
Statistical Science
1998, Vol. 13, No. 1, 54–65

Metrics and Models for Handwritten
Character Recognition
Trevor Hastie and Patrice Y. Simard

Abstract. A digitized handwritten numeral can be represented as a bi-
nary or greyscale image. An important pattern recognition task that has
received much attention lately is to automatically determine the digit,
given the image.

While many different techniques have been pushed very hard to solve
this task, the most successful and intuitively appropriate is due to
Simard, Le Cun and Denker (1993). Their approach combined nearest-
neighbor classification with a subject-specific invariant metric that al-
lows for small rotations, translations and other natural transformations.
We report on Simard’s classifier and compare it to other approaches. One
important negative aspect of near-neighbor classification is that all the
work gets done at lookup time, and with around 10,000 training images
in high dimensions this can be exorbitant.

In this paper we develop rich models for representing large subsets of
the prototypes. One example is a low-dimensional hyperplane defined by
a point and a set of basis or tangent vectors. The components of these
models are learned from the training set, chosen to minimize the aver-
age tangent distance from a subset of the training images—as such they
are similar in flavor to the singular value decomposition (SVD), which
finds closest hyperplanes in Euclidean distance. These models are either
used singly per class or used as basic building blocks in conjunction with
the K-means clustering algorithm.

Key words and phrases: Nearest neighbor classification, invariance.

1. INTRODUCTION

Figure 1 shows some handwritten digits taken
from U.S. envelopes. Each image consists of 16× 16
pixels of greyscale values ranging from 0 through
255. These 256 pixel values are regarded as a fea-
ture vector X to be used as input to a classifier,
which will automatically assign a digit class based
on the pixel values. We denote the digit class by the
10 level categorical variable C.

This particular database has been used in many
different studies, and a variety of techniques have
been attempted. There are 7,291 training images
and an “official” test set of 2,007 images. We review
some of these approaches, starting with a natural

Trevor Hastie is Professor, Department of Statis-
tics, Stanford University, Stanford, California 94305
(e-mail: trevor@stat.stanford.edu). Patrice Y. Simard
is staff member, AT&T Research Laboratories, 100
Schultz Drive, Red Bank, New Jersey 07701.

and classical procedure for producing linear decision
boundaries between the classes.

1.1 Linear Discriminant Analysis

This simple model is often successful in classifi-
cation tasks. The model assumes that the feature
vector X has a multivariate Gaussian distribution
in each class, each with a different centroid µk but
sharing a common covariance matrix 6. Since X
has 256 components, this is a high-dimensional
problem. Each of the 10 centroids has 256 pa-
rameters, and the common covariance matrix has
256 × 257/2 = 32;896 parameters. In addition
we specify the prior probabilities for the classes
πk = P�C = k�. These parameters are then used
to form the posterior probability estimates P̂�C�X�,
and the estimated Bayes classifier for this model
assigns to the class k for which P̂�C = k�X� is
largest. It is easily seen that the quadratic terms

54

HANDWRITTEN CHARACTER RECOGNITION 55

Fig. 1. Some examples of digitized handwritten numerals, all rescaled and normalized to a 16× 16 greyscale image.

in X drop out in this calculation and that

log P̂�C = k�X� = −µ̂Tk 6̂−1X+ µ̂Tk 6̂−1µ̂k

+ 1
2 logπk + q�X�

= β̂TkX+ β̂k0 + q�X�;
(1)

where q�X� is the same for all k, and hence the deci-
sion boundaries between classes are linear; δk�X� =
− log P̂�C = k�X� is known as the discriminant
function, and hence the name linear discriminant
analysis (LDA). We also see that the actual param-
eters needed for the discriminant functions are far
fewer—in fact �p+ 1��K− 1� for a K-class problem
in p dimensions.

Linear discriminant analysis achieves a test error
rate of around 11% on this problem, which might
seem good at first glance, but does not compare
well with competitors. Linear discriminant analy-
sis suffers from excessive bias and variance for this
problem. The bias stems from using linear decision
boundaries between the classes. We see later on that
more flexible decision boundaries pay big rewards.
The excess variance stems from the fact that once
committed to linear decision boundaries, there are
more efficient methods for estimating the linear pa-
rameters in (1).

Neighboring pixels tend to have strong positive
correlation, and hence the corresponding discrim-
inant coefficients will be negatively correlated.
Different variants of LDA have been proposed to
account for this spatial correlation and hence bor-
row strength from neighboring pixels. Hastie, Buja
and Tibshirani (1995) used a penalized discrimi-
nant analysis where the discriminant coefficients

are constrained to be spatially smooth. This tech-
nique brought the error rate down to 8.2% by
effectively shrinking the dimension of the space
from 256 down to 40.

One way to reduce the bias is to represent each
class by a mixture of several Gaussian distributions.
Hastie and Tibshirani (1996) developed such an ap-
proach, with up to five Gaussians in each class.
Their models could also accommodate the regular-
ization used in penalized discriminant analysis. The
error rates were only a slight improvement over pe-
nalized discriminant analysis.

Boser, Guyon and Vapnik (1992) fit optimal mar-
gin hyperplanes, also known as support vector
machines between each class and the rest (Vapnik,
1996). These techniques are related to the pre-
ceding, in that they fit linear decision boundaries
(typically in a space augmented by basis expan-
sions of the original pixels.) The idea is to find
hyperplanes that either separate or approximately
separate the data well. Boser, Guyon and Vap-
nik (1992) claim that they can search around in
high-dimensional feature spaces without using ex-
orbitant numbers of parameters. These models are
certainly interesting and deserve closer scrutiny by
the statistics community. They achieve error rates
in the mid-4% range on these problems, and so
outperform the other linear techniques.

1.2 Neural Network Classifiers

This digit recognition problem was tackled vigor-
ously by the neural network community. A single
hidden layer neural network model for this problem

56 T. HASTIE AND P. Y. SIMARD

can be written as

log
P�C = k�X�
P�C =K�X� = β0k + βTk zj;

k = 1; : : : ;K− 1;

(2)

zj = σ�a0j + aTjX�; j = 1; : : : ;M;(3)

where K = 10 is the number of classes and M
is the number of hidden units zj. The activation
function σ creates nonlinear basis functions along
projections a0j + aTjX, and the most common such
function is σ�x� = 1/�1 + e−x�. Figure 2 depicts a
single layer network, often known as a perceptron
due to early work on models for the brain, where
there are two outputs �K = 2� three inputs �p = 3�
and four hidden units �M = 4�.

This model can be seen as an extension of the
polychotomous logistic regression model and is sim-
ilar in structure and flavor to the projection pursuit
regression models of Friedman and Stuetzle (1981).
There is a large literature on such models (Ripley,
1996; Bishop, 1995), with many possibilities for fit-
ting, regularizing and sizing the networks.

While the addition of possibly many nonlinear ba-
sis functions will reduce the bias of linear methods
in this problem, the number of effective parame-
ters grows rapidly along with the variance. Many
variants have been proposed to reduce this effect.
One such class uses the concept of local connectivity
with shared weights (parameters) at hidden units.
The idea is to have more than one layer of hidden
units. Each layer serves as a feature extractor from
the previous layer, with each unit connected to a
localized region of its input image, for example, a

Fig. 2. A single layer neural network with four hidden units and
two output units.

4 × 4 block. The same set of weights are used over
all such blocks, and hence they serve as a filter for
extracting a particular local feature of the image.

Although neural networks are often regarded as
automatic “black box” classifiers, they do require
some tuning. The number of hidden layers and units
within a layer need to be determined. The algo-
rithms for fitting the networks require tuning as
well and are sensitive to learning rates, regulariza-
tion parameters and initialization. Many different
neural network configurations have been tailored
for this particular application along the lines out-
lined above (Le Cun et al., 1990). The error rates
are typically around 5%.

A word of caution is needed when tackling a pop-
ular problem of this kind. Although there is an offi-
cial test set of data to be used to evaluate different
methods, it can be over-used. For example, a group
may attempt tens or hundreds of different configu-
rations, but only report the results of the best. These
caveats hold for any technique with tunable param-
eters, but are especially pertinent for neural net-
works which have many.

1.3 Methods That Incorporate Invariances

One of the problems with all the methods dis-
cussed so far is that they are insensitive to the spa-
tial organization of the pixels. If we rotate the image
a few degrees before digitization, the nature of the
pixel representation can change dramatically, while
the nature of the image (and the ability of the hu-
man to identify it) have not changed much at all.
While it can be argued that the techniques that re-
quire spatial smoothness create such sensitivities
by blurring the images, these were insufficient on
their own to make dramatic improvements. Ideally
we want techniques that are insensitive to small
natural transformations such as: location shifts; ro-
tation; horizontal and vertical scaling; and shear.
These are known as the affine transformations. We
will see that other natural invariances are also de-
sirable for digit recognition.

Hastie and Tibshirani (1993) proposed a proto-
type method, where each digit was represented by
one or more piecewise-linear curves. The images
were represented by a point set in two-dimensional
horizontal/vertical coordinates, obtained by thresh-
olding the greyscale values of each pixel. Finally,
each prototype was fitted to the points by affine-
invariant least squares. This allowed transforma-
tions of the prototype such as rotations, shifts, scale
changes and so on, and care was taken to limit
the range of these transformations. They then used
lack-of-fit statistics as a basis for a classifier and
achieved just under 5% errors. The methods de-

HANDWRITTEN CHARACTER RECOGNITION 57

scribed in this paper are similar in spirit but im-
plemented in quite a different way (with far greater
success).

Nearest neighbor classifiers are extremely sim-
ple, and always worth trying as a benchmark with
any classification task. The one-nearest neighbor
classifier (1-NN) is the most simple: a new object
is classified by assigning the class of the closest
training object. “Closest” is in feature space and im-
plies a metric; almost always Euclidean distance is
used, although this is not always the most reason-
able choice. On these data Euclidean-metric 1-NN
achieves a test error rate of 5.3%. This is a rather
remarkable feat given the high dimensionality of
the data—we learn that the curse of dimensional-
ity makes near-neighborhoods very large in high di-
mensions. We conjecture that the reasons for the
success of 1-NN are as follows:

• Invariances are built in, since with 700 “threes,”
for example, there are likely to be slightly rotated
versions, different sizes and so on.
• There is evidence that the data lie clustered

around low-dimensional manifolds, so the effec-
tive dimension is much lower than 256.

Simard, Le Cun and Denker (1993) recognized the
power of 1-NN in this context and showed that its
performance could be further improved by incorpo-
rating invariance to specific transformations in the
underlying distance metric—the so-called tangent
distance. They achieved the best performance on
these data with a test error rate of 2.6%. We re-
view tangent distance in Section 2.

Being a memory based technique, nearest neigh-
bor classification can be computationally expensive
to classify new observations (here we have 7,291
training observations, and a partial sort is required
for each classification). This is exacerbated due
to the additional computations required for the
tangent-distance metric. While techniques have
been proposed for editing and thinning large data
bases for nearest neighbor rules, this has up to now
not been successfully implemented for these data.
So while the tangent metric achieves the best re-
sults, the computationally prohibitive lookup costs
make it infeasible for routine use.

In this paper we address this problem for the tan-
gent distance algorithm, by developing rich mod-
els for representing large subsets of the prototypes.
Our leading example of a prototype model is a low-
dimensional (12-dim) hyperplane defined by a point
and a set of basis or tangent vectors. The compo-
nents of these models are learned from the training
set, chosen to minimize the average tangent distance
from a subset of the training images—as such they

are similar in flavor to the singular value decom-
position (SVD), which finds closest hyperplanes in
Euclidean distance. These models are either used
singly per class or used as basic building blocks in
conjunction with the K-means clustering algorithm
to produce a set of prototypes per class. Our re-
sults show that not only are the models effective,
but they also have meaningful interpretations. In
handwritten character recognition, for instance, the
main tangent vector learned for the digit “2” cor-
responds to addition or removal of the loop at the
bottom left corner of the digit; for the “9,” the fat-
ness of the circle. We can therefore think of some of
these learned tangent vectors as representing addi-
tional invariances derived from the training digits
themselves. Each learned prototype model therefore
represents very compactly a large number of proto-
types of the training set.

2. OVERVIEW OF TANGENT DISTANCE

When we look at handwritten characters, we are
easily able to allow for simple transformations such
as rotations, small scalings, location shifts and char-
acter thickness when identifying the character. Any
reasonable automatic scheme should similarly be in-
sensitive to such changes.

Simard, Le Cun and Denker (1993) finessed
this problem by generating a parametrized seven-
dimensional manifold for each image, where each
parameter accounts for one such invariance. Con-
sider a single invariance dimension: rotation. If
we were to rotate the image by an angle θ prior
to digitization, we would see roughly the same
picture, just slightly rotated (see Figure 3). Our im-
ages are 16×16 greyscale pixel maps, which can be
thought of as points in a 256-dimensional Euclidean
space. The rotation operation traces out a smooth
one-dimensional curve Xi�θ� with Xi�0� = Xi, the
image itself. Instead of measuring the distance be-
tween two images as D�Xi;Xj� = �Xi −Xj� (for
any norm �·�), the idea is to use instead the rotation-
invariant DI�Xi;Xj� = minθi;θj �Xi�θi� −Xj�θj��.
Simard, Le Cun and Denker (1993) used seven di-
mensions of invariance, accounting for horizontal
and vertical location and scale, rotation, shear and
character thickness.

Deriving the manifold exactly is impossible, given
a digitized image, and would be impractical anyway.
They approximated the manifold instead by its tan-
gent plane at the image itself, leading to the tangent
model X̃i�θ� = Xi + Tiθ and the tangent distance
DT�Xi;Xj� = minθi; θj �X̃i�θi� − X̃j�θj��. Here we
use θ for the seven-dimensional parameter, and for

58 T. HASTIE AND P. Y. SIMARD

Fig. 3. A series of rotated versions of the image of a three, approximated by points along the tangent to the rotation curve. The tangent
approximation starts to degrade as the angle gets large. This tangent family can be represented by a parametrized line, where the unit
direction vector can itself be usefully displayed as an image.

convenience drop the tilde. Notice that the metric
allows movement in the tangent spaces of both the
prototype and the test image. Figure 4 illustrates
the approximation. The approximation is valid lo-
cally and thus permits local transformations. Nonlo-
cal transformations are not interesting anyway [we
do not want to flip 6’s into 9’s or shrink all digits
down to nothing (Säckinger, 1992)]. Simard, Le Cun
and Denker (1993) report that they found it unnec-
essary to restrict the transformations to be local,
since the degradation of the linear approximation
far from the origin produced images that were ex-
tremely distorted.

The computations involved in the approximation
are relatively straightforward. We give some details
on the computation of Ti in the Appendix. If �·�

is the Euclidean norm, computing the tangent dis-
tance is a simple least squares problem, with solu-
tion the square root of the residual sum-of-squares
in the regression with response Xi −Xj and pre-
dictors �−Ti xTj�.

Simard, Le Cun and Denker (1993) used DT to
drive a 1-NN classification rule, and achieved the
best rates so far (2.6%) on the official test set (2,007
examples) of the U.S. Postal Service (USPS) data
base. Unfortunately, 1-NN is expensive, especially
when the distance function is nontrivial to compute;
for each new image classified, one has to compute
the tangent distance to each of the training images,
and then classify as the class of the closest. Our
goal in this paper is to reduce the training set dra-
matically to a small set of prototype models; clas-

HANDWRITTEN CHARACTER RECOGNITION 59

Fig. 4. Associated with each image is a manifold of dimension
7 corresponding to the the seven transformations such as rota-
tion, scaling and so on. In principal we would like to compute the
shortest distance between the manifolds of two images. Tangent
distance approximates these manifolds by their tangent hyper-
planes, which simplifies the distance calculations dramatically.

sification is then performed by finding the closest
prototype.

3. PROTOTYPE MODELS

The centroid of a set of N points in d dimen-
sions minimizes the average squared norm from the
points

M = 1
N

N∑
i=1

Xi = arg min
M

N∑
i=1

�Xi −M�2:(4)

In this section we explore some ideas for general-
izing the concept of a mean or centroid for a set
of images, taking into account the tangent families.
Such a centroid model can be used on its own or
else as a building block in a K-means clustering al-
gorithm at a higher level. We will interchangeably
refer to the images as points (in 256-space).

3.1 Tangent Centroid

One could generalize definition (4) and ask for
the point M that minimizes the average squared

tangent distance:

MT = arg min
M

N∑
i=1

DT�Xi;M�2:(5)

This appears to be a difficult optimization prob-
lem, since computation of tangent distance requires
not only the image M but also its tangent basis TM.
Thus the criterion to be minimized is

D�M� =
N∑
i=1

min
γi; θi
�M+T�M�γi −Xi −Tiθi2�;

where T�M� produces the tangent basis from M
(see the Appendix for details). All but the location
tangent vectors in T�M� are nonlinear functionals
of M, and even without this nonlinearity the prob-
lem to be solved is a difficult inverse functional.

The following iterative algorithm is motivated on
intuitive grounds.

Tangent centroid algorithm.

Initialize: Set M0 = �1/N��N
i=1Xi, let T0

M =
T�M0� be the derived set of tangent vectors and
let D0 = �

iD
T�Xi;M

0�. Denote the current
tangent centroid (tangent family) by M0�γ� =
M0 +T0

Mγ.
Iterate: 1. For each i find a γli and θli that solve

minγ; θ �Ml−1 +Tl−1
M γ −Xi�θ��.

2. Set Ml←�1/N��N
i=1�Xi�θli�−Tl−1

M γi� and
compute the new tangent subspace TlM=T�Ml�:
3. Compute Dl = �iD

T�Xi;M
l�.

Until: Dl converges.

Given the current guess for M =Ml−1, in step 1
we locate the closest member of its tangent fam-
ily, namely M�γli�, to the tangent family of of Xi,
namely Xi�θli�. In step 2 it might seem natural to
replace M by the average of the Xi�θli�. Instead we
treat TM as fixed, and pick Ml to minimize the
norm. Note that the first step in Iterate is avail-
able from the computations in the third step. The
algorithm divides the parameters into two sets: M
in the one, and then TM, γi and θi for each i in the
other. It alternates between the two sets, although
the computation ofTM givenM is not the solution of
an optimization problem. It seems very hard to say
anything precise about the convergence or behav-
ior of this algorithm, since the tangent vectors de-
pend on each new version of M in a nonlinear way.
Our experience has always been that it converges
fairly rapidly (< 6 iterations). A potential drawback
of this model is that the TM are not learned, but

60 T. HASTIE AND P. Y. SIMARD

are implicit in M. The next proposal attends to this
deficiency.

3.2 Tangent Subspace

Rather than define the model as a point and have
it generate its own tangent subspace, we can include
the subspace as part of the parametrization:M�γ� =
M+Vγ. Then we define this tangent subspace model
as the minimizer of

D�M;V� =
N∑
i=1

min
γi; θi
�M+Vγi −Xi�θi��2(6)

over M and V. Note that V can have an arbitrary
number 0 ≤ r ≤ 256 of columns, although it does
not make sense for r to be too large. An iterative
algorithm similar to the tangent centroid algorithm
is available, which hinges on the SVD decomposition
for fitting affine subspaces to a set of points. We
briefly review the SVD in this context.

Let X be theN×256 matrix with rows the vectors
Xi−X̄, where X̄ = �1/N��N

i=1Xi. Then SVD�X � =
UDVT is a unique decomposition with UN×R and
V256×R the orthonormal left and right matrices of
singular vectors, and R = rank�X �; DR×R is a diag-
onal matrix of decreasing positive singular values.
Some properties of the SVD that are pertinent here
are as follows:

1. If we replace D by D�r�, which is D with the last
R − r entries replaced by zero, then UD�r�VT is
the best rank r approximation to X , in the least-
squares sense.

2. Consider finding the closest affine, rank-r sub-
space to a set of points, or

min
M;V�r�; �γi�

N∑
i=1

�Xi −M−V�r�γi�2;

where V�r� is 256 × r orthonormal. The solution
is given by the SVD above, with M = X̄ and V�r�

the first r columns of V.
3. The total residual squared distance of the solu-

tion is
�R
j=r+1D

2
jj.

4. The optimal γi indexes the orthogonal projection
of Xi onto the subspace: γi = V�r�

T�Xi− X̄� and
X̂i = X̄+V�r�V�r�

T�Xi − X̄�.
5. The V�r� are also the largest r principal compo-

nents or eigenvectors of the covariance matrix of
the Xi. They give in sequence directions of max-
imum spread, and for a given digit class can be
thought of as class-specific invariances.

We now present our tangent subspace algorithm
for solving (6); for convenience we assume V is rank
r for some chosen r, and drop the superscript.

Tangent subspace algorithm.

Initialize: Set M0 = �1/N��N
i=1Xi and let V0

correspond to the first r right singular vectors
of X . Set D0 = �R

j=r+1D
2
jj, and let the current

tangent subspace model be M0�γ� =M0+V0γ.
The SVD supplies γ0

i , and θ0
i = 0.

Iterate: 1. For each i find a θli (and γi) that
solves minγi;θi �Ml−1�γ� −Xi�θ��.
2. Set Ml← �1/N��N

i=1Xi�θli� and replace the
rows of X by Xi�θli�−Ml. The SVD of X gives
Vl (the first r right singular vectors) and γli.
3. Compute Dl = �R

j=r+1D
2
jj.

Until: Dl converges.

The algorithm alternates between the following:

1. finding the closest point in the tangent subspace
of each image to the current tangent subspace
model;

and

2. computing the SVD for these closest points.

These two steps alternate between overlapping
parameter spaces: S1=�γi; θi� and S2=�M;V;γi�.
In the tangent centroid model, we took advantage
of the γli learned in step 1 in updating M. Here γi
is optimized in both steps 1 and 2; in step 1 opti-
mizing both γi and θi allows for a better choice of
θi, and the final choice of γi is made in step 2.

Each step of the alternation decreases the crite-
rion (decreases or leaves alone). Suppose after iter-
ation l the parameters are �Ml;Vl; θli; γ

l
i� and the

squared distance is

D�Ml;Vl� =
R∑

j=r+1

D2
jj =

N∑
i=1

�Ml +Vlγli −Xi�θli��2:

• Step 1 reduces each of the N components of the
sum in D�M;V� by N separate optimizations for
each of θi and γi; only the θi are retained.
• Step 2 fixes θi and updates M, V and γi by the

SVD. Since this is a least squares procedure, and
the values used in step 1 are acceptable candi-
dates, the criterion again decreases.

Since each step either reduces D or leaves it alone,
and D is positive, it converges. In all our examples
we found that 12 complete iterations were sufficient
to achieve a relative convergence ratio of 0.001. Fig-
ure 5 illustrates the idea behind the tangent sub-
space model.

The algorithm is stationary for any solution to (6),
since it is easy to see that any such solution must be
the SVD of the closest tangent points. Some degen-
eracies can occur. For example, if any of the tangent
vectors for any of the images lie in the span of V,

HANDWRITTEN CHARACTER RECOGNITION 61

Fig. 5. The SVD finds a hyperplane of a given dimension that
minimizes the average squared distance to a set of points. In this
case the points are the pixel values of greyscale images in 256-
dimensional space. The tangent subspace model finds the hyper-
plane closest in tangent distance to a set of images; this approxi-
mates a collection of (linearized) manifolds by a hyperplane.

then the θi and γi for that image will not be unique.
In such cases we set the aliased components of θi
and γi to zero, to eliminate any unwanted influence
at extremes of their ranges. All these statements do
not quite amount to proof that the algorithm con-
verges to a stationary point of the criterion. One
would need to show, for example, that when the cri-
terion failed to decrease, the gradient with respect
to all the parameters was zero. In light of the pos-
sible degeneracies outlined above, this need not be
the case. To date we have no convergence proof.

An alternative approach we are currently explor-
ing is to eliminate all the θi once and for all. Let
Hi = Ti�TTi Ti�−1TTt , the projection operator onto
the tangent subspace Ti of Xi. Then we can reduce
the objective function (6) to

D�M;V� =
N∑
i=1

min
γi
��I−Hi��M+Vγi−Xi��2(7)

=
N∑
i=1

min
γi
�M+Vγi−Xi�2I−Hi

:(8)

This is again cast as a generalization of the closest-
hyperplane problem, where each point carries its
own metric. In this case the metric is defined by a
positive semidefinite matrix. The first author has

encountered two unrelated problems leading to a
similar criterion, and current research is focussed
on efficient algorithms for optimizing such criteria.

One advantage of the tangent subspace model
is that we need not restrict ourselves to a seven-
dimensional V; indeed, we have found 12 dimen-
sions has produced the best results. The basis
vectors found for each class are interesting to view
as images. Figure 6 shows some examples of the ba-
sis vectors found, and what kinds of invariances in
the images they account for. These are digit-specific
features; for example, a prominent basis vector for
the family of 2’s accounts for big versus small loops.
Each of the examples shown accounts for a simi-
lar digit specific invariance. None of these changes
are accounted for by the seven-dimensional tangent
models, which were chosen to be digit nonspe-
cific. Note that the SVD without tangent distance
would tend to mix the affine invariances with these
digit-specific invariances.

To classify a new image, its tangent distance is
computed to each of the subspace models, and as-
signed to the class of the closest. For the USPS
data we achieved 4:1% errors using a single sub-
space model per class (see Table 1 in Section 5).

4. SUBSPACE MODELS AND
K-MEANS CLUSTERING

A natural extension of these single prototype-per-
class models is to use them as centroid modules in a
K-means algorithm. The extension is obvious, and
we summarize it in algorithmic form for the tangent
subspace model (the cluster algorithm for the tan-
gent centroid model is trivially similar). Note that
a model of this kind is fitted for each of the 10 digit
classes.

Tangent subspace K-means algorithm.

Initialize: 1. Choose a value for K.
2. Fit a regular K-means cluster model to the
raw images, filtered down via a 64-dimensional
smooth basis (we use 10 independent starts and
pick the best solution).
3. Partition the data into K clusters depending
on which K-means centroid is closest.

Iterate: 1. For each of the K-clusters fit a sepa-
rate tangent subspace model.
2. Compute the tangent distance of each obser-
vation to the K subspace models, and reassign
their cluster memberships to the closest model.
Let Dmin

i be the tangent distance to the closest
model.
3. Compute D = �N

i=1D
min
i .

Until: D converges.

62 T. HASTIE AND P. Y. SIMARD

basis 4 basis 1 basis 2 basis 1 basis 1 basis 1 basis 3 basis 1 basis 2 basis 1

Fig. 6. Each column corresponds to a particular tangent subspace basis vector for the given digit. The top image is the basis vector
itself, and the remaining three images correspond to the 0:1; 0:5 and 0:9 quantiles for the projection indices for the training data for that
basis vector, showing a range of image models for that basis, keeping all the others at 0.

Table 1
Test errors for a variety of situations: in all cases the training data were 7;291 USPS handwritten digits, and the test data the “official”
2;007 USPS test digits. Each entry describes the model used in each class, so for example in row 5 there are 5 models per class,

hence 50 in all

Model Prototype Metric # prototypes/class Error rate

1 1-NN Euclidean ≈ 700 0.053
2 12 dim SVD subspace Euclidean 1 0.055
3 12 dim SVD subspace Tangent 1 0.045
4 12 dim tangent subspace Tangent 1 0.041
5 12 dim tangent subspace Tangent 3 0.038
6 12 dim tangent subspace Tangent 5 0.038
7 Tangent centroid Tangent 20 0.038
8 (5) ∪ (7) Tangent 23 0.034
9 1-NN Tangent ≈ 700 0.026

In the initialization step, we replace the images
by their coordinates in a smooth 64-dimensional
tensor-product basis of splines. The smoothing
tends to smear pixels, which is a poor-man’s noisy
way of incorporating invariances. This allows us
to rapidly try several starting solutions for the
K-means algorithm. Each of the cluster centers re-
quire iteration, and these get computed repeatedly,
often with very few membership changes. We limit
the number of iterations, and by the time the whole
algorithm has converged all these cluster centers
have converged as well. In a similar way the tan-
gent centroid or subspace models can be used to
seed LVQ algorithms (Kohonen, 1989), but so far
we have not much experience with them.

5. RESULTS

Table 1 summarizes the results for some of these
models. Models 1 and 9 are both 1-NN, and the lat-
ter uses tangent distance and achieves the best er-
ror rate. Models 2 and 3 correspond to a SVD model
for the images fit by ordinary least squares rather
than least tangent squares. Model 2 classifies using
Euclidean distance, model 3 using tangent distance.
Model 4 fits a single 12-dimensional tangent sub-
space model per class, while models 5 and 6 use
12-dimensional tangent subspaces as cluster cen-
ters within each class. We tried other dimensions
in a variety of settings, but 12 seemed to be gen-
erally the best. Model 7 corresponds to the tangent

HANDWRITTEN CHARACTER RECOGNITION 63

true: 6

true proj.

pred. proj. (0)

true: 3

true proj.

pred. proj. (5)

true: 2

true proj.

pred. proj. (0)

true: 5

true proj.

pred. proj. (8)

true: 2

true proj.

pred. proj. (0)

true: 3

true proj.

pred. proj. (5)

true: 2

true proj.

pred. proj. (8)

true: 2

true proj.

pred. proj. (3)

true: 2

true proj.

pred. proj. (0)

true: 9

true proj.

pred. proj. (4)

true: 4

true proj.

pred. proj. (7)

true: 8

true proj.

pred. proj. (9)

Fig. 7. Some of the errors for the test set corresponding to line 3 of Table 1. Each case is displayed as a column of three images. The top
is the true image; the middle, the tangent projection of the true image onto the subspace model of its class; the bottom image, the tangent
projection of the image onto the winning class. The models are sufficiently rich to allow distortions that can fool Euclidean distance.

centroid model used as the centroid in a 20-means
cluster model per class; the performance compares
with K = 3 for the subspace model. Model 8 com-
bines 5 and 7, and reduces the error even further.
These limited experiments suggest that the tangent
subspace model is preferable, since it is more com-
pact and the algorithm for fitting it is on firmer
theoretical grounds.

Notice that the performance can deteriorate (or at
least not improve) if we continue to add more pro-
totypes, or increase the dimension of the tangent
subspace models. This is again the bias–variance
tradeoff in operation. Adding more parameters cre-
ates models that fit the training data better. For
parametric families of models this improved fit can
be achieved in a rather aggressive way and lead to
models that do not generalize well when tested on
independent data.

Figure 7 shows some of the misclassified examples
in the test set. Despite all the matching, it seems
that Euclidean distance still fails us in the end in
some of these cases.

6. OTHER APPROACHES

We tried other approaches that exploited the tan-
gent distance, but were unsuccessful on these test
data. We briefly outline some of these, since they
may be useful in other settings.

6.1 Stochastic Image Families

One can think of θ in the model Xi�θ� =Xi+Tiθ
as being a random variable, and hence generating a
stochastic family of deformed versions of the image
Xi. This would typically generate a cloud of images
centered at Xi, confined to the subspace spanned by

64 T. HASTIE AND P. Y. SIMARD

Ti. This model can be used to generate more images
for each digit if these are required. One use of such a
construction is to fit centroid models that get close
to the image families in an average sense rather
than a minimum sense. For example, the criterion
for the tangent subspace model would be

N∑
i=1

Eθ�Xi
min
γ�θ�
�M+Vγ�θ� −Xi�θ��2:(9)

Assuming further that θ�Xi ∼ N�0; 6θ�, and with-
out any loss in generality that �1/N��N

i=1Xi =
0, a closed form solution is available: M = 0 and
V is given by the appropriate number of eigenvec-
tors of

N∑
i=1

Eθ�Xi
�Xi +Tiθ��Xi +Tiθ�T

=
N∑
i=1

(
XiX

T
i +Ti6θTTi

)
:

(10)

We tried fitting a single model of this kind for
each of the digit classes, using 6θ = σ2I for vari-
ous values of σ2 and dimensions. Given the solution
subspace, we classified new observations as before,
using tangent distance. The best performance (in
classifying the test data) was attained for σ2 = 0
and a dimension of 12, which shows empirically
that this approach only does worse than even the
ordinary SVD! We do not fully understand this phe-
nomenon and can only deduce that the spherical
prior for θ is inappropriate.

6.2 Other Metrics

We are using Euclidean distance in conjunction
with tangent distance. Since neighboring pixels are
correlated, one might expect that a metric that ac-
counted for the correlation might do better. We tried
a few such approaches for the model with the 20
clusters with tangent centroids described in Table 1.
For each digit class we computed the pooled within
cluster covariance matrix Sj, j = 0;1; : : : ;9; from
the training data. We then modified the definition
of tangent distance to accommodate this metric:

DT�Xi;Mjk� = min
θi; θjk

{(
Xi�θi�−Mjk�θjk�

)T

·S−1
i

(
Xi�θi�−Mjk�θjk�

)}
;

where Mjk is the kth tangent centroid for the jth
digit class. In our investigations, we only used this
distance for classifying the test data (i.e., we did not
re-learn the cluster models). The performance was
worse than Euclidean distance. We also tried 2 × 2
variants in which:

• We replaced Si by a regularized version Si + �
to enforce stability and spatial smoothness of the
metric (Hastie, Tibshirani and Buja, 1994).
• We corrected each distance for the size of the

covariance in a way consistent with Gaussian
likelihood-ratio tests, by adding the term log �Si�
to the distance.

Neither of these gave any improvements either.
We also tried to incorporate information about

where the images project in the tangent subspace
models into the classification rule. We thus com-
puted two distances: (1) tangent distance to the
subspace and (2) Mahalanobis distance within the
subspace to the centroid for the subspace. Again
the best performance was attained by ignoring the
latter distance.

7. DISCUSSION

Gold, Mjolsness and Rangarajan (1994) inde-
pendently had the idea of using “domain specific”
distance measures to seed K-means clustering al-
gorithms. Their setting was slightly different from
ours, and they did not use subspace models. The
idea of classifying points to the closest subspace is
found in the work of Oja (1989), but of course not
in the context of tangent distance.

Our models are fitted separately in each class,
without any concerns of overlap. Here we remind
the reader of the distinction between Gaussian dis-
criminant analysis and logistic regression; the latter
are fitted by conditional maximum likelihood, often
termed discriminative learning. An alternative ap-
proach in the context of subspace models might be
to embed them in a polychotomous logistic regres-
sion model. We have explored models of this kind,
and more generally discriminative versus nondis-
criminative learning in a variety of different con-
texts. Our experience is that the significant extra
computational burden is not warranted in terms of
improved performance (Rubenstein, 1998).

In conclusion, learning tangent centroid and sub-
space models is an effective way to reduce the num-
ber of prototypes (and thus the cost in speed and
memory) at a slight expense in the performance.
In the extreme case, as little as one 12-dimensional
tangent subspace per class and the tangent distance
is enough to outperform classification using approx-
imately 700 prototypes per class and the Euclidean
distance (4.1% versus 5.3% on the test data).

APPENDIX: TANGENT MODELS

In this section we give a derivation of the tangent
model different from those that have appeared be-

HANDWRITTEN CHARACTER RECOGNITION 65

fore. We use a functional approach, and then view
the digitized images as discretized versions of these.

Suppose we represent an image prior to digitiza-
tion as a differentiable function Fx R2 7→ R; that is,
F�z� gives the greyscale value at spatial location z.
The family of functions generated by the six dimen-
sional affine transformations can be represented as

FI�z;µ;A� = F�z0 + µ+A�z− z0��
= F�Z�z; z0; µ;A��;

(11)

where:

• µ accounts for location shifts;
• z0 is the center of rotation, scaling and shear;
• A is a 2 × 2 transformation matrix with factor-

ization A = R�θ�T, where R is a rotation matrix
and T an upper-triangular scale or shear matrix.

These affine transformations act by altering the
points z = �x;y� at which we reference F. The
first-order Taylor series approximation to this fam-
ily about suitable null transformations has the
form

FT�z;µ;A�

= F�z� +
∑

α∈�µ;θ;T�

∂F

∂α
�α− α0�

(12)

= F�z� + ∇F�z�T

·
∑

α∈�µ;θ;T�

∂Z�z; z0; µ;A�
∂α

�α− α0�:
(13)

This leads to the following six derivative (tangent)
functions Fα�z�:
• x-location, α = µ1 and Fα = Fx�z� = ∂F�z�/∂x;
• y-location, α = µ2 and Fα = Fy�z� = ∂F�z�/∂y;
• x-scale, α = T11 and Fα = �x− x0�Fx�z�;
• y-scale, α = T22 and Fα = �y− y0�Fy�z�;
• rotation, α = θ and Fα = �y − y0�Fx�z� −
�x−x0�Fy�z�;
• shear, α = T12 and Fα = �y − y0�Fx�z� +
�x−x0�Fy�z�.

Finally, based on entirely intuitive grounds, the
thickness derivative �α = thickness� is given by
Fα�z� = Fx�z�2 + Fy�z�2 (when displayed as an
image this function looks like the outline of F).

A digitized image can be thought of as F sampled
at a lattice of points zij = �xi; yj� (or integrated
over rectangles defined by them). As we move from
functions to digitized functions, the Taylor approxi-
mation becomes a tangent subspace to the digitized
manifold FI. To implement the approximation, we

need the derivatives Fx and Fy evaluated at the
same set of lattice points. Several approaches can
be used to approximate these derivatives:

1. Use first differences in each direction.
2. Convolve the image with a smooth bivariate ker-

nel, and then differentiate. In practice this im-
plies differentiating the kernel first (separately
in x and y) and then convolving. We used the
kernel kh�z1; z2� = �1/h� exp�−�z1 − z2�2/2h�.

3. Smooth the image first, but then use first differ-
ences as in (1).

All these techniques have approximately the same
performance.

REFERENCES

Bishop, C. (1995). Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.

Boser, B. and Guyon, I. (1992). A training algorithm for optimal
margin classifiers. In Proceedings of COLT II. Philadelphia.

Friedman, J. (1981). Projection pursuit regression. J. Amer.
Statist. Assoc. 76 817–823.

Gold, S., Mjolsness, E. and Rangarajan, A. (1994). Clustering
with a domain specific distance measure. In Advances in
Neural Information Processing Systems. Morgan Kaufmann,
San Mateo, CA.

Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized dis-
criminant analysis. Ann. Statist. 23 73–102.

Hastie, T. and Tibshirani, R. (1993). Handwritten digit recog-
nition via deformable prototypes. Unpublished manuscript.

Hastie, T. and Tibshirani, R. (1996). Discriminant analysis by
gaussian mixtures. J. Roy. Statist. Soc. Ser. B 58 155–176.

Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discrim-
inant analysis by optimal scoring. J. Amer. Statist. Assoc. 89
1255–1270.

Kohonen, T. (1989). Self-Organization and Associative Memory,
3rd ed. Springer, Berlin.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R., Hubbard, W. and Jackel, L. (1990). Handwritten digit
recognition with a back-propagation network. In Advances
in Neural Information Processing Systems 2 (D. Touretzky,
ed.). Morgan Kaufmann, Denver, CO.

Oja, E. (l989). Neural networks, principal components, and sub-
spaces. International Journal of Neural Systems 1 61–68.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks.
Cambridge Univ. Press.

Rubenstein, D. (1998). Discriminative versus informative learn-
ing. Ph.D. thesis, Dept. Statistics, Stanford Univ.

Säckinger, E. (1992). Recurrent networks for elastic matching
in pattern recognition. Technical report, AT&T Bell Labora-
tories.

Simard, P. Y., Le Cun, Y. and Denker, J. (1993). Efficient pat-
tern recognition using a new transformation distance. In
Advances in Neural Information Processing Systems 50–58.
Morgan Kaufmann, San Mateo, CA.

Vapnik, V. (1996). The Nature of Statistical Learning. Springer,
Berlin.

