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Abstract 3D rotations arise in many computer vision, com-
puter graphics, and robotics problems and evaluation of the
distance between two 3D rotations is often an essential task.
This paper presents a detailed analysis of six functions for
measuring distance between 3D rotations that have been
proposed in the literature. Based on the well-developed the-
ory behind 3D rotations, we demonstrate that five of them
are bi-invariant metrics on SO(3) but that only four of them
are boundedly equivalent to each other. We conclude that
it is both spatially and computationally more efficient to use
quaternions for 3D rotations. Lastly, by treating the two rota-
tions as a true and an estimated rotation matrix, we illustrate
the geometry associated with iso-error measures.

Keywords Matrix Lie group · Lie algebra · Quaternions ·
3D rotations · Distance functions

1 Introduction

3D rotations are common entities in many computer vision,
computer graphics, and robotics problems that need to deal
with the 3D world. Typical applications that involve 3D ro-
tations include the interpolation of trajectory of 3D orienta-
tions, robot kinematics, flight simulation, structure from mo-
tion, 3D pose recovery of objects, and motion capture. The
common issues that arise in these applications are how to
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efficiently represent 3D rotations and how to correctly eval-
uate the distance between them. If one of the 3D rotation
matrices is a true or reference rotation while the other is an
estimated one, then it is useful also to identify regions where
identical error measures occur. A few functions for distance
measures between 3D rotations have been proposed in the
computer vision literature; however, there has neither been
detailed analysis provided to these functions nor a compari-
son of them in the context of the group SO(3) to which 3D
rotations belong. The contributions of this paper are: (1) to
provide this missing information; (2) to analyze and illus-
trate the iso-error contours of a given reference rotation.

Rotations in 3D space can be represented in various
forms. Euler angles are commonly used in robotics appli-
cations where, because of constraints in the design of the
joints of robot arms, rotations often have to be carried out
in a certain order (e.g., [1]; see also [19]). For other ap-
plications where such a constraint is absent, Euler angles
are less favoured, precisely because the values of these an-
gles are dependent on the order of rotations about the three
principal axes. For research in computer vision and com-
puter graphics, 3D rotations are commonly represented as
unit quaternions (e.g., [5, 15, 17, 18]), rotation axes and an-
gles (e.g., [8, 21]), or even as the 3 × 3 rotation matrices
themselves (e.g., [3, 4, 6]). The number of computer vision
research papers that involve 3D rotations of any form is far
too many to permit a complete list of citations. The refer-
ences given here are only a very small subset of papers in
the literature.

In terms of storage, each 3 × 3 rotation matrix requires
the space of 9 floating point numbers, whereas in reality the
special orthogonal group is a 3 dimensional object embed-
dable in R

4. Another concern of the matrix representation
is that after several matrix multiplications, round-off errors
within computers can result in “rotation” matrices that are
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no longer orthogonal. In that regard, the unit quaternions
are preferred as an alternative way of representing 3D ro-
tations. Although round-off errors may also cause any unit
quaternion to have a non-unit magnitude, it is more straight-
forward to renormalize it to unity in comparison with re-
orthogonalizing a distorted matrix.

In the following sections, we will first give a brief
overview of the special orthogonal group and the unit
quaternions. This is then followed by the formal definition
of a distance function or metric. Six different functions for
3D rotations will then be studied in turn; their computation
complexity will be briefly analyzed. In Sect. 5, a geometrical
interpretation of one of the functions will be studied further,
this leads to the discussion on iso-error contours. Finally in
Sect. 6, we conclude the paper.

2 SO(3) and Unit Quaternions: An Overview

3D rotations form the so-called Special Orthogonal Group
SO(3) of orthogonal matrices with determinant 1. SO(3) is
a compact Lie group having the skew-symmetric matrices as
its Lie algebra, so(3). This Lie algebra is a non-associative
vector space equipped with a binary operation:

[ · , · ] : so(3) × so(3) → so(3),

[A,B] = AB − BA
(1)

which can easily be seen to be a closed operation in so(3).
The Lie algebra so(3) is the tangent space at the identity ele-
ment of SO(3). The binary operation defined above is known
as the Lie bracket, which satisfies the following properties:

[A,B] = −[B,A],
[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0,

(2)

for all A,B,C ∈ so(3). It follows immediately from the first
property that [A,A] = 0.

In the theory of Lie groups, the exponential map is a map-
ping from the Lie algebra of a Lie group to the group itself.
Such a mapping allows one to recapture the group structure
from its Lie algebra. As in the general case of matrix Lie
groups, the exponential map exp : so(3) → SO(3) is simply:

exp(A) = I + A + A2

2! + A3

3! + · · · . (3)

For the special orthogonal group SO(3), the exponential map
is surjective but not injective. The failure of injectivity is
easily seen by considering a skew-symmetric matrix such as

A =
⎡
⎣

0 1 1
−1 0 1
1 −1 0

⎤
⎦ (4)

and noting that exp(tA) = I whenever t is an integer mul-
tiple of 2π/

√
3. This example, however, suggests at least

some of the degree of non-uniqueness in the exponential
parametrization. Indeed, the exponential parametrization of
SO(3) corresponds exactly to the rotation axis and rota-
tion angle formulation. Given a rotation with rotation axis
u = (u1, u2, u3)

� of unit magnitude and rotation angle θ ,
the 3 × 3 rotation matrix R can be obtained by the exponen-
tial mapping exp([θu]×), where [a ]× is chosen to be the
matrix defined by [a]×b = a×b. For example, the matrix in
(4) corresponds to [(−1,1,−1)]×. The group SO(3) is cov-
ered by one-parameter groups (in fact circles) of the form
{exp([θu]×) : θ ∈ [−π,π)} and this representation is almost
unique, since a rotation uniquely specifies its (unit vector)
rotation axis up to a multiplication by ±1, and once this is
fixed, the angle is specified up to a multiple of 2π .

It is straightforward to show that the Rodrigues formula
(see, e.g., [11]) for a rotation matrix R as defined below

R = cos θ I + sin θ [u]× + (1 − cos θ)uu�, (5)

is just a simplification of the exponential map given in (3)
being applied to [θu]×. Given a 3 × 3 rotation matrix R,
the inverse of the exponential map provides a rotation an-
gle/axis description of the rotation. Thus, log(R) is the
skew-symmetric matrix containing information about the ro-
tation axis and angle. Although the inverse process requires
a choice of rotation axis between the two alternatives, it is
a straightforward procedure to retrieve the rotation axis and
angle (see Appendix A).

As a unit quaternion, the same 3D rotation matrix
exp([θu]×) ∈ SO(3) can be written as q ≡ (q0, q1, q2, q3)

� ≡
(q0, q̃)�
= ±(cos θ

2 ,u� sin θ
2 )�. The unit quaternions are a one-to-

one parametrization of the Special Unitary group SU(2) and
the q above can be written as a 2 × 2 unitary matrix:

[
q0 + iq1 q2 + iq3

−q2 + iq3 q0 − iq1

]
. (6)

SU(2) provides a double-covering of SO(3); that is, each
rotation matrix in SO(3) corresponds to two members of
SU(2). The group homomorphism from SU(2) to SO(3)

has a two element kernel and this corresponds to the am-
biguity in the choice of rotation axis in the logarithmic
map. In this regard, we note that SU(2) and SO(3) have
the same Lie algebra. The Lie algebra su(2), which con-
sists of the 2×2 skew-hermitian matrices, is isomorphic as a
Lie algebra to so(3). Consider representing the rotation axis
u = (u1, u2, u3)

� of unit magnitude and the rotation angle
θ as a 2 × 2 skew-hermitian matrix, A, as follows:

A =
[

iθu1 θu2 + iθu3

−θu2 + iθu3 −iθu1

]
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= θ

[
iu1 u2 + iu3

−u2 + iu3 −iu1

]
≡ θÃ. (7)

By applying the exponential mapping to A and noting that
A2 = −θ2I, we obtain a different version of the Rodrigues
formula:

exp : su(2) → SU(2),

exp(A) = cos θ I + sin θ

θ
A (8)

= cos θ I + sin θ Ã.

It is straightforward to verify that exp(A) ∈ SU(2) and that
the quaternions are simply a parametrization of SU(2). The
exponential map from su(2) to SU(2) does not suffer from
the ambiguity present in the orthogonal case.

3 Distance Function or Metric

3.1 Definition

For definiteness, we give the usual definition of distance
function or metric. Let S be some space between whose el-
ements we are interested in knowing distances. A distance
function or metric is a map Φ : S × S → R

+ satisfying the
usual axioms for metrics:

(i) Φ(x,y) = 0 ⇔ x = y;
(ii) Φ(x,y) = Φ(y,x) for x, y ∈ S;

(iii) Φ(x, z) ≤ Φ(x,y) + Φ(y, z) for x, y, z ∈ S.

We note that there are situations where our intuitive concept
of “distance” may not satisfy these axioms.

There are two other properties of distance functions that
are important in the context of SO(3). The first is that the dis-
tance function defines and respects the topology of SO(3).
To state precisely what this means, we note that the obvious
definition of Rn → R as n → ∞ for Rn,R ∈ SO(3) is that
the matrix entries of the Rn should converge to the matrix
entries of R as real numbers. We say that a distance function
Φ respects the topology of SO(3) provided

Φ(Rn,R) → 0 ⇔ Rn → R. (9)

Since SO(3) is compact, it is sufficient [12] that

Rn → R ⇒ Φ(Rn,R) → 0. (10)

It is essential that this is the case for all distance functions
defined on SO(3).

Since SO(3) is a group, we can ask one other property
of interest. We say that a distance function Φ is left, (resp.
right) invariant if

Φ(R1R2,R1R3) = Φ(R2,R3), (11)

(
resp. Φ(R2R1,R3R1) = Φ(R2,R3)

)
(12)

for R1,R2,R3 ∈ SO(3). A distance function is bi-invariant
if it is both left and right invariant.

Two distance functions Φ and Ψ are said to be boundedly
equivalent if there are positive real numbers a and b such
that

aΦ(R1,R2) ≤ Ψ (R1,R2) ≤ bΦ(R1,R2) (13)

for all R1, R2 ∈ SO(3). We also define functional equiva-
lence between Φ and Ψ to mean that there exists a positive
continuous strictly increasing function h such that

h ◦ Φ = Ψ. (14)

It is easy to see that if one distance function respects the
topology of SO(3) and another is either boundedly or func-
tionally equivalent to it then it too respects the topology.
Also, if Φ is a distance function satisfying

cΦ(R1,R2) ≤ Φ(RR1,RR2) ≤ dΦ(R1,R2) (15)

for all R1,R2,R ∈ SO(3) and for some positive real num-
bers c and d , then it is equivalent to a left-invariant one. The
invariant distance function is

ΦL(R1,R2) =
∫

Φ(RR1,RR2) dR (16)

for all R1,R2 ∈ SO(3) where the integral is with respect to
the (left) Haar measure on the group. We note that this mea-
sure is left invariant and it is this property which ensures left
invariance of the distance function. A similar result holds
for right and bi-invariant distance functions. Note that, in
this case, since SO(3) is a compact group its left and right
Haar measures are the same.

Finally, two metrics are said to be topologically equiva-
lent if they give the same convergent sequences. Both func-
tional and bounded equivalence individually imply topolog-
ical equivalence. Our assumption that metrics respect the
topology means that they are topologically equivalent to
each other.

Several functions for measuring the distance between
two 3D rotations for various applications have been reported
in the literature. Some of these functions are defined in terms
of Euler angles or quaternions, while others involve the ro-
tation matrices. We will discuss each of them in turn below.
We assume that the two rotation matrices whose distance
is of interest are R1 = exp([θ1u]×) and R2 = exp([θ2v]×),
where θ1 and θ2 are the rotation angles, and u and v the
rotation axes of unit magnitude. Their corresponding unit
quaternions can be written as q1 = ±(cos θ1

2 ,u� sin θ1
2 )�

and q2 = ±(cos θ2
2 ,v� sin θ2

2 )�, respectively. All rotation
axes are assumed to be of unit magnitude from here on.
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3.2 Euclidean Distance between the Euler Angles

Let (α1, β1, γ1) and (α2, β2, γ2) be two sets of Euler angles.
Then

Φ1 : E × E → R
+,

Φ1((α1, β1, γ1), (α2, β2, γ2)) (17)

=
√

d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2,

where E ⊂ R
3 is an appropriate domain for the three

Euler angles (see the discussion that follows) and d(a, b) =
min{|a − b|, 2π − |a − b|} denotes the normalized differ-
ence between the two angles so that 0 ≤ d(., .) ≤ π . The
range of values of Φ1 is [0,π

√
3]. This function was dis-

cussed in [9] in the context of rotation matrix sampling.
Unfortunately, it is not a distance function on SO(3) since
it depends on a representation that is not unique. For exam-
ple, the Euler angles (α,β, γ ) = (π,π,0) can represent the
same rotation as (α,β, γ ) = (0,0,π) under a particular or-
der of rotations, yet their distance is non-zero. To overcome
the problem of ambiguous representation, we can impose
the following conditions on the Euler angles (and thus the
domain E): α,γ ∈ [−π,π); β ∈ [−π/2,π/2). Under this
representation, Φ1 is a metric on SO(3).

3.3 Norm of the Difference of Quaternions

Ravani and Roth [16] define the distance between two ro-
tations as the Euclidean distance between two unit quater-
nions. As unit quaternions q and −q denote the same rota-
tion, we can define the following function, which takes into
account the ambiguity in quaternion representation:

Φ2 : S3 × S3 → R
+,

Φ2(q1,q2) = min{‖q1 − q2‖, ‖q1 + q2‖},
(18)

where ‖ · ‖ denotes the Euclidean norm (or 2-norm) and
S3 = {q ∈ R

4 | ‖q‖2 = 1}. We can easily verify that in the
S3 space, the Φ2 function above satisfies all axioms except
for Axiom (i) since Φ2(q,−q) = 0 �⇒ q = −q (as vectors
in R

4). This means that Φ2 is a pseudometric [7] rather than
a metric on the unit quaternions. However, as the mapping
from unit quaternions to SO(3) is 2-to-1, the pseudometric
on the unit quaternions becomes a metric on 3D rotations
because we are identifying points with zero distance apart.

The Φ2 metric gives values in the range [0,
√

2].

3.4 Inner Product of Unit Quaternions

A similar function that involves unit quaternions is given by:

Φ ′
3 : S3 × S3 → R

+,

Φ ′
3(q1,q2) = min{arccos(q1 · q2),π − arccos(q1 · q2)},

where · denotes the inner (or dot) product of vectors (not the
quaternion multiplication, which produces another quater-
nion). This function was used by Wunsch et al. [20] for 3D
object pose estimation. As in (18), the ambiguity in sign of
unit quaternions must be taken into consideration. So, Φ ′

3
can be replaced by the following computationally more effi-
cient function:

Φ3 : S3 × S3 → R
+,

Φ3(q1,q2) = arccos(|q1 · q2|).
(19)

Since it is necessary that Φ3 is a non-negative function, we
restrict the angles returned by arccos to be in the first quad-
rant, i.e., the range of values mapped by Φ3 is [0,π/2] (ra-
dians).

Alternatively, the inverse cosine function above can be
eliminated by defining

Φ4 : S3 × S3 → R
+,

Φ4(q1,q2) = 1 − |q1 · q2|.
(20)

This function was used in [9] for the distance measure be-
tween two Euclidean transformations. Function Φ4 give val-
ues in the range [0,1].

Following the same argument as that for Φ2, we can con-
clude that both Φ3 and Φ4 are pseudometrics on the unit
quaternions but are metrics on SO(3). Up to this point, we
have not discussed whether Φ2, Φ3, and Φ4 are bi-invariant
metrics on SO(3). We defer the proof for this until later in
the paper.

3.5 Deviation from the Identity Matrix

Larochelle et al. [10] use polar decomposition to approxi-
mate elements of the Euclidean group SE(n − 1) with ele-
ments of the special orthogonal group SO(n) and then em-
ploy the metric d(A1,A2) = ‖I−A1A�

2 ‖F (where A1,A2 ∈
SO(n) and ‖ · ‖F denotes the Frobenius norm of the ma-
trix) as a distance measure between two rigid body displace-
ments. For the specific case where n = 3, we have

Φ5 : SO(3) × SO(3) → R
+,

Φ5(R1,R2) = ‖I − R1R�
2 ‖F ,

(21)

which gives values in the range [0,2
√

2]. An alternative is to
replace the Frobenius norm above by the 2-norm to reduce
the range of values to [0,2] instead.

One can verify that Φ5 is a metric on SO(3) although the
proof to show that the function satisfies the triangle inequal-
ity condition involves some messy algebra.
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3.6 Geodesic on the Unit Sphere

Since SO(3) is a compact Lie group it has a natural Rie-
mannian metric; that is, an inner product on its tangent space
at every point. At the identity, this tangent space is so(3),
i.e., the skew-symmetric matrices, as we have mentioned.
The inner product on so(3) is given by

〈S1,S2〉 = 1

2
trace

(
S�

1 S2

)
, (22)

for S1,S2 ∈ so(3).
The inner product in the Riemannian structure provides

an “infinitesimal” version of length on the tangent vectors,
and so the length of a curve can be obtained by integration
along the curve. Then the concept of a shortest path between
two points on the group, a geodesic, follows. In fact, it is
enough to describe the shortest path from the identity of the
group to another point which we can write as exp(S), where
S ∈ so(3). This shortest path can be shown to be of the form
exp(tS), where 0 ≤ t ≤ 1. We can use this to define a metric
on the group by making the distance between two points the
length of the geodesic between them. This metric is the one
considered by Park and Ravani [13, 14]:

Φ6 : SO(3) × SO(3) → R
+,

Φ6(R1,R2) = ‖ log(R1R�
2 )‖,

(23)

where, as described above, log(R) gives the skew-symmetric
matrix that embodies the rotation axis and angle of the rota-
tion matrix R. The ‖.‖ above therefore gives the magnitude
of the rotation angle. This Φ6 function is a bi-invariant met-
ric on SO(3). The proof for this will be given later in the
paper. The metric gives values in the range [0,π).

It is obvious that both Φ5 and Φ6 attempt to find the
amount of rotation required to bring R1 to align with R2,
i.e., to find R such that R1 = RR2, thus R = R1R�

2 .

4 Comparison of the Metrics

One can verify that all the functions Φi , for i = 1, . . . ,6,
defined above are metrics on SO(3), although the proof for
the triangle inequality condition may not be straightforward
for some of them (a proof to show that Φ6 is a metric is given
in Appendix B). It should be noted also that the Φ1 function
does not truly reflect the ‘distance’ of two rotations. That
is, two nearby rotations may have a large Φ1 value, while
two distant rotations may have a smaller Φ1 value. For this
reason, when a distance measure between two rotations is
sought, any of the Φ2 to Φ6 metrics should be used instead.
From here on, the comparison will be focused only on these
five metrics.

4.1 Bounded Equivalence

The metrics Φi , for i = 2, . . . ,6, produce values in dif-
ferent ranges and of different units: Φ3 and Φ6 are in ra-
dians while the other three are dimensionless. The differ-
ence in units is not an issue as a change of unit merely
results in a scale change to the metric being considered.
Furthermore, the relationships among these metrics are
clearly non-linear, except for Φ3 and Φ6. To see that Φ3

and Φ6 have a linear relationship, consider the compu-
tation of the rotation angle of R1R�

2 in the definition
of Φ6. As unit quaternions, R1 and R�

2 can be, respec-
tively, represented by q1 = ±(cos θ1

2 ,u� sin θ1
2 )� and q̄2 =

±(cos θ2
2 ,−v� sin θ2

2 )�, where the overhead bar denotes
quaternion conjugate. The cosine of half of the rotation
angle of R1R�

2 can be found from the first component of
product |q1q̄2|, which, by definition of quaternion multipli-
cation, is |cos θ1

2 cos θ2
2 + sin θ1

2 sin θ2
2 (u · v)|. This term is

identical to the absolute value of the dot product of the two
4-vector q1 and q2 computed in Φ3, i.e., cos( θ

2 ) = |q1 · q2|.
Thus, Φ3 returns half of the rotation angle of R1R�

2 from
Φ6. From the definition given in Sect. 3.1, metrics Φ3 and
Φ6 are boundedly equivalent.

To prove that two metrics Φi and Φj are boundedly
equivalent (see (13)), it suffices, because SO(3) is compact,
to show that Φi/Φj is bounded near the origin. In particular,
the metrics Φ2 and Φ5 can be rewritten as

Φ2(q1,q2) = √
2 (1 − |q1 · q2|), (24)

Φ5(R1,R2) =
√

trace
(
(I − R1R�

2 )�(I − R1R�
2 )

)

=
√

2 trace (I) − 2 trace
(
R1R�

2

)

=
√

2
(
3 − trace

(
R1R�

2

))
. (25)

Let R1R�
2 = exp([θu]×). Then trace

(
R1R�

2

) = 1+2 cos(θ)

(see Appendix A). Substituting this into (25) gives

Φ5(R1,R2) = 2
√

1 − cos(θ) = 2
√

2 − 2 cos2(θ/2). (26)

From the discussion given above, we have cos(θ/2) =
|q1 · q2|. This gives us an alternative distance function de-
fined in terms of unit quaternions:

Φ ′
5 : S3 × S3 → R

+,

Φ ′
5(q1,q2) = 2

√
2 (1 − |q1 · q2|2).

(27)

By taking Φ3 as the reference metric and applying
L’Hôpital’s rule, it can be shown that

lim|q1·q2|→1

Φ3

Φ2
= lim|q1·q2|→1

arccos(|q1 · q2|)√
2(1 − |q1 · q2|) = 1, (28)
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lim|q1·q2|→1

Φ3

Φ4
= lim|q1·q2|→1

arccos(|q1 · q2|)
1 − |q1 · q2| = ∞, (29)

lim|q1·q2|→1

Φ3

Φ5
= lim|q1·q2|→1

Φ3

Φ ′
5

= lim|q1·q2|→1

arccos(|q1 · q2|)
2
√

2(1 − |q1 · q2|2)
= 1

2
√

2
. (30)

Thus, Φ2, Φ3, Φ5, and Φ6 are boundedly equivalent metrics,
while Φ4 is not boundedly equivalent to any other metrics.

4.2 Functional Equivalence

Figure 1 shows the relationships among the five distance
functions. The figure was generated using many randomly
simulated 3D rotations. The linear relationship between Φ3

and Φ6 is evident from the straight green line in the figure.
It is also clear that each of the mappings from Φi to Φj , for
i, j = 2, . . . ,6, i �= j , is a bijection and monotonic increas-
ing. That is, these five metrics are functionally equivalent to
each other. Again, taking Φ3 as the reference metric, one can
easily derive that the positive, strictly increasing functions h

mapping from Φ3 to the other four metrics are:

Φ2 = h32(Φ3) ≡ √
2 (1 − cosΦ3), (31)

Φ4 = h34(Φ3) ≡ 1 − cosΦ3, (32)

Φ5 = h35(Φ3) ≡ 2
√

2 sinΦ3, (33)

Φ6 = h36(Φ3) ≡ 2Φ3. (34)

It is interesting to note that the curve for Φ4 versus Φ6 ap-
proaches the origin approximately quadratically. This indi-
cates that Φ4(q′,q) → 0 at a much slower rate than the other

Fig. 1 Metrics Φi , for i = 2, . . . ,5 versus Φ6

metrics when the rotation represented by q′ approaches the
rotation represented by q. This confirms that Φ4 is not
boundedly equivalent to other metrics, as demonstrated ear-
lier.

If we have a sequence of matrices Rn such that Rn → R
as n → ∞ (Sect. 3.1, (10)), then R�

n → R� and RR�
n →

RR� = I. Using the metric Φ5 we have

Φ5(R,Rn) = Φ5(Rn,R)

= ‖I − RnR�‖F

→ ‖I − RR�‖F

= 0. (35)

Conversely, if Φ5(Rn,R) = Φ5(R,Rn) → 0 as n → ∞,
then it is necessary that RR�

n → I, i.e., Rn → R. We can
therefore conclude that Φ5 respects the topology of SO(3),
and so do all the metrics Φ2, Φ3, Φ4, and Φ6, for their func-
tional equivalence to Φ5.

Table 1 summarizes the computational complexity of
these distance functions. Among them, Φ5 is the most com-
putationally expensive metric. However, the computation
work can be significantly reduced if unit quaternions are
used instead. Similarly, computation work for function Φ6

Table 1 Summary of the amount of computations required for each of
the distance functions Φi , i = 2, . . . ,6. The dot product of two quater-
nions requires 4 multiplications; the product of two 3 × 3 rotation ma-
trices require 27 multiplications; the Euclidean norm of a 4-vector re-
quires 4 multiplications; the ‖.‖F norm requires 9 multiplications; to
obtain the absolute or minimum value, 1 comparison is required

Function Range Computations required

Φ2 [0,
√

2] 8 multiplications

1 comparison

Φ3 [0,π/2] 4 multiplications

1 arccos

1 comparison

Φ4 [0,1] 4 multiplications

1 comparison

Φ5 [0,2
√

2] 36 multiplications

1 square root

Using quaternions (27):

7 multiplications

1 square root

Φ6 [0,π] 30 multiplications

1 square root

1 arccos

Using quaternion (same as Φ3):

4 multiplications

1 arccos

1 comparison
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can be reduced if rotations are represented as unit quater-
nions so that the Φ3 metric can be employed.

5 Further Analysis of Φ6 and Iso-error Contours

The Φ6 metric is geometrically more meaningful than the
other metrics, as demonstrated from further analysis of the
metric given in this section.

Theorem 1 Let R1 and R2 be two 3D rotations. Let p be
any arbitrary point on the surface of the unit sphere. Then

(i) Φ6(R1,R2) = maxp arccos(R1p · R2p).
(ii) p̂ = argmaxp arccos(R1p · R2p) ⇔ p̂ ⊥ rotation axis of

R�
1 R2.

Proof The proofs for (i) and (ii) can be combined. Con-
sider R1p · R2p. We have R1p · R2p = p�(R�

1 R2)p. Let
R�

1 R2 = exp([wβ]×) for some rotation angle β and rota-
tion axis w. By treating p as a vector of the unit sphere and
expressing p as the sum of two component vectors, one par-
allel and another orthogonal to w, we see that clearly, if p is
parallel to the rotation axis w, it is invariant under the rota-
tion, so p� exp([wβ]×)p = p�p = 1 and arccos(R1p · R2p)

attains the minimum value 0. If p is orthogonal to w, then
p� exp([wβ]×)p = cosβ and arccos(R1p · R2p) attains its
maximum value β . Following the same argument, we can
conclude that if arccos(R1p̂ · R2p̂) = β , for any p̂, then it is
necessary that p̂ is orthogonal to the rotation axis of R�

1 R2.
What remains to be proven is Φ6(R1,R2) = β . This can

be easily seen by considering the dot product of any two
unit quaternions q1 and q2 associated with R1 and R2. Since
|q̄1 · q2| and |q1 · q̄2| are, respectively, the cosine of half of
the rotation angle β of R�

1 R2 and the cosine of half of the
rotation angle of R1R�

2 , the equality of |q̄1 · q2| and |q̄1 · q2|
means that Φ6(R1,R2) = β = maxp arccos(R1p · R2p). �

The above theorem shows that Φ6 gives the maximum
angular measure of separation of points transformed by the
two rotations. The following corollary is immediate.

Corollary 1 Given any two 3D rotations R1 and R2, all the
rotations R1R�

2 , R�
1 R2, R2R�

1 , and R�
2 R1 have the same

rotation angle.

Theorem 2 Φ6 is a bi-invariant metric on SO(3).

Proof It is easy to verify that Φ6 is right-invariant as for any
rotation matrices R1, R2, and R, we have

Φ6(R1R,R2R) = ‖ log(R1R(R2R)�)‖
= ‖ log(R1RR�R�

2 )‖

= ‖ log(R1R�
2 )‖ = Φ6(R1,R2).

To show that Φ6 is left-invariant also, we may apply Corol-
lary 1 above. Given the same three arbitrary rotation matri-
ces, we have

Φ6(RR1,RR2) = ‖ log(RR1(RR2)
�)‖

= ‖ log((RR2)
�RR1)‖

= ‖ log(R�
2 R�RR1)‖

= ‖ log(R�
2 R1)‖

= ‖ log(R1R�
2 )‖ = Φ6(R1,R2).

Φ6 is thus a bi-invariant metric on SO(3). �

The functional equivalence of the metrics Φi , for i =
2, . . . ,6, means that all of these five metrics are bi-invariant.

Theorem 3 Let R0 = exp([θ0u]×), R1 = exp([θ1v]×), and
R2 = exp([θ1w]×). Then Φ6(R0,R1) = Φ6(R0,R2) iff u ·
v = u · w.

Proof The three rotations can be written in unit quater-
nions as follows: q0 = (cos θ0

2 ,u� sin θ0
2 )�, q1 = (cos θ1

2 ,

v� sin θ1
2 )�, q2 = (cos θ1

2 ,w� sin θ1
2 )�. We have

Φ6(R0,R1) = Φ6(R0,R2)

⇔ q1q̄0 and q2q̄0 have the same rotation angle

⇔ q1 · q̄0 = q2 · q̄0

⇔ cos
θ1

2
cos

θ0

2
+ sin

θ1

2
sin

θ0

2
(u · v)

= cos
θ1

2
cos

θ0

2
+ sin

θ1

2
sin

θ0

2
(u · w)

⇔ u · v = u · w. �

Corollary 2 The locus of all the rotation matrices, R, which
have the same rotation angle and are equidistant from a ref-
erence rotation R0 = exp([θ0w]×), is a cone with central
axis w.

In plain English, Theorem 3 and Corollary 2 state that if
two different rotations have the same rotation angle and are
equidistant from a reference rotation, then their rotation axes
must deviate by the same amount from the rotation axis of
the reference rotation.

5.1 Iso-error Contours

Consider the rotations R0 = exp([θ0u]×) and R1 =
exp([θ1v]×) given in Theorem 3 again. If R0 is the true
rotation and R1 is an estimated rotation, then the distance
measure Φ6(R0,R1) can be taken as an error measure of R1.
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Fig. 2 Error-contour plots of a 3D rotation R1 = exp([θ1v]×)

for different values of the rotation angle θ0 of the true rotation,
R0 = exp([θ0u]×). In each plot, the horizontal axis corresponds to

arccos(u · v), i.e., the angle of deviation between the two rotation axes
of R0 and R1; the vertical axis corresponds to the difference of the
rotation angles, i.e., θ1 − θ0. Both axes are in degrees

Of interest is then the geometry of the set of rotations that
are on the iso-error contours. From Theorem 3 and Corol-
lary 2, we see that R1 is on the iso-error contour with all the
matrices in the set {R = exp([θ1w]×) | u · v = u · w}. How-
ever, there are other rotation matrices outside this set having
the same error measure from R0 also. If we start altering the
direction of the rotation axis v to increase its angle of devi-
ation with u (this corresponds to decreasing u · v), then it
would be necessary that the difference between θ0 and θ1 be
adjusted in order to have R1 still remain on the same error
contour. The induced change to the difference between θ0

and θ1 by the angle of deviation is non-linear and can not be
expressed in an explicit form. Furthermore, if the angle of

deviation is too large, then it is possible that R1 would move
to a different error contour.

The various error contour plots shown in Fig. 2 illustrate
the relationship between the angle of deviation, arccos(u ·v),
and the difference between θ0 and θ1 for the rotations R0 and
R1 described above. This relationship varies depending on
the rotation angle θ0 of the true rotation. For illustration pur-
pose, the angles in Fig. 2 are all in degrees. We only need to
consider cases where θ0 ∈ [0,180)deg, as those cases out-
side this range correspond to flipping the rotation axis to the
opposite direction. In Fig. 2, if θ1 − θ0 results in θ1 outside
the range [0,180)deg, similar interpretation can be applied.
In all of the plots in Fig. 2, we can see some contours are per-
fectly horizontal. They correspond to the case where R1 = I.
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For instance, in Fig. 2(a) where θ0 = 40 deg, the straight
horizontal contour corresponds to θ1 − θ0 = −40 deg, i.e.,
θ1 = 0 deg, so the error measure is a constant 40 deg regard-
less of the direction of the rotation axis v of R1. In Fig. 2,
it is evident that for a given rotation angle θ0, the error con-
tours that are less than θ0 are closed loops while those that
are larger than θ0 are open. The vertical line (not shown in
the figure) where arccos(u · v) = 90 deg and the horizontal
straight contour form a pair of lines of reflection for all the
contour curves.

Each plot in Fig. 2 clearly has two valleys where the er-
rors are small. The iso-error contour plots can therefore be
used as a visualization aid to help identify the shortest path
for updating the estimated θ1 angle and u vector for error
minimization. These plots were analyzed based on the as-
sumption that no constraints are imposed on the rotations. In
many computer vision and robotics problems, such as mo-
tion capture and articulated kinematic robot arms, there are
often limits associated with the rotations on each joint or
the 3D orientations of the recovered poses. For instance, hu-
man subjects cannot bend their elbows forward by more than
75 deg or backward by more than 10 deg. In other words,
there are infeasible regions in the space of the elbow and
other joint angles of the human subjects. As a result, the
iso-error contours for the recovered rotations at these joints
would be disjoint curve segments.

A motivation behind the study of iso-error contours
above is to find ways to reduce the search space for the esti-
mated rotation and to make applications, such as markerless
motion capture, more efficient. We note that one of the ap-
proaches commonly adopted in markerless motion capture
is particle filter based (see, e.g., [2]). The particle filter is
known to be an expensive visual tracking process where
a large number of particles must be used in order for the
tracking to be successful. The high dimensionality of the
joint configuration further escalates the number of particles
required. If it is known that the estimated rotation of a par-
ticular joint is more likely to have an error of, say, ε deg,
then, knowledge of the iso-error contours of the 3D rota-
tion of the joint is useful for reducing the sampling region
for the rotation and consequently fewer particles would be
necessary.

6 Conclusion

3D rotations are common entities that arise in many com-
puter vision, graphics, and robotics problems. We have re-
ported six functions for estimating the distance between two
given rotations represented in various forms. Based on the
well-founded theory behind 3D rotations, our detailed com-
parison on these functions shows that five of these functions
are bi-invariant metrics, all of which respect the topology on

SO(3); however, only four of them are boundedly equivalent
to each other. From our brief analysis on the computational
complexity, we conclude that it is both spatially and compu-
tationally more efficient to use the unit quaternions for 3D
rotations. We have also illustrated the geometry associated
with iso-error contours and discuss its possible applications
in some common computer vision problems.
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Appendix A: Extracting u and θ from R

If R has rotation axis u and rotation angle θ , then R� has
rotation axis u and rotation angle −θ . From Rodrigues for-
mula, we have

R = cos θ I + sin θ [u]× + (1 − cos θ)uu�, (36)

R� = cos θ I − sin θ [u]× + (1 − cos θ)uu�. (37)

Subtracting these two equations gives R−R� = 2 sin θ [u]×.
This is a skew-symmetric matrix, from which the rotation
axis can be easily extracted and normalized to unit mag-
nitude. From the normalization, we implicitly assume that
sin θ ≥ 0, thus restricting 0 ≤ θ ≤ π . If R − R� = 0, then
(i) R must be the identity matrix, in which case, θ can be set
to 0 and u can be any arbitrary vector; (ii) θ must be equal
to π , in which case, R + I = 2uu� is a rank-1 matrix and u
can be obtained by normalizing any column of R + I.

The three eigenvalues of R are 1 and exp(±iθ). Thus,
tr(R) = 1 + 2 cos(θ). It follows that θ = arccos((tr(R) −
1)/2).

Computing the rotation axis and angle this way will en-
sure that the rotation angle is always positive and in the
range [0,π]. The sign of the rotation axis is correctly deter-
mined from the normalization to suit the sign of the rotation
angle.

Appendix B: Proof that Φ6 is a Metric

To prove that Φ6 is a metric, we show that it satisfies the
three axioms listed in Sect. 3.1. Since Φ6 = 2Φ3 as shown
in (34), it is useful to use Φ3 in the proof when convenient.

Let R1, R2, and R3 be three arbitrary rotation matrices
in SO(3) and let their corresponding unit quaternions be de-
noted by q1, q2, and q3. Suppose that R1R�

2 = exp([θu]×),
where θ is the rotation angle and u is the unit vector repre-
senting the rotation axis. We have

Φ6(R1,R2) = 0

⇔ ‖ log(R1R�
2 )‖ = 0
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⇔ ‖[θu]× ‖ = 0

⇔ θ = 0 . . .Φ6 returns values in the range [0,π)

⇔ R1R�
2 = I . . . obvious from Rodrigues formula (36)

⇔ R1 = R2.

Φ6 thus satisfies Axiom (i). The proof for satisfying Axiom
(ii) is even more trivial:

Φ6(R1,R2) = ‖ log(R1R�
2 )‖

= ‖ log(R2R�
1 )‖ . . .Corollary 1

= Φ6(R2,R1).

To show that the triangle inequality is also satisfied, it is
easier to use Φ3 instead:

Φ6(R1,R3) = 2Φ3(q1,q3)

= 2 arccos(|q1 · q3|)
≤ 2 arccos(|q1 · q2|) + 2 arccos(|q2 · q3|)

. . .holds for angles among unit vectors

= 2Φ3(q1,q2) + 2Φ3(q2,q3)

= Φ6(R1,R2) + Φ6(R2,R3).
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