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Introduction

In this article we consider the class of continued fraction transfor-
mations {f,} including the transformations associated with continued
fractions to the nearest integer, singular continued fractions and with
simple continued fractions. Here f,, 1/25a<1, is defined by

f,(x)=[%!-{|_ml_{+1ma] for z+#0, zela—1, @) .

Many results concerning the metrical theory for the simple continued
fractions had been given by Gauss, Lévy, Khintchine, ete., (see Billingsley
[1D). On the other hand, the metrical theory of continued fractions to
the nearest integer or of singular continued fractions has been discussed
by Rieger [7], [8] and [9], in which he obtained among other things the
invariant measures for these transformations.

In contrast with {f,}, recently Ito and Tanaka [3] considered the
class of transformations {S,} including those associated with the restric-
tion to the real axis of Hurwitz’ complex continued fractions and of
'simple continued fractions. Here S,, 1/2=a<1, is defined by

Sa(:c)=l—l:—l—+1—a:| for 2+#0,rxcla—1, a);
x x

they have obtained the absolutely continuous invariant measures and
computed entropies A(S,) with respect to them for the cases of 112<a=
(V5 —1)/2.

In this note, first we will show the convergence of expansions with
respect to f, and some fundamental properties. The essential property
of {f.} is that the denominators ¢, of the n-th approximants with respect
to f, are always positive in contrast with the case of S,. Next we will
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construct the natural extension automorphisms of f, as “skew product
transformations” on suitable subsets of R®* and deduce the absolutely
continuous invariant measures v, of f,. (These discussions in §2 cor-
respond to “the method of backward transformation” considered in
Nakada, Ito and Tanaka [6], which enables one to deduce the absolutely
continuous invariant measure for S,,.) Furthermore we will show the
ergodicity, the exactness and other metrical properties of f, and calculate
the entropies h(f,) with respect to v»,. We will find A(f,)=h(S,) for
1/2=a=<(15 —1)/2; on the other hand, %(S,) are still unknown for
(V5 —1)/2<a<1. Finally we will discuss, in some sense, the uniqueness
of orbits of {f,} for a fixed x. The same situation also holds for S,, 1/2=<
a<('5 —1)/2; however, it does not hold for (15 —1)/2<a<1; this
seems to be one of the main reasons why it is difficult to calculate the
absolutely continuous invariant measure for those a.

Here we restrict our attention to the case of 1/2<a=<1; however,
the same arguments as in §2 also hold for some @ [0, 1/2). In particular,
for =0, the transformation f, has the absolutely continuous invariant
measure with total mass infinite, but we will discuss these on another
occasion.

The author would like to express his hearty thanks to Professors
Yuji Ito, Shunji Ito and Shigeru Tanaka for their valuable advices.

§1. Definitions and fundamental properties.

For each a, 1/2<a <1, we define the transformation f, of I,.=[a—1, a)
onto itself as follows:

fa(x)=<!1%|—[l}l_|+l—a] for x+£0
0 for z=0

where for any real number a, [a] denotes its integral part. If we put
for zel,

U—l—-l+1—a] for x+#0
a(x)= T
oo for x=0,
" )_{ 1 for =0
o= -1 for x<0

and
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O, (X)) =

s(fe@asfi' (@) i fi(@)#0
oo if fa'(x)=0,

then we have the symbolic realization {a,.(x), i=1, 2, 8, -++} of 2 by f.
First we show the validity of this realization. For any xz eI, with
70, fu(x)#0, -, fo'(x)+0; it is easy to see

& |y pae) ;
| a,

(1) p=Sly &l
Iau Ia2

here and henceforth we put ¢,=¢(fi*(x)) and a,=|a..(®)|. As in the case
of simple continued fractions, we define p, and ¢, by

P )=1,  px;a)=0,

D@5 O) =g, () | - Prs(@; ) +(f27H)) - Pas(2; )
(2)

a,(x;a)=0,  qfz; a)=1,

@u(®; 0) =, n(2}] - @us(®; @) +e(f274(2)) -+ @us(2; @) ;

then we have

3 — D& @)+ FA®) - Dos(®; Q)
() N g.(2; @)+ fa(®) - ¢._(x; @)
(4) Da(®; @)Gn1(T; ) — Dy 1(T; X)VG(T; A) =885+« <6, 4, (— 1) .
We call

P ) & |, &l ..., &l
Qn(m; a) | al l a’2 l @,

the n-th approximant of x with respect to f,.

LEMMA 1. For any irrational number x & I, and any vositive integer
n, we have

(% )>0, (@ A)> (%5 a) ;
Sfurthermore,
- p.(x; @)>0 holds if and only if x>0 .

ProOOF. If a belongs to [1/2, (V' 5 —1)/2] or (V5 —1)/2, 1], then for
any positive integer i, a,.x) belongs to {*2, +3, =4, .-} or {1, 2, &3,
+4, - .-} respectively. Using this fact and (2) it is easy to prove the
assertion of the lemma.
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PROPOSITION 1. For any trrational number xel,,

lim Pal® ) _ for each ace [l, 1] .
e @a(%; Q) 2

Proor. If we put fi(x)=t, then |[t{|<1l. By using (3) and (4)

Pa(®; @) +E0,_1(%; @) Da(2; )

¢.(z; @) +1q,,(x; ) q.(x; @)
tegye s e (1)

€.(%; a)(q.(x; @) +1q, (x; @) !

_ Dz )| _
(8) lx q.(x; a)

Thus it follows from Lemma 1 that

lm_pn(w; )| _o

lim
g.(x; ar)

n—oo

Next let us consider the error of n-th approximant. From (5) and
the fact that

{a.,.,m(x)|—1+as|71|<|aa,,.+lcx>|+a :

it follows that

1 < 1
2¢: (25 @) (x5 @) - (@a(®; @)+ Qs X))
< ’a,_pn(x; @)

(6)

q.(x; )
< 1
T (5 ) « (Qn1i(2; @) —(1/2)q.(z; @)
<2 .
g (x; a)

These inequalities imply that the convergence rate of the =n-th ap-
proximant is “~¢qi(x; )’ as n tends to <.

LEMMA 2. There exists an absolute constant 6,>0 such that for any
a€[1/2, 1] and any irrational number x <€ I,,

{qn(w; a)>é,- vV D"
| pa(2; @) >8,- v D" for all nx=1l

where D=2+1/2.
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Proor. From (2), we get
Quts(®; Q)= G, 4s() | * | @, n(®) | + Qus(i6; @)
+ | G n1a(®) | - E(F27HE)) + @ua(; @)
+e(fa(®)) - @nal®; ) .
If ac[1/2, (V5 —1)/2], then
| @, n(®) [ 22
and
Con(x)=—2 implies ayn . (@)=2.
Hencé by Lemma 1
(7) Cnia(®; ) >3- ¢, (x; @) .
On the other hand, if ae(('5 —1)/2, 1], then
Qo) # — 2
and
Gu()=1 implies @, . ()=1.

So for fixed » and «, min, ¢ (%; @) is given by 7=("5 —1)/2 with
8.7 =1 for any positive integer <. Since

@175 @)= q(1; A)+ qus(7; ) |
=2+ q,.(7; &)+ q.(7; @)
we get

] @n1:(7; @) =9 2n—o(7; @) =9 @n(7; @)
(8) G ) TG A) o s )+ QT )

>2+% for n=38.

From (7) and (8) it follows that there exists a 4;>0 such that

. ' l)ﬂﬂ
¢.(x; )26, (2+ 5 .
And in the same way, we have §;'>0 with

| Da(; @) | 287 - (2+_;_)“’2 .
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LEMMA 3. For any a€{l/2, 1] and irrational number xel,, there
exists an absolute constant 8,>0 such that

llog | 2| —log
Jor all n=1.

Proor. It follows from (6) and Lemma 2 that

x “lis 2 | = a)
p.(x; a)/q,(x; a) QA ) [pa(z; a)
532;-1)-"

So the Taylor expansion of log (1-+x) implies the assertion of Lemma 3.
Now let us consider a sequence of integers (w,, ®,, - - -, ®,) of length
n and define the n-cylinder set of I, by

<(!),_, @, -, (0,.>¢={x € Ia; a’a.l(x)—_—wly a’a,z(‘v)=a’29 Tty a’a,n(w)':wn} .

If {w,, ®, :+-, w,).7¢ (a.e.), then we call (@, w,, ---, ®,) an admissible
sequence of length n with respect to f,. For any admissible sequence
(a)u @y -, wn) we put

{p..(w) = Du(; a)
(@) =q.(2; @) , l1=m=n

where ze {®,, @, -+, ®,),. It is easy to see that the m-cylinder set is
an interval in I, and it follows that

( 9 ) M(<(l)1, a)Z; "ty wn)a)
< |pl@) - (@) D (@) +(a—1) - D, (@)
@) ta g (@) g(@)t+(a—1)- ¢, (w)
_ a
(gu(@) +a - gu_i(®)) - (¢ (@) +(x—1) - q,_,(®))
for any admissible sequence (w,, ,, ---, ®,), where m(-) is the Lebesgue

measure. It is possible to prove that the validity of the equality in (9) is
equivalent to the assertion

f:((a)l; @y + -y wn>a)=Ia .

NoTes. i) For any rational number z € I,, there exists K=K(z; ) >0
such that
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' ]aa.l(w)|<°°, Tty ]aa,x(x)|<°° ’ ]aam(x)l"_"oo for all ’n>K.

This is proved by the same argument as in the case of the simple continued
fraction transformation and we call such a K the length of the rational
number x with respect to f,.

ii) It follows from (9) and Lemma 2 that cylinder sets generate Borel
sets.

§2. Constructions of mnatural extensions and their invariant
measures.

In this section we construet the natural extension 7, to each f,,
1/2=a=1, on a suitable subset M, of R®. We start by defining M,
the domain of T,, and constructing the fundamental partition P, which
will be the generator of 7T,. To do this we consider two separate
classes of o €[1/2, 1] for which the constructions of M, are different. It
is convenient to consider lim,., f2(x), so we include « in the domain of
f« in this sense.

Case (i). (1/2=<a<(5 —1)/2). For each ac[1/2, (5 —1)/2], we
define

[0,3_—2_‘45_) if sefa—1, 1222

(24
romfod) i ee(isi 2

05 i se2 )

here if a=1/2, then R,0)=[0, (8—1"5)/2) and if a=(1"5 —1)/2, then
R, (x)=[0, 1/2) for all zeI,. The domain M, is defined as follows:

(10) Ma=m|e.;¢ ({or} X R, (2))
(2o )
(=00 )
U ([2{"—1, a]x[o, _‘/_32:-1-))

-
(CR%.
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The fundamental partition P, of I, with respect to f, is defined by
Pa={<k>a; k= iz, —-—I--Sv :!—-4) v '} ’

where
(-2o=[1-a, 1),  @.=(519),
*<_">“=[_k—11+a' _k-{l-a) '

that is, P, is the partition generated by cylinder sets of length 1. We
extend P, to P, of M, as follows:

(11) pa:'{da.k; k= i2, i3, -'—-4) . '}
where
Aa.k={(ms y) € Ma; re <k>a} .
Case (ii). (V5 —1)/2<a=1). For each ac((1'5 —1)/2, 1], we define
1 . l-a
[o, ‘5) if o e[a——l, T]

)= [0, 1) if xe(lz“, a)

here if a=1, then R (x)=[0, 1) for all x €[0, 1). The domain M, is defined
in the same way as in case (i):

(12) M.= ) () x Ro(=))
(o1 2550 1)
O((33% @)<t0.m)
(CRY.

The fundamental partition P, of I, with respect to f, is defined by
PR={<k>a: k=11 2, Y T_li 7, --t(r-'_l)y i("--,"2)s °* '}

where
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7 =7(Q) = Qu,s(@)

and
Lre= ( 1+a a), <k>“=(k—+1-a'k——}+a] for k=2,
-4(—('r+1)>a=[a-—-1, _;:_]1_1_0[_) ,
{(— .7)«"[“3 T jia) for j>r+1.

And we also consider P, defined by
(13) Pa={da,k; k':l’ 29 "ty 7‘—1! r, i(’r"i_l)r i('r"i_z)y . '}

where
Aa,k= {(‘.‘B, y) € Ma; xE <k'>a} .

REMARK. If a=1, then M,=[0, 1)x[0, 1) and

P,= {Au:a LE= [k T’ k)X[O 1), k=1, 2, }
Now we define Ta on M, (1/2=a=<1), as follows:
(fa(m)y _—:l"'_') if xre <k>a, k>0
k+y

(14) Tele, V=12, — 1_y) if ek k<O

0, 0) if =0

for (x,y)eM,  Furthermore let p, be the absolutely continuous
probability measure with the density function C,- (1/(1-+2¥))’, where C.
is a normalizing constant. To show that T, is a one-to-one and onto
mapping on M, (except for a set of Lebesgue measure zero), we need
the following two lemmas.

LEMMA 4. For any ac(l/2, (/5 —1)/2), we have
(i) a. (@)=2 and e, (a—1)=—2

(ii) Guel@—1)22 and a,,.(@)=—(aq(x—1)+1)
(i) fula—1)=fia).

Proor. If 1/2<a<(5 —1)/2, then l+asl/as2+a and l+as
1/(1—a)<2+a. Thus (i) is true. Moreover, since fol)=(1—2a)]a <0
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and fJ (a—1)=2a—1)/(1—a)>0, (ii) and (iii) are obtained by sxmple
calculations.

LEMMA 5. For any ac((V'5 —1)/2, 1), we have
(1) @ua(a)=1,

(ii) a.(@)=2 and a,.(a—1)=—(a.(@)+1),

(iii) fia)=fAlax—1).

ProoF. If V'5 —1)/2<a<1, then a<1l/a<1+a and this means that
@q(@)=1. Moreover, (ii) and (iii) follow from the facts that fola)=
Q—a)la>0 and 1+a<a/(l—a).

THEOREM 1. For each ae{1/2, 1], we have

(i) T, 18 a one-to-one, onto, bi-measurable and non-singular
mapping on M, except for a set of Lebesgue measure zero.

(ii) p, is the invariant measure of T, and

1 1 VB -1
= , —sast2—2
T ICE RS 2= 2
o 1 vV'b —1
1 Vvo-l_,<1.
log 1+ a) 2 <as

PrOOF. First we assume ac(1/2, (V'5—1)/2). We put r=nr(a)=
@. (@—1) and z=z(a)=fua). Let us consider the partition @, , of R.(x)
defined by

(k) (x); k=38, x4, -} if xe[a_l’ 1—aza]
« : 1-2a 2a—1
a,n— « s =2, ig’ i4’ .« ,
Qe = {2 (@); k=2 } it o (lz2e, 221
(7@ k=x2, 3, x4, .-} it se[22=L q)

—

where

(1 1 _ ()= 1 L
<?’+1>a(x)—(7~+1+1/2’ 'r+1)' ¢ (""“»"(‘”)"( ’ +(1/?—1)/2)

< o 1 1
<r>d(w)—(,r+(l/—5-_1)/2’ ? H < 7‘>a<$)

( 7'—!—(1/5 3)/2)
if »=z,
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N 1 1 1
i@ =(—fm ) e De=(2g =)
(11 _ 1
<"'>“(“’)‘(r+1/2’7)’ (=1a@)= (r "r+( 5 3)/2)
if 2>z,
and
1
W= ) CPI@O=(3 1) for fmrad
_ 1 1
Bz (@)= (k+(1/5 D 7)) ore=(3 "E+(/5 — 3>/2)
for 2<kZr.

We extend Q, on R (x) to §, on M, by
(15) Qe=1{d.s;

where.

s k=42, +3, +4, ..}

dep={(x, y) € M; y € <kDz(2)} .

From Lemma 4, fi(a)= fila—1}=f(2a—1)/(1— 'a)) = ful(l — 2a)/ax) = 2.
Furthermore <2z or x>z is equivalent to

"1 e[za*l,a) and ——L1 e(a-—l, l—Za:l”
r+o l—a (r+1)+=x Qa
or
“ 1 1—-2a 2a-—1 1 1—2a 2a—171
c ’ d - € ’
r+x a l—-«a ) an (r+1)+= ( a l—a

respectively. Thus 7, maps the interior points of 4., and 4, _(., in
one-to-one manner, onto the interior points of 4,, and 4, _..,, respec-
tively, because of (18) and (15). For k+#r, —(r+1), it is easy to see
that T. maps the interior points of 4,, onto the interior points of ﬁ,,,,,.
If we denote the boundary of 4,, by 94,,., then we see that

M 04.)=0,

where 7 is the Lebesgue measure on M,. And now the assertion of (i)
is clear for ae(1/2, (V5 —1)/2).

Next we assume ae((V'5 —1)/2,1). Similarly to the above discus-
sions, we put r=r(a@)=a..(a) and z=2(a)= fi(a) and consider the parti-
tion Q. ., of R.(x) defined by
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{<Fda(x); k=2, 38,4, ---, (r—1), 7, £(r+1), £(r+2), ---}
. l—-a
if we[a-—l, p ]

Qe =
{<k>;(x); k=1’ 21 37 Tty (?’—'1), r, -i_-('r"'l), i(’l’+2), i '}
. l—-a
if a:e( p ,a)
where
Fyz(x)= (k+1 :,) if »>kE>0
1
[ ba@= ( +1+1/2 'r+1)
a = — k> = l 1 i
<k>a(x)_(m’?)y < k>a(m) (k’k'—llz) lf T+1<k9
and
1 1 .
Wi@=(p ) CerWie=(G ) i e2e
wiw=(25 1), (—rrpie=o if 2<z.

We also extend Q, on R,(x) to M, by (15). Then we see once more that
T. maps the interior points of 4,, onto the interior points of 4., for
each & by using the fact that 2=z or <z is equivalent to

l:a -1, ———:I 1 Za—l”
""H" T rilts
or
“ 1 _(l-a 1 ”
€ d —m7mM —
r+ ( a ,a) an r+1+4z <e—1,

respectively, which follows from Lemma 5. In the case of a=1/2,
(V"5 —1)/2, or 1, the construction of Q, is even simpler and it is easy
to show (i) for each case.

Now we show that g, is the invariant measure for 7,. Suppose

that (z, ) is an interior point of 4,,, then

AT, ety dT it
ar, —=L2(x, Y)= dT”‘”( )k

dm 2, )
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~..1 ~ ot
dgim(m, ) - am
m

ar. (%, ¥)

./ :
- d’ﬁi (Ttx(wy ZI))

where 7 is the Lebesgue measure on M,. If % is a positive integer,
then T, (x, y)=(11/x|—k, 1/(k+¥)) and so

a6 Lt =C. (ramaaETe) L (77) ]
x C;* - (L+xy)
=1.

If & is a negative integer, it also follows from T.(z, ¥)=(1/z|+k, 1/(—k—¥))
that

a7
17 Lla fa =1.
(17) | ar, (x, ¥)

From (16) and (17), it follows that g, is the invariant measure for T,.
Finally let us calculate C,:
if 1/22a=<(V'5 —1)/2, then

oref o], (s o

1—-2a
a

1—2«a
a
a(@—1)+1

aZ—B)+B+1

where g=(1"5 +1)/2;
if (V5 —1)/2<a<1, then

)—1og (8+a)+log (2+ i‘f_’al)

)

=log (8+1+

—log (2+ )+log (8+a)—log (8+

=log B

=log

C:'=log (1+a),

which ecan be shown in the same way. Thus the proof of Theorem 1 is
complete.

From the proof of Theorem 1, it is easy to see that the partition
P(=T+Q,) is the generator of T,, that is, V. _.. T:"P, separates any
pair of points (x, ) and (¢, ¥’) belonging to M,, (v denotes the join of
partitions). Let us define an equivalence relation in M, as follows:

(@, P~ y) if z=o
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and consider the quotient space M,;——Ma/ ~. The definition of P, implies
that

M.=M,|V TP,

and by (14), the factor transformation 7, of M, induced by 7, is well-
defined. There is a natural correspondence between (M,, T.) and (I, £.);
thus for any measurable subset A of I,, the probability measure v, on

I, defined by
(18) | Yo(A)= #a(}GJA ({x} X R ()))

gives an invariant measure for f,, i.e., v.(fz'(A4))=v,(4). Hence (M,,T,, )
is the natural extension automorphism of (I, f,, v,) in the sense of Rohlin
[10] and it is easy to show that v, is an absolutely continuous measure.

COROLLARY 1. The absolutely continuous imvariant measure for f,
has the density func@n C. - ho(x), where h,(x) is given by:
(i) 1/25a=(0"5 —1)/2

——l;——, me[a—l,l—za]
z+L+1 a
1 1-2a 2a-—1
ha = y s
@) <x+2 xe( o L—a)
1 , me[za_l,a)
x+8 11—«

(ii) (V'5 —-1)/2<a=1

1 , xe[a—l,ll{
x+2 o

ho(x)=
i a:-il—l , we(lza,a)

PrROOF. From (18), the density function of v, is given by

Cehe@=Ce-|,  (Tay)

From the above corollary, it follows that there exists an absolute
constant 4, such that for any measurable subset A of I,,

(19) 95" m(A)Sv.(A)=0, - m(A) .
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REMARK. If we define the transformation f¥.(y) of E,(x) by

L i yediw

rra={"?
i i yel—hi()

where k is a positive integer, then

(20 r2w) i yedi@
k+x

Tz, ¥)= 1
(i 72) it yed—kyi@ .

—k—x

We call {f.}..;, the backward system which is a generalization of the
backward transformation discussed in Nakada, Ito and Tanaka [6], (see
also Schweiger [11]). To deduce R.(x), it is useful to note the following
fact: let 2, be the set of admissible sequences (w,, @,, - --, @,) of length

n for which
Mz € 15 @ ;(R) =W, Qpu ()=, <+, Qe (R)=W,, fa(z)=u}>0

and put 2=Us.. 2, then {p.(®w)/q.(®); wc 2} is dense in R, (x).

§3. Some limit properties of ¢,.

Since v, and m are equivalent, we use “a.e.” or ‘“a.a.” with no
distinction.

LEMMA 6. For a.a. xe€l, there exists a subsequence of natural
numbers {n, N, n,;, +++} depending on = such that

(20) f:i(<a’a,1(x)i a’aﬂ(x)’ aa.s(“’), Tty aa,n;(x)>a):-[a

for all i=1.

REMARK. This implies that the cylinder sets <(w,, ---, ®,>. with
Folw,, + -+, @,>.) =1, generate Borel sets.

ProOF. To have fi({w, @,, :--, ®,>,)=1I, for an admissible sequence
(W, @w,, ---, @,), it is sufficient that

{(wk: wk-l—l: Ty wn)i(aa,l(a)’ aa.Z(a)’ R aa.n—k+1(a))
(ajk) wk»{-i’ t w'n)#(a’a,l(a_l)y a’a.z(a—l)y tee aa’,n—k+1(a—1))
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for all k4, 1<k<mn. Thus the number of (w, ®@,, ---, ®,) such that

(21) fa(<w1>a):#Ia ’ fx(<w11 0)2>¢)¢I¢, Tty f:((wu Wy ° wu>a)='&Ia

is at most 2*. Let A, be the union of cylinder sets satisfying (21),
then it follows from Lemma 2 and (9) that

m(A,)<0,- D™ -2,

Hence for any £>0, we have by (19)

vo(4,)<e
for sufficiently large =, and so

Y(A)=0,
where A denotes the set of 2 for which

Fa(@an(@), <+ -, Guu(@))#*I,  for all mzl.

Consequently it follows that

»( 774)=0
and this implies the assertion of the lemma.

THEOREM 2. For any ac[1/2, 1], (I,, fa Y.) 18 ergodic and exact.

ProOF. Let AcI, be an f,-invariant measurable subset, then for
any cylinder set B={w,, ---, 0,), with fiB=1I, we have

— d {pn(w)+pn—1(w) Y
4 o SA dy \ ¢.(®)+ ¢, (@) - y)dy

m(AﬂB)=S

BN

-, (q,.(w)+q1,._1(w) : y)zd’y

O )

g%m(A) . m(B) .
Thus for any measurable subset B, we have

22) m(A nB)g—;— . m(A) - m(B) ,
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since such cylinder sets {@,, - - -, ®,), generate Borel subsets. So we have
m(A)=0 or 1,

by putting B=A°.
To show the exactness of f,, we only need the existence of a constant
0, such that ’

Ua(f:A)é 54 : ”a(A)/va(-B)

for any B={w,, ---, ®,>, with f2B=1I, and ACB, (see Rohlin [10]). It
is easy to caleculate that

(@) md)= Sf::A ( g.(@)+ qln_l(co) ‘Y )Zdy

1. m(f:A);-é— . m(f2A) - m(B)

> =
4 - g ()
and we have 4, by using (19).

COROLLARY 2. (M,, T, ££.) is a Kolmogorov automorphism for each
acll1/2, 1].

PROOF. This corollary follows from the fact that T, is the natural
extension of f,.

LEMMA 7. For any ac[l/2, 1], we have

_r
—Sza log || - ho(e)dm="1".

Proor. If we put
F@=\"loglal| h()dm,
a—1

then F{a) is continuous on [1/2, 1] and differentiable on two open intervals
/2, 5 —1)/2) and (V' 5 —1)/2,1) by virtue of Corollary 1. If 1/2<
a<(V'5 —1)/2, then

(I1—2a)/a

. oy, dx 0 o, dx
F(a)_Sa—1 log (—2) m+B+1+S(1—2a)/alog( 2 x+2

(2a—1}/{1—~c) dx Sa dz
1 . log
+So 08 @ r+2 + (2a—1)/(1—a) £ r+8

1—a dm (1—2a)/a dx
= 1 —_— S log x -
Sﬂu—-l)/a CE % ,6’+1——x+ 0 g 2—x
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log = - log = -
0 g r-+2 @a—1)/{1—a} g 2+ 8

(2a—1)/(1—a) [
4 S dx + S dx

and

11 log 22—1

- — Jog(1l—a)—— — =~ .
da B+a og (1—a) at 3—1+1/a
2a0—1 1 2a—1 1
= .1 .1 -1
+ og = +1_a og 1—a-+a+/3 og &
1 1 - log 2a—1

l—-a) g+(2a—1)/1—a) l1-a
_I: 1 1 1
=| ——+4 — .
a at+pg a-(af—a+1l)
1 1 1
+|_ B+ 1—a+(1—a)(5—1+2a—aﬁ)

log a

:I- log(1—a)

. 1 1 1 1
+|: a-(aﬁ—a+1)+a+1—-a (1-—a)(;9—1+2a—aﬁ):|
Xlog Ca—1)
=0 .

For (V' 5 —1)/2<a<1, it is also straight forward to show dF/da=0.
Thus F(a) is a constant function of [1/2, 1] and we get F(a)=—=n?*/12
since

dx prad

142 12°

1

S log « -

0
PROPOSITION 2. For each ac|[1/2,1],

24) lim -?];—log q.(a; a)=C, - f_z (a.a. 2) .

PrROOF. Since &(x) - p;..(x; @)=q,(f.(2); a), we have

() - &x(®) - - -En(®) _ 1F Paris([ (%); @)

g.(x; a) B=1 g, W fe i (2); )
and
1 _ ] T (@) |, Enpa(®) |
(25) T o) @ enw) [T (e A
et
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By Lemma 3

@) flog |/ @) —log | 2By SOl L

From (25) and (26) we have

” -1 n 1
,g;lloglfﬁ (m)[“gaz'—l—)—;ﬂ
1 1
<log @ a )Szloglf" 1(90)I+25 D
and
1 _
(27) ;Zz. og | f& 1(w)l ,‘% Dm Ttk
—1—logqn(a: @)
n
s —- N log | F@ | +4 30 =
= n = i = Drti- -k

Furthermore from the ergodicity of f,, Lemma 7 and the ergodic theorem,
we get

lim L Z(—loglf" @h=—C,-| log|a|-h@)ds (a.2. 2)

n—oo

n—Z

‘12
and thus (27) implies (24).
ProproOSITION 3. For each a€[1/2, 1], we have

_pEa)| o B aa ).

lm lo l o
x £ q.(%; a) 6

n—oo N,

PROOF. This follows from (6) and Proposition 2.

THEOREM 3. For each ac[l/2, 1], we have

lim % 102 Vo({ B 1(%), Con(@), - * * Bon(®)De)

n=9oo

=lim llog m((“a (), aa,z(w)’ Tty aam(w»a)

n—oco PN,
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=—C,- _75 (a.a. x)

Thus the entropy of (fa, ve) (0r (T., t.)) 18 C, - n*/6.
Proor. From (9), (19), Lemma 6 and Proposition 2, there exists a
sequence {n,} depending on x such that

lim L log ,(¢0y 1(%), Bas(@), - -+, Band@)De)

£—00 <

——c,-=
6

for a.a. . On the other hand

lim % 108 25({0 s(@), G, - *) B a)

n—co

exists for a.a. x by the Shannon-McMillan-Breiman’s Theorem.

§4. Asymptotic behavior of orbits.

In §3 we have dealt with the metrical properties of f, for each a.
Now we shall discuss the orbits of {f,} for a fixed point x and show
that “a.a.” is independent of a.

LEMMA 7. For any ac((V' 5 —1)/2, 1] let us consider o such that
a>a’'>1/(1+a) (or a’'=1/1+a)) and fix zefa’, a), (or ze(a’, a) re-
spectively), then we have

(@ —1)= fi() (mod. 1) .
ProOOF. The assumptions imply
aa.l(x) =1.

So we have

1—
@

fu@)===2>0

and

lm_i]:! B fjx)’ B lix B lfx =1.

It follows from the definition of f, that
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fal®—1)=fo(x)  (mod. 1).

Let us consider an ergodic invariant probability measure A\ of (I, f.).
We put

Now={we L lim 2= 35 X (4@ =M(a, B)
for any open interval (a, b)CI,,,}

where X, is the indicator function of (a, b), then it follows from the
ergodic theorem and separability of I, that

?"(Na,l) =1.

THEOREM 4. For any ergodic invariant probability measure A, of
(I, f) and for any ac[l/2,1), there exists an ergodic invariant
probability measure N, such that x€ N,,; if and only if #eN,,;, where
T=x (mod. 1). And the converse is also true.

PROOF. We assume that \, is non-atomic, otherwise there exists a
unique periodic orbit in N, and the following discussion is practically
clear in such a case. We fix x € N, ;, consider Z=« (mod. 1), £ I, and
define

(28) {iFmin (3 Fi(@)# L), 120}

ia=min {i; i>14,_, fIT T (@)#fe(®)}) for n=2,
here it could happen that i,=oc for some n=1, however the following
proof is easy in such cases so we assume %,<c for all n=1. If 7. <
k<%,..,, then we have
(29) S @) = fu®)

by Lemma 7.
(i) (V5 —-1)/2=a<1l. Let us consider an open interval (a,b),
O<a<b<l/a—1, and i, <m=4i,,, then we have by using (29)

(M,—M,)
m—+mn

L S n(Fi@) =)
m =0 m

M,=4§{i; fi(w) € (a, b), 0=i<m-+n}

M=% {z ) e (ﬁl_—b T}FZ) 0§¢<m+n}

where
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and for a set A, $A denotes the number of elements belonging to A.
If m tends to oo, then m/(m+n) and (M,—M,)/(m+n) converge to
M([0, a)) and A ((a, B)—AN(A/(1+D), 1/(1+a))) respectively. Thus we get

(30) lgg-zxm n(f,m»—m[ M((e, ))— M((lib 141,,))]

By the same argument we have

1 _ M((a, b))
@1 lim 5% Len(F4@) =250 )

for (e, d)c(l/a—1, a) or (a,b)c(ax—1,0). From (30) and (81) we can
define

Mal(a, B =lim L 332 (F4®)

for any open interval (a, b)c I, and thus A, is extendable to a measure of
I,. Tt is clear from the construction of A, that , is independent of
choice of # and is an ergodic invariant probability measure of (I, f.)-
Of course & belongs to N,,,,. Moreover for a fixed #e N,,;, the reverse
of the above discussion shows ze N, ;.

(ii) 1/2=a<(V5 —-1)/2. We put

w_1=1-a
a
W=
1 .
= , =21,
f 1+w,,

then lim,., ,=(1"5 —1)/2. Moreover since a<(1'5 —1)/2,

<a.

o 2a—1
w_)=————1=
fi@-) 11—« l—a

Suppose (a, b)c(0, fi(w_)), then for i,<m=1,,,, we have

(32) L S An(u@y=matn M- M,

m i=o m m+n
and (M,—M,)/(m+n) converges to A ((a, b)) —n((1/(L+Dd), 1/(1+a))) because
fi*(x) € (a, b) and fi*'(x) € (1/(1+0), 1/(1+a)) imply f¥z)¢[a, 1). Further-
more n/(m-+mn) converges to
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(33) 7\': :7\'1([0)0: 1)) _)"1((600; wl]) "‘7"1([0)2, w1)) '—)‘11((@2, 0)3])"" Tt

Since (w,, @,]N[w,, )N - -={(+'5 —1)/2} and A, is non-atomie, the ex-
istence of the limit in (83) is ensured. Thus lim, . (m-+n)/m=1/1—\%)
exists and so (82) converges as m tends to cc.

If (a,b)c(filw_,), a), then we put

1 po—_1
Y l4a’ Y1+b]
1 1
n= ' bn= ) Zz
R I 1+b._, "

and have

lim —1— i‘; X0 o(fe(®))=
m i=o

m-—oo

L 0u((@, B) =By 8) Ml D)=+ )

in the same way. It is also possible to calculate

m—1
lim l >, x(w,b)(fi(ﬁ))
m i=o

n—o0

for (e, b)c(a—1, w_,—1) and (a, b)c(w_,—1,0). Consequently we can
construct A, by the same argument.

REMARK. If A\,=v,, then A,=y, and A¥ of (33) equals

(log2—log (1'5 —1)/2))
log 2 )

COROLLARY 3. Forany € N,,, let =2 (mod. 1), eI, 1/2=5a<1,
then

m—1
lim L% g(rian =\ gdv,
m—o M 1=0 I,
for all bounded continuous functions g.

Proor. It follows from theorem 4.

Since “log” is not bounded on I,, it is not possible to apply corollary
8 to the results of §3. In the sequel we shall treat this problem.

We fix a’<a and zeI,, and define i, in the same way as in the
proof of Theorem 4.
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io= - 1
t,=min {i; fi(x)# fo(2’), 1=0}
i,=min {4; i>4,_,, F& ()= fi (2"}, n=2

where 2’=2 (mod. 1), 2’€I,, and we also assume i,<o for all n=1.
Through ¢, depends on a, &’ and z, we do not bother mentioning this
dependence in the following discussions.

LEmMMA 8. We fix ac[1/2, 1] and irrational number x< (0, 1), then
(34) 6(F; A)=qa5(®; 1) for y;=n<iy,, §=0
where £=x (mod. 1), £e1I,.

LEMMA 8. We fix ae((v' 5 —1)/2, 1), & e 1/(1+a), a) and irrational
number xel,, then

Qu(ﬁ; a')__—Qn-H'(m; a) fOT ij§n<i:'+u jgo
where =2 (mod. 1), ZeI,.

PrOOF. The proof of Lemma 8 is same as that of Lemma 8, so we
only prove Lemma 8'.

If y belongs to [a’, @) then a>a’'>1/(1+a) implies a, (y)=1. If
—1=n<4,, then it is easy to see that

2.(z"; a')=¢.(z; @)
Since fi(x)=#f.l(x"), we have
{I au’.ll(x’) | - | aa,il(w) I =1
J T @) =27 @), e(fai(@) =e(fh ("))

in the case of 4,%#0
and

(35) {faﬂ(w’) =fi(@)—1,

fa@)eld, a) .
Thus if we put |e,. .(2')|=F then we get by (85) that
{qel(a:’; a)=k- q,.(z'; &) +&(f"1(2) - ¢, o("; ')
9,,(%; @) =(k—1) - ¢, _(%; @) +&(fa7(®)) - ¢,y o(z; @) .
Moreover it follows from (385) that
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Qo 42(2) =1
and so
Qopa(®; @)= - @y (@5 @) +(f27H(@)) - @y a(®; @)
Consequently we have
(36) ., (2"; @) =i 1a®; @)
B 4@ @) — 4@ O =s(@; =03 &) (f i<0) .
On the other hand, in the case of ¢,=0, it follows that
A, () =1

and we also get (36) and (37).
Next we assume %,--1<1%,. In this case we have

aa’,£1+1(w’) == (aa,¢1+z(w) +1)<0
and thus

(38) Q'¢1+1(x’; a')=(aa.tl+2(m)+1) : Qtl(x’; a')—Qi1—1(x’; a’)
=a’cx.t1+2(w) * Gy 41(%; a)+q,(2'; a')"“Q'11—1(w'; a’)
= U1, 42(0) - Q¢1+1(m; a)+Q¢1(m§ a)
=y, +2(%; @)
by virtue of (36) and (87). For =, 4,+2=n<1, it is clear that Ao ()=

Cynra() DA go(2”; &) =¢,u(%; Q).
Now we assume 3,+1=1,, then

aa’,t1+1(x,) =— (a'a,t1+2(x) +2)<0 and au,t1+s(w) =1.
Hence from (86) and (37),
q.,(x', a)=gq,..(z'; a')
= (@i 42(®) +2) » @, (&"; @) — g, (a5 @)
= (@0, 02(®) +1) Qe (5 @)+ (5 )
=@, +4(%; @)
= qt2+2(a7; a)

and

00,85 &) — Quus (5 @) =g, (25 @) =¢,, . (&; @) .
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It follows inductively that
{q%(m’; a’) =qq,10(2; @)
(@5 &)= Qi@ )=, (2"; @)=, ;. _(z; @)

and as above it is possible to complete the proof of the assertion of this
lemma.

THEOREM 5. There exists Ny,CN,,, such that m(N,)=1 and for any
ze N, and any ac[l1/2, 1]

.1 o n?

l — l n . fmaned Ca R

lim = log ¢.(%; @) 12

where
f=o(mod. 1), zel,.
PrROOF. We put
VR | . 1 =
N,= {m, 11_21 - log q.(x; 1) ————-log_ 5 -—12} NN, -

From Proposition 2, it is clear that m(N;)=1. We fix x € N, and consider
Z=g (mod. 1), ZeI,. By Lemma 8

+H . 1
n (n+7)

%log 0.(8; ) =" 10g e s(%; 1)

for i;=m<%;.,. Suppose V' 5 —1)/2<a<1, then

I ”:1-§"1d=1-1 1+a).
nl—-rgn-i—j log 2 o og (1+a)

o 142 log 2

Hence

1 Tt

. 1 Pl
lim =1 X)) ——— |
e n OF ¢.(&; @) log(1+a) 12

On the other hand if 1/2<a<(V' 5 41)/2, then j/(n+7) converges to v¥=
(log 2—log (V' 5 +1)/2))/log 2 as n tends to «~ and we get

1 LB
log (V5 +1)/2) 12°

lim 1 log q.(%; a)=
n—sco 7

Finally we consider the length K=K(a; x) of rational number z with
respect to f,. From Lemma 7, : :
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K(a'; 2) < K(a; x) for —— —=<a'<axl
where =2’ (mod. 1), x€I,, "€ I,. and x is rational. Now we will show
K(a'; 2" )=K(a; x) for 125a’'<as(V' 5 —1)/2.

LEMMA 9. For ac[1/2,(V'5—1)/2), a' € (a, 1 +a)/(2+a)] and z € [a, '),
we have

Ja(x—1)=f2(x) (mod. 1) .
Proor. The condition a’'<(1+a)/(2+a) implies

Ay (—1)=—2 and a,, (x)=2,

S0
fo@=1—2=1"2 <0
(39)
fa(w—1)=—~1——2= 26—1 0 .
1—g 1—x

It follows from (89) that fi(zx—1)=s2(x) (mod. 1).
From Lemma 9 (and (39)), it is easy to see

(40) K(a'; ") = K(a; x)

for such a, a’ and rational numbers «, &' with =« (mod. 1), ze I,
' el,,. Moreover for any a and a' with 1/25a<a’<(1V 5 —1)/2, there
exists a finite sequence a=a,<a, < - <a,=a’ such that

1+«
(2 PR i
‘t+1—2+ai

'sincé a<(l+a)/2+a)<(V' b —1)/2. Thus (40) is true for any a and o’
belonging [1/2, (V' 5 —1)/2). For a rational number yeI,, n=(0"5 —1)/2,
we put

z=max {y, f(y), f:¥), -+, i " (W)}
and fix a>z, then
faw)=rfy)  for i=1,2, ---, K79 .
Hence K(7, y)=K(a, y) and from above we have the following.

THEOREM 6. For any rational number x [0, 1),
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K(a'; )y = K(a"; ©'")

where «’'el,,, x2'el,, 2'=2"=2x (mod. 1) and 12=Za’'<a”=<1l, in
particular

K(al; wr)____K(aH; xl!)
for 125’ <a”’<(V'5 —1)/2.
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