
BULL. AUSTRAL. MATH. SOC. 5 I K O 5

VOL. 30 ( 1 9 8 4 ) , 1 6 1 - 1 6 7 .

METRIC SPACES WHICH CANNOT BE
ISOMETRICALLY EMBEDDED IN HILBERT SPACE

YANG LU AND ZHANG JING-ZHONG

Let A AJIA, be a planar convex quadrangle with diagonals A A

and Ai-A]* • ^-s "there a quadrangle B B B B, in Euclidean space

such tha t A A < B B , A A, < B B, but A.A. > B .B . for
1 . 3 J - J C. H t 4 1* 3 I* 3

other edges?

The answer is "no". It seems to be obvious but the proof is more

difficult. In this paper we shall solve similar more complicated

problems by using a higher dimensional geometric inequality which

is a generalisation of the well-known Pedoe inequality {Proa.

Cambridge Philos. Soc. 38 (lQl+2), 397-398) and an interesting

result by L.M. Blumenthal and B.E. Gillam {Amer. Math. Monthly 50

(19^3), 181-185).

1. Definitions and main result

DEFINITION 1. Let 6 = {A±, 4 g , . . . , A ^ bean (w+2)-tuple in

ff" . An edge A .A . of G is called "red" or "blue" if there exists
2- 3

uniquely a hyperplane n. .(G) containing G\{A., A.} such that A. and
*-j ^ 3 1*

A. l i e to the opposite sides or the same side of ir..(G) , respect ively .
3 ^3
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162 Yang Lu and Zhang J i n g - z h o n g

Some edges, of course, may be neither red nor blue.

DEFINITION 2. Let G be an (n+2)-tuple in ff" , (M, d) a semi-

metric space. A mapping f : G •*• {M, d) , satisfying

(i) \A-A \ 5 d[f[A.), f(A.)) if A.A. is a red edge of 6 ,
<- 3 <*' 3 ' I* ,1

(ii) |/1.-J4.| 2 d{f[A.), f[A)) if A .A . is a blue edge of 6 ,

and the strict inequality holding at least for one edge red or blue, is

called a "skew mapping" of G into (M, d) . f(G) is called a "skew

image" of G , and G is called a "skew inverse image" of f{G) .

The following theorem gives a geometric condition under which a metric

space {M, d) cannot be isometrically embedded in Hilbert space.

THEOREM 1. If a metric space (M, d) contains a finite subset R

which has a skew inverse image in Euclidean space, then (M, d) cannot be

2
isometrically embedded in Hilbert space I

We shall prove this assertion in Section 3. Furthermore, its converse

theorem is true for separable metric spaces. In fact, the authors have

proved in [6] that a separable metric space which cannot be isometrically

2
embedded in I must contain a finite subset which has a skew inverse

image in Euclidean space.

The proof [6] of the converse theorem, however, is very long and much

more difficult than Theorem 1 itself so we need not repeat it here. The

purpose of this note is only to prove Theorem 1 which is sufficient to

answer the type of problems analogous to the one posed at the beginning of

the present paper.

2. Notations and lemmas

Let G = {Av A2, .-., An+2\ and R = [B^ Sg, .. . , BM+2} be two

(n+2)-tuples in s"+1 , a. . = \A -A \ , b . = \B.-B\
T*3 " O ''v " <l

( i , j = 1, 2, . . . , n+2) . By A, B denote the values of the determinants

of the following two bordered matrices, respectively:
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lo i i . . . i i

(1) A =

0 1 1 . . . 1 1

1

1 2

ij

2 2
By A. . and B. . denote the cofactors of -ha. . in A and -hb. . in B

V3 1-3 1-3 1-3

[i, j = 1, 2, ..., n+2) , respectively.

LEMMA 1.

(2 )
n+2 n+2 o n+2 n+2

a2£.. 2 0 , y £ b2..A.. > 0 .
=̂l j=l

Proof. If G and R span two non-degenerate simplices in E ,

denoting by V(G) and V(R) the volumes of G and R , we have ( [ 4 ] ,

p. 20U, Theorem 1, or [5])

(3)
t-1 3—1

This i s a general isat ion of the Neuberg-Pedoe inequali ty which is the case

n = 1 in (3) .

I t i s obvious by continuity that (3) holds s t i l l when G or R i s

degenerate; hence

n+2 n+2

^=l 3=1

analogously

n+2 n+2
y y b". A . . > 0 .

.£-, ^ 1,1 11

1=1 3=1

LEMMA 2. If G = {A^ A^, ..., An+2) is an (n+2)-tuple in £* and

some co factor A. . in A is non-vanishing, then A. and A. lie to the

opposite sides or the same side of the hyperplane IT. .(G) when A. . < 0
13 T-3

or A. . > 0 .
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This lemma i s due t o Blumenthal and Gil lam ( [ 2 ] , p . 183 , Theorem 3 . 1 ) .

There a r e merely a few d i f f e r e n c e s of n o t a t i o n between t h e two s t a t e m e n t s .

LEMMA 3 . Let G = {A , A2, . . . , A } be an {n+2)-tuple in s" .

If an edge A .A . is red or blue, then the corresponding cofaotor A. . is
i' 3 " ij

non-vanishing.

Proof . We apply t h e fo l lowing a l g e b r a i c i d e n t i t y (U) which i s very

u s e f u l i n d i s t a n c e geometry ( [ I ] , §Ul, p . 1 0 0 ) . Let D be a symmetric

d e t e r m i n a n t , £>.. , D.. and D.. be t h e co r respond ing c o f a c t o r s i n D ,

and D. • be t h e s u b - d e t e r m i n a n t ob ta ined by d e l e t i n g t h e i t h row, t h e
3 J

ith column, the j t h row and the Jth column from D . Then, for

i ± 3 •>

(h) D. .D . . - D2. . = D • &y. .
^t. 33 1-3 33

Now we apply this well-known identity to determinant A . It has been

shown ( [4] , P- 206, (1.10)) that

(5) A = -({n+l)'.V(G))2

where V(G) denotes the (n+l)=dimensional volume of the simplex spanned

by G . Since G is an (n+2)-tuple in E this simplex must be

degenerate; hence V{ G) = 0 and so A = 0 . I t follows that

(6) A..A.. - A2. . = 0 .
^^ 33 t-3

Suppose A • • = 0 for a certain i and a certain 3 ; then either
^3

A . . = 0 or A .. = 0 . Hence either A . or A. lies in the hyperplane
^^ 33 3 t-

ir..(G) . (Since, by analogue with (5) we have A^ = - (n! F(G\{/K})) 2 ,

A . . = 0 implies that the simplex spanned by G\{/1.} is degenerate and the

points of G\{4.] including A. lie in the same hyperplane which is just

But, in this case, according to Definition 1, the edge A .A . is
v 3

neither red nor blue, contradicting the hypothesis, and Lemma 3 has been

proved.
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3. Proof of Theorem 1

We use reduction to absurdity. Suppose a metric space (M, d) has

2
been isometrically embedded in 1 and there exists a finite subset R of

M with a skew inverse image G in Euclidean space. From this we conclude

that there exists G = {i4 , A , • • •, A +2\ in s" and

p
R = \B1, B2, • • •, B +2; in I such that

(i) U.-4.I < IB.-B.I if A.A. is red,1 ̂  o ' ' ̂  j' ^ j

(ii) U.-/l.|> |B.-B.| if i4.il. is blue,
13 1-3 1-3

and the strict inequality holds at least for one edge A.A. red or blue.
1 3

Clearly, G c a c # and R cz E because the widest position

2
occupied by n + 2 points of £ is only (n+1)-dimensional. We use the

same notation as in Lemma 1: a. . = \A .-A . I , b. . = Is.-B.l , and so on.
%3 1- 3 t-3 1 - 3

Since G cz I?1 implies A = 0 (by formula (5)K by simple calculation

we have

n+2 n+2

(7) £ I a. A.. = 0 ,

i=l j=X %3 %3

and applying Lemma 1 we obtain

n+2 n+2 n+2 n+2

£ £ fcf J! . . > 0 = £ £ of 4̂ . ;
i=l j=l 3 3 £=i j=i

that is
n+2 n+2

(8)
n+2 n+2 , -,

V V \bd .-a. .\A. . > 0 .
i=i A I ̂  *JJ ^

First it is easy to verify that every term of the left side of (8) is

non-positive:

[ 2 2 1
when A. . = 0 , i>. . - a . AA . . = 0 and when A. . > 0 , by Lemma 2

*-<7 I i j t-jj t-3 1-3
we know that A.A . is blue and by hypothesis a. . > b . , so we

1-3 ,̂7 .̂7
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have

when A . . < 0 , A .A . is red and by hypothesis a. . 5 b. . and

( o o \
we have

Then, according to the hypothesis of Theorem 1 and Definition 2, there

exists at least one red or blue edge A .A . such that a. . t b. . . By
^ 3 ^3 1*3

Lemma 3 there exists at least one non-vanishing term of the left side of

(8). We obtain

n+2 n+2

which contradicts ( 8 ) . This contradiction shows that (A/, d) cannot "be
2

isometr ica l ly embedded in I and the proof of Theorem 1 i s complete.

4. A type of problem involving two metric point sets

Now l e t us answer the quadrangles problem which was posed at the

beginning of the paper. Clearly, the mapping 4 J J J , •*• B BJ3J3, i s a

skew mapping. According to Theorem 1, i t i s not possible to rea l ize such a

quadrangle in Euclidean space.

Of course, Theorem 1 may be applied to solve more complicated problem

problems. For example: l e t Q be a convex 6-faced polyhedron with

ver t i ces A , A , A , A,, A in E , such tha t Q can be dissected into

two tetrahedrons A A A A, and A A A-A . Is there a 5-tuple

£1* = {B±, B2, B3, Bh, B^\ in E* such that A^ < B^2 , A^^ < B ^ ,

AJi < B B , A,A < B,B but A.A. > B .B . for other edges?

I t can be seen eas i ly tha t A A , A A , A A , A.A are red edges of

ft and other edges of 9, are blue. The mapping A A A A, A •* B B B B,B ,

t he r e fo re , i s a skew mapping. By Theorem 1 we can asser t tha t i t i s

impossible to r ea l i ze such a 5-tuple fi* in E

There are a var ie ty of condit ions, each of which i s necessary and

suf f ic ien t to embed isometr ica l ly a metric space in Euclidean or Hilbert
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space; nevertheless, it is usually difficult to decide practically whether

some given metric point set is embeddable or not. Inequalities involving

two metric point sets are often of great use for our work.
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