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Abstract

Adversarial loss in a conditional generative ad-

versarial network (GAN) is not designed to di-

rectly optimize evaluation metrics of a target task,

and thus, may not always guide the generator in

a GAN to generate data with improved metric

scores. To overcome this issue, we propose a

novel MetricGAN approach with an aim to opti-

mize the generator with respect to one or multiple

evaluation metrics. Moreover, based on Metric-

GAN, the metric scores of the generated data can

also be arbitrarily specified by users. We tested

the proposed MetricGAN on a speech enhance-

ment task, which is particularly suitable to verify

the proposed approach because there are multi-

ple metrics measuring different aspects of speech

signals. Moreover, these metrics are generally

complex and could not be fully optimized by Lp

or conventional adversarial losses.

1. Introduction

Generative adversarial networks (GANs) (Goodfellow et al.,

2014) has shown its powerful generative ability in many

different applications. In particular, for conditional GANs

(CGANs) (Mirza & Osindero, 2014), in addition to the ad-

versarial loss, there is an Lp loss, to guide the learning of

generators. Ideally, the adversarial loss should make gener-

ated data indistinguishable from real (target) data. However,

some applications of image (Ledig et al., 2017; Wang et al.,

2018) and speech processing (Pandey & Wang, 2018; Wang

& Chen, 2018; Donahue et al., 2018; Michelsanti & Tan,

2017) show that this loss term provides very marginal im-

provement (sometimes even degrade the performance) in

terms of objective evaluation scores (in the case of image

processing, the subjective score can be improved). For in-
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stance, Donahue et al. (2018) applied CGAN on speech

enhancement (SE) for automatic speech recognition (ASR);

however, the following conclusion was obtained: “Our ex-

periments indicate that, for ASR, simpler regression ap-

proaches may be preferable to GAN-based enhancement.”

This may be because the method that the discriminator uses

to judge whether each sample is real or fake is not fully re-

lated to the metrics that we consider. In other words, similar

to Lp loss, the way the adversarial loss guides the gener-

ator to generate data is still not matched to the evaluation

metrics. We call this problem discriminator-evaluation mis-

match (DEM). In this study, we propose a novel MetricGAN

to solve this problem. We tested the proposed approach on

the SE task because the metrics for SE are generally com-

plex and difficult to directly optimize or adjust.

For human perception, the primary goal of SE is to im-

prove the intelligibility and quality of noisy speech (Benesty

et al., 2005). To evaluate an SE model in different aspects,

several objective metrics have been proposed. Among the

human perception-related objective metrics, the perceptual

evaluation of speech quality (PESQ) (Rix et al., 2001) and

short-time objective intelligibility (STOI) (Taal et al., 2011)

are two popular functions to evaluate speech quality and

intelligibility, respectively. The design of these two metrics

considers human auditory perception and has shown higher

correlation to subjective listening tests than simple L1 or L2

distance between clean and degraded speech.

In recent years, various deep learning-based models have

been developed for SE (Lu et al., 2013; Xu et al., 2014;

Wang et al., 2014; Xu et al., 2015; Ochiai et al., 2017;

Luo & Mesgarani, 2018; Grais et al., 2018; Germain et al.,

2018; Chai et al., 2018). Most of these models were trained

in a supervised fashion by preparing pairs of noisy and

clean speeches. The deep models were then optimized by

minimizing the distance between generated speech and clean

speech. However, the distance (objective function) is usually

based on simple Lp loss (where p = 1 or 2), which does not

reflect human auditory perception or ASR accuracy (Bagchi

et al., 2018) well. In fact, several researches have indicated

that an enhanced speech with a smaller Lp distance, does

not guarantee a higher quality or intelligibility score (Fu

et al., 2018b; Koizumi et al., 2018).
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Therefore, optimizing the evaluation metrics (i.e., STOI,

PESQ, etc.) may be a reasonable direction to connect the

model training with the goal of SE. Some latest studies (Fu

et al., 2018b; Koizumi et al., 2018; Zhang et al., 2018; Zhao

et al., 2018a; Naithani et al., 2018; Kolbæk et al., 2018;

Venkataramani et al., 2018; Venkataramani & Smaragdis,

2018; Zhao et al., 2018b) have focused on STOI score op-

timization to improve speech intelligibility. A waveform

based utterance-level enhancement manner is proposed to

optimize the STOI score (Fu et al., 2018b). The results of

a listening test showed that by combining STOI with MSE

as an objective function, the speech intelligibility can be

further increased. On the other hand, because the PESQ

function is not fully differentiable and significantly more

complex compared with STOI, only few (Koizumi et al.,

2018; Zhang et al., 2018; Koizumi et al., 2017; Martı́n-

Doñas et al., 2018) have considered it as an objective func-

tion. Reinforcement learning (RL) techniques such as deep

Q-network (DQN) and policy gradient were employed to

solve non-differentiable problems, as (Koizumi et al., 2017)

and (Koizumi et al., 2018), respectively.

In summary, the abovementioned existing techniques can be

categorized into two types depending on whether the details

of evaluation metrics have to be obtained: (1) white-box:

these methods approximate the complex evaluation metrics

with a hand-crafted, simpler one; thus, it is differentiable and

easy to be applied as a loss function. However, the details of

the metrics have to be known; (2) black-box: these methods

mainly treat the metrics as a reward and apply RL-based

techniques to increase the scores. However, because of less

efficiency in training, most of them have to be pre-trained

by conventional supervised learning.

In this study, to solve the drawbacks of the abovementioned

methods and the DEM problem, the discriminator in GAN is

associated with the evaluation metrics of interest (Although

these evaluation functions are complex, Fu et al. (2018a)

showed that they can be approximated by neural networks).

In particular, when training the discriminator, instead of al-

ways giving a false label (e.g., “0”) to the generated speech,

the labels of MetricGAN are given according to the evalu-

ation metrics. Therefore, the target space of discriminator

transforms from discrete (1 (true) or 0 (false)) to continuous

(evaluation scores). Through this modification, the discrimi-

nator can be treated as a learned surrogate of the evaluation

metrics. In other words, the discriminator iteratively esti-

mates a surrogate loss that approximates the sophisticated

metric surface, and the generator uses this surrogate to de-

cide a gradient direction for optimization. Compared with

previous existing methods, the main advantages of Metric-

GAN are as follows:

(1) The surrogate function (discriminator) of the complex

evaluation metrics is learned from data. In other words, it is

still in a black-box setting and no computational details of

the metric function have to be known.

(2) Experiment result shows that the training efficiency of

MetricGAN to increase metric score is even higher than

conventional supervised learning with Lp loss.

(3) Because the label space of the discriminator is now

continuous, any desired metric scores can be assigned to

the generator. Therefore, MetricGAN has the flexibility to

generate speech with specific evaluation scores.

(4) Under some non-extreme conditions, MetricGAN can

even achieve multi-metrics assignments by employing mul-

tiple discriminators.

2. CGAN for SE

GAN has recently attracted a significant amount of attention

in the community. By employing an alternative mini-max

training scheme between a generator network (G) and a

discriminator network (D), adversarial training can model

the distribution of real data. One of its applications is to

serve as a trainable objective function for a regression task.

Instead of explicitly minimizing the Lp losses, which may

cause over smoothing problems, D provides a high-level

abstract measurement of realness (Liao et al., 2018).

In the applications of GAN on SE, CGAN is usually em-

ployed to generate enhanced speech. To achieve this, G is

trained to map noisy speech x to its corresponding clean

speech y by minimizing the following loss function (as in

(Pascual et al., 2017). The least-squares GAN (LSGAN)

approach (Mao et al., 2017) is used with binary coding (1

for real, 0 for fake)):

LG(CGAN) = Ex[λ(D(G(x), x)−1)2]+||G(x)−y||1 (1)

Because G usually simply learned to ignore the noise prior

z in the CGAN (Isola et al., 2017), we directly neglected

it here. The first term in Eq. (1) is called adversarial loss

for cheating D with a weighting factor λ. The goal of D

is to distinguish between real data and generated data by

minimizing the following loss function:

LD(CGAN) = Ex,y[(D(y, x)− 1)2 + (D(G(x), x)− 0)2]
(2)

We argue that to optimize the metric scores, the training of

D should be associated with the metric.

3. MetricGAN

3.1. Associating the Discriminator with the Metrics

The main difference between the proposed MetricGAN and

the conventional CGAN is how the discriminator is trained.

Here, we first introduce a function Q(I) to represent the
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evaluation metric to be optimized, where I is the input of

the metric. For example, for PESQ and STOI, I is the pair

of speech that we want to evaluate and the corresponding

clean speech y. Therefore, to ensure that D behaves similar

to Q, we simply modify the objective function of D:

LD(MetricGAN) = Ex,y[(D(y, y)−Q(y, y))2

+ (D(G(x), y)−Q(G(x), y))2]
(3)

Because we can always map Q to Q′, which is between 0

and 1 (here, 1 represents the best evaluation score), Eq. (3)

can be reformulated as

LD(MetricGAN) = Ex,y[(D(y, y)− 1)2

+ (D(G(x), y)−Q′(G(x), y))2]
(4)

where 0 ≤Q′(G(x), y)≤ 1. There are two main differences

between Eq. (4) and Eq. (2):

1.) In CGAN, as long as the data is generated, its label

for D is always a constant 0. However, the target label

of the generated data in our MetricGAN is based on its

metric score. Therefore, D can evaluate the degree of real-

ness (clean speech), instead of just distinguishing real and

fake. (Therefore, maybe “D” should be called an evaluator;

however, here we just follow the convention of GAN.)

2.) The condition used in the D of CGAN is the noisy

speech x, which is different from the condition used in the

proposed MetricGAN (clean speech y). This is because we

want D and Q to have similar behavior. Therefore, the input

argument of D is chosen to be the same as Q.

3.2. Continuous Space of the Discriminator Label

The training of G is similar to Eq. (1). However, we found

that the gradient provided by D in our MetricGAN is more

efficient than the Lp loss. Therefore, the training of G can

completely rely on the adversarial loss :

LG(MetricGAN) = Ex[(D(G(x), y)− s)2] (5)

where s is the desired assigned score. For example, to

generate clean speech, we can simply assign s to be 1. On

the contrary, we can also generate more noisy speech by

assigning a smaller s. This flexibility is caused by the label

of the generated speech in D, which is now continuous

and related to the metric. Unlike surrogate loss learning in

the multi-class classification (Hsieh et al., 2018), because

the output space of our G is continuous, the local neighbors

need not be explicitly selected to learn the behavior of metric

surface.

3.3. Explanation of MetricGAN

In MetricGAN, the target of G is to cheat D to reach spec-

ified score, and D tries to not be cheated by learning the
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Figure 1. Learning process of MetricGAN to optimize the evalua-

tion metric Q (the horizontal axis represents the weights of G). In

each iteration, there are three steps. First, some data are generated

by G with weights WG(t). Second, training D to have similar

behavior as metric Q in those points. Third, training G according

to the gradient provided by D (cheat D).

true score. Here, we also explain the learning process of

MetricGAN in a different manner. As shown in Figure 1,

training of D can be treated as learning a local surrogate of

Q; and training of G is to adjust its weights WG toward the

optimum value of D. Because D may only approximate Q

well in the observed region (Fu et al., 2019), this learning

framework should be alternatively trained until convergence.

4. Experiments

4.1. Network Architecture

The input features x for G is the normalized noisy mag-

nitude spectrogram utterance. The generator used in this

experiment is a BLSTM (Weninger et al., 2015) with two

bidirectional LSTM layers, each with 200 nodes, followed

by two fully connected layers, each with 300 LeakyReLU

nodes and 257 sigmoid nodes for mask estimation, respec-

tively. When this mask (between 0 to 1) is multiplied with

the noisy magnitude spectrogram, the noise components

should be removed. In addition, as reported in (Koizumi

et al., 2018), to prevent musical noise, flooring was applied

to the estimated mask before T-F-mask processing. Here,

we used the lower threshold of the T-F mask as 0.05.

The discriminator herein is a CNN with four two-

dimensional (2-D) convolutional layers with the number

of filters and kernel size as follows: [15, (5, 5)], [25, (7,

7)], [40, (9, 9)], and [50, (11, 11)]. To handle the variable-

length input (different speech utterance has different length),
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Table 1. Performance comparisons of different loss functions in terms of PESQ and STOI (* represents pre-trained from another model).

Noisy IRM (L1) IRM (CGAN) PE policy grad*(P) MetricGAN (P) MetricGAN (S)

SNR (dB) PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

12 2.375 0.919 2.913 0.935 2.879 0.936 2.995 0.927 2.967 0.936 2.864 0.939

6 1.963 0.831 2.52 0.878 2.479 0.876 2.595 0.869 2.616 0.881 2.486 0.885

0 1.589 0.709 2.086 0.787 2.053 0.786 2.144 0.776 2.200 0.796 2.086 0.802

-6 1.242 0.576 1.583 0.655 1.551 0.653 1.634 0.644 1.711 0.668 1.599 0.679

-12 0.971 0.473 1.061 0.508 1.046 0.507 1.124 0.500 1.169 0.521 1.090 0.533

Avg. 1.628 0.702 2.033 0.753 2.002 0.751 2.098 0.743 2.133 0.760 2.025 0.768

a 2-D global average pooling layer was added such that the

features can be fixed at 50 dimensions (50 is the number

of feature maps in the previous layer). Three fully con-

nected layers were added subsequently, each with 50 and 10

LeakyReLU nodes, and 1 linear node. In addition, to make

D a smooth function (we do not want a small change in the

input spectrogram can result in a significant difference to

the estimated score), it is constrained to be 1-Lipschitz con-

tinuous by spectral normalization (Miyato et al., 2018). Our

preliminary experiments found that adding this constraint

can stabilize the training of D. All models are trained using

Adam (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999.

4.2. Experiment on the TIMIT Dataset

In this section, we show the experiments about PESQ and

STOI scores. PESQ was designed to evaluate the quality

of processed speech, and the score ranges from -0.5 to 4.5.

STOI was designed to compute the speech intelligibility,

and the score ranges from 0 to 1. Both the two metrics are

the higher the better.

4.2.1. DATASET

In this experiments, the TIMIT corpus (Garofolo et al.,

1988) was used to prepare the training, validation, and test

sets. 300 utterances were randomly selected from the train-

ing set of the TIMIT database for training in this experiment.

These utterances were further corrupted with 10 noise types

(crowd, 2 machines, alarm and siren, traffic and car, animal

sound, water sound, wind, bell, and laugh noise) from (Hu),

at five SNR levels (from -8 dB to 8 dB with steps of 4 dB)

to form 15000 training utterances. To monitor the training

process and choose the hyperparameters, we randomly se-

lected another clean 100 utterances from the TIMIT training

set to form our validation set. Each utterance was further

corrupted with one of the noise types (different from those

already used in the training set) from (Hu) at five different

SNR levels (from -10 dB to 10 dB with steps of 5 dB). To

evaluate the performance of different training methods, 100

utterances from the TIMIT test set were randomly selected

as our test set. These utterances were mixed with four un-

seen noise types (engine, white, street, and baby cry), at

five SNR levels (-12 dB, -6 dB, 0 dB, 6 dB, and 12 dB). In

summary, 2000 utterances exist in the test set.

4.2.2. OBJECTIVE EVALUATION WITH DIFFERENT LOSS

FUNCTIONS

In this experiment, to evaluate the performance of different

objective functions, the structure of G is fixed and trained

with different losses. As one of our baseline models, we

adopt ideal ratio mask (IRM) (Narayanan & Wang, 2013)

based mask estimation with L1 loss (denoted as IRM (L1)).

The other baseline (denoted as IRM (CGAN)) is the CGAN

with the loss function of G shown in Eq. (1). Compared to

IRM (L1), IRM (CGAN) has an additional adversarial loss

term with λ = 0.01 as in (Bagchi et al., 2018; Pascual et al.,

2017). A parameter exploring policy gradients (Sehnke

et al., 2010) based black-box optimization, which is similar

to the one used in (Zhang et al., 2018), is also compared.

However, we found that this method is very sensitive to

the hyperparameters (e.g., weight initialization, step size

of jitter, etc.). We could only obtain improved results for

PESQ optimization (denoted as PE policy grad (P)). In

addition, because of the lower training efficiency, its gen-

erator was first pre-trained from IRM (L1). The proposed

MetricGAN with PESQ or STOI metric as Q, is indicated

as MetricGAN (P) and MetricGAN (S), respectively.

Table 1 presents the results of the average PESQ and STOI

scores on the test set for the baselines and proposed methods.

From this table, we can first observe that the performance of

IRM (CGAN) is similar to or slightly worse than the simple

IRM (L1), which is in agreement with the results presented

in previous papers. (Pandey & Wang, 2018; Donahue et al.,

2018). This implies that the adversarial loss term used to

cheat D is not helpful in this application. One possible

reason for this result may be that the decision boundary of

D is very different from the metrics we consider. We also

attempted to train IRM (CGAN) with larger λ; however,

their evaluation scores were worse than the reported scores.

Although PE policy grad (P) can obtain some PESQ scores

improvements, the STOI scores decreased compared to its
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Figure 2. Learning curve of different objective functions evaluated

on the validation set (structure of G is fixed). In terms of: (a)

PESQ score and (b) STOI score.

initialization, IRM (L1). On the contrary, when we em-

ployed PESQ as Q in our MetricGAN, it could achieve

the highest PESQ scores among all the models with the

second highest STOI score. Note that unlike Lp loss, the

loss function of G in MetricGAN is Eq. (5), and there is

no specific target for each T-F bin. In terms of the STOI

score, MetricGAN (S) outperforms the other models, and

the improvement is most evident for the low SNR conditions

(where speech intelligibility improvement is most critical).

In addition to the final results of the test set, the learning

process of different loss functions evaluated on the valida-

tion set are also presented in Figure 2. For both the scores,

we can observe that the learning efficiency (in terms of the

number of iterations) of MetricGAN is higher than the oth-

ers. This implies that the gradient provided by D (surrogate

of Q) is the most accurate toward the maximum value of

Q. However, if the Q used to train MetricGAN does not

match the evaluation metric, the performance is sub-optimal.

Therefore, the information from Q is important; our prelim-

inary experiment also shows that without Q, the learning

cannot converge. The conventional adversarial loss term in

IRM(L1)

IRM(CGAN)

IRM(L1)

MetricGAN(P)

MetricGAN(P)

IRM(CGAN)

0% 10% 20% 30% 40% 50% 60% 70% 80%

( c )

( b )

( a )

Figure 3. Results of AB preference test (with 95% confidence in-

tervals) on speech quality compared between proposed Metric-

GAN(P) and the two baseline models.

IRM (CGAN) is not helpful for improving the scores and

training efficiency.

Finally, an example of the enhanced spectrograms by dif-

ferent training objective functions are shown in Figure 4.

The spectrogram generated by IRM (CGAN) is similar to

that of IRM (L1). If we simply increase the weight λ of the

adversarial loss term in Eq.(1), some unpleasant artifacts

begin to appear (this is not shown here, owing to limited

space). Interestingly, in comparison to others, the spectro-

gram (f) generated by MetricGAN (S) can best recover the

speech components with clear structures (as shown by the

black-dashed rectangles) and hence, obtain the highest STOI

score.

4.2.3. SUBJECTIVE EVALUATION

To evaluate the perceptual quality of the enhanced speech,

we conducted AB preference tests to compare the proposed

method with the baseline models. Three pairs of listen-

ing tests were conducted: IRM(CGAN) versus IRM(L1),

MetricGAN(P) versus IRM(CGAN), and MetricGAN(P)

versus IRM(L1). Each pair of samples are presented in a

randomized order. For each listening test, 20 sample pairs

were randomly selected from the test set; 15 listeners partic-

ipated. Listeners were instructed to select the sample with

the better quality. The stimuli were played to the subjects in

a quiet environment through a set of Sennheiser HD head-

phones at a comfortable listening level. In Figure 3 (a), we

can observe that the preference score between IRM (L1)

and IRM (CGAN) overlap in the confidence interval, which

is in agreement with the result of the objective evaluation.

Further, as shown in Figure 3 (b) and Figure 3 (c), Metric-

GAN(P) significantly outperforms both baseline systems,

without an overlap in the confidence intervals.
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PESQ=2.137, STOI= 0.735 PESQ=2.049, STOI=0.744

PESQ=1.966, STOI=0.721

PESQ=1.950, STOI=0.709

PESQ=1.080, STOI=0.600PESQ=4.500, STOI=1.000

(a) clean target (b) noisy input (c) IRM (L1)

(d) IRM (CGAN) (e) MetricGAN (P) (f) MetricGAN (S)

Figure 4. Spectrograms of a TIMIT utterance in the teset set: (a) clean target, (b) noisy speech (engine noise at 0 dB). (c) to (f): enhanced

speech with different loss functions.

4.2.4. ASSIGNING ANY DESIRED SCORE TO THE

GENERATOR

Because the label of D in the conventional GAN is in a

discrete space, there is no guarantee that the generated data

can gradually improve toward real data when the label as-

signed to G (i.e., the constant in the first term of Eq.(1))

increases from 0 (fake) toward 1 (real). For example, the

generated data from label 0.9 is not necessarily better (more

like real data) than that from label 0.8. However, as pointed

out in section 3.2, because the output of D in MetricGAN is

continuous according to Q, we can assign any desired score

during the training of G as in Eq. (5). Therefore, different

s in Eq. (5) correspond to generated speech with different

qualities. Interestingly, setting s as a small value can con-

vert the generator from a speech enhancement model to a

speech degradation model. This provides us with another

method to understand the factors that affect the metric. To

achieve this, a uniform mask constraint (penalize estimated

mask away from 0.5) was also applied to G so that G has to

choose the most efficient way to attain the assigned score

s without significantly changing the initialized mask. (Ow-

ing to the sigmoid activation used in the output layer of G,

all the initially estimated mask values were close to 0.5).

Figure 5 shows an example of assigning different s to G,

and the learning process evaluated on the validation set is

also illustrated in Figure 5 (c) and (g). Compared to the

generation of clean speech (the entire learning process for

generating clean speech is presented in Figure 2), Metric-

GAN can attain the desired score more easily when s is

small. This phenomenon is because the number of solutions

decreases gradually when s increases (it is easier to obtain

noisy speech than a clean speech). Therefore, the solution

for a large s is considerably difficult to obtain. Figures 5

(d) to (f) and (h) to (j) present the generated speech by as-

signing different s with STOI and PESQ as Q, respectively.

Intriguingly, the speech components gradually disappear

when we attempt to generate a speech with low STOI score

(the speech components are almost removed as shown by

the black rectangle in Figure 5 (f)). Because STOI measures

the intelligibility of speech, it is reasonable that the speech

component is most crucial in this metric. On the contrary,

because PESQ measures the quality of speech, the generated

speech with lower s seems to become more noisy (for ex-

tremely low s values (Figure 5 (j)), in spite of not as serious

as the STOI case, there is also some speech components

being removed). These results verify that the MetricGAN

can generate data according to the designate metric score

and make the label space of D continuous.

4.2.5. MULTI-METRIC SCORES ASSIGNMENT

In this section, we further explore the assignment of scores

for multiple metrics simultaneously. Compared with sin-

gle metric assignment, this is a more difficult task because

the requirement to achieve other metrics can be treated as

adding constraints.
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Figure 5. Results of assigning different s to Eq. (5) for the generator training. Note that the learning curves of generating clean speech in

(c) and (g) are not yet converged. For more complete learning processes, please refer to Figure 2.

Algorithm 1 Multi-Metric Scores Assignment

Input: desired score s1 for metric Q′

1(.) to sN for metric

Q′

N (.) (assume there are N different metrics).

repeat

1) Find metric index i with the largest distance between

achieved and assigned score:

i = argmaxn |Q
′

n(G(x), y)− sn|

2) Train G to minimize the loss from Di:

LG(MetricGAN) = Ex[(Di(G(x), y)− si)
2]

3) Train all Dn to minimize the distance from Qn:

LD(MetricGAN) = Ex,y[(Dn(y, y)− 1)2

+ (Dn(G(x), y)−Q′

n(G(x), y))2]
until converge

Algorithm 1 shows the proposed training method for multi-

metric scores assignment. Assuming that there are N differ-

ent metrics, we have to employee N discriminators. In each

iteration, only D with the largest distance between achieved

score, Q′

n(G(x), y), and assigned score, sn, would guide

the learning of G (steps 1 and 2). However, in the training

of D, all the discriminators Dn are updated, irrespective of

whether it is used to provide loss to G (step 3).

Figure 6 shows the learning curves for the case of N=2. To

explore more possible combinations, these results are based

on the subset (top 10% metric score) of the original vali-

dation set. To clearly illustrate the results of multi-metric

learning, in each column of this figure, the assignment of

STOI score is fixed with different PESQ scores. Because

different metrics may have some positive correlation be-

tween each other, MetricGAN is difficult to converge when

the score assignments are too extreme (in this case, the so-

lution may not even exist). However, we still obtain some

flexibility to generate speech with desired multiple scores.

This experiment verifies that MetricGAN can approximate

and distinguish different metrics well.

4.3. Comparison with Other State-of-the-Art SE

Models

To further compare the proposed MetricGAN with other

state-of-the-art methods, we use a publicly available dataset

released by (Valentini-Botinhao et al., 2016). This dataset

contains a large amount of pre-mixed noisy-clean paired

data and is already used by several SE models. By using the
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Figure 6. Learning curves of assigning different pairs of (STOI, PESQ) scores (shown in the title of each figure). Given a specified STOI

score, the upper row and lower row is the maximum and minimum PESQ scores MetricGAN can reach, respectively. Note that the PESQ

score is normalized ((original score+0.5)/5) between 0 to 1 with the original score shown in the parentheses.

Table 2. Compared MetricGAN with other state-of-the-art meth-

ods. The highest score per metric is highlighted with bold text.

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63

SEGAN 2.16 3.48 2.94 2.80

MMSE-GAN 2.53 3.80 3.12 3.14

WGAN-GP 2.54 - - -

Deep Feature Loss - 3.86 3.33 3.22

SERGAN 2.62 - - -

MetricGAN (P) 2.86 3.99 3.18 3.42

exact same training and test dataset split, we can establish a

fair comparison with them easily.

Experimental Setup and Results: Details about the data

can be found in the original paper. Except for input features

and activation functions, the network architecture and train-

ing strategy are the same as described in the previous section.

In addition to the PESQ score, we also report another three

metrics over the test set to compare with previous works:

CSIG predicts the mean opinion score (MOS) of the sig-

nal distortion, CBAK predicts the MOS of the background

noise interferences, and COVL predicts the MOS of the

overall speech quality, these three metrics range from 1 to 5.

Five baseline models that rely on another network to pro-

vide loss information are compared with the proposed Met-

ricGAN (P). We briefly explain these models as follows:

SEGAN (Pascual et al., 2017) directly operates on the raw

waveform and the model is trained to minimize the com-

bination of adversarial and L1 losses. MMSE-GAN (Soni

et al., 2018) is a time-frequency masking-based method that

uses a GAN objective along with L2 loss. Similar to the

structure of SEGAN, WGAN-GP and SERGAN (Baby &

Verhulst, 2019) introduced Wasserstein loss and relativistic

least-square loss for GAN training, respectively. Finally,

Deep Feature Loss (Germain et al., 2018) also operates on

the raw waveform and is trained with a deep feature loss

from another network that classifies acoustic environments.

Table 2 summarizes that our proposed method outperforms

all previous works with respect to three metrics. This im-

plies that although MetricGAN is only trained to optimize

a certain score (PESQ), it also has a great generalization

ability to other metrics.

5. Conclusion

In this paper, we proposed a novel MetricGAN approach to

directly optimize generators based on one or multiple evalu-

ation metric scores. By associating a discriminator with the

metrics of interest, MetricGAN can be treated as an iterative

process between surrogate loss learning and generator learn-

ing. This surrogate can successfully capture the behavior

of the metrics and provides accurate gradients guiding the

generator updates. In addition to outperforming other loss

functions and state-of-the-art models in SE, MetricGAN can

also be trained to generate data according to the designate

metric scores. To the best of our knowledge, this is the first

work that employs GAN to directly train the generator with

respect to multiple evaluation metrics.
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