A_{2} A_{3} A_{4} A_{5} \rightarrow B_{1} B_{2} B_{3} B_{4} B_{5}$, therefore, is a skew mapping. By Theorem l we can assert that it is impossible to realize such a 5 -tuple Ω^{*} in E^{4}.

There are a variety of conditions, each of which is necessary and sufficient to embed isometrically a metric space in Euclidean or Hilbert
space; nevertheless, it is usually difficult to decide practically whether some given metric point set is embeddable or not. Inequalities involving two metric point sets are often of great use for our work.

References

[1] L.M. Blumenthal, Theory and applications of distance geometry (Chelsea, New York, 1970).
[2] L.M. Blumenthal and B.E. Gillam, "Distribution of points in n-space", Amer. Math. Monthly 50 (1943), 181-185.
[3] D. Pedoe, "An inequality for two triangles", Proc. Cambridge Philos. Soc. 38 (1942), 397-398.
[.4] Yang Lu and Zhang Jing-zhong, "A generalisation to several dimensions of the Neuberg-Pedoe inequality, with applications", BulZ. Austral. Math. Soc. 27 (1983), 203-214.
[5] Yang Lu and Zhang Jing-zhong, "A high-dimensional extension of the Neuberg-Pedoe inequality and its application" (Chinese). Acta Math. Sinica 24 (1981), 401-408.
[6] Yang Lu and Zhang Jing-zhong, "A geometric criterion of metric embedding and the skew mapping", submitted.

Department of Mathematics,
University of Science and Technology of China, Hefei,

Anhui,
The People's Republic of China.

