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Abstract 
 

We present a new set of metrics for analyzing the 

interaction between the modules of a large software 

system. We believe that these metrics will be important 

to any automatic or semi-automatic code 

modularization algorithm.  The metrics are based on 

the rationale that code partitioning should be based on 

the principle of similarity of service provided by the 

different functions encapsulated in a module. Although 

module interaction metrics are necessary for code 

modularization, in practice they must be accompanied 

by metrics that measure other important attributes of 

how the code is partitioned into modules. These other 

metrics, dealing with code properties such as the 

approximate uniformity of module sizes, conformance 

to any size constraints on the modules, etc., are also 

included in the work presented here.,  To give the 

reader some insight into the workings of our metrics, 

this paper also includes some results obtained by 

applying the metrics to the body of code that 

constitutes the open-source Apache HTTP server. We 

apply our metrics to this code as packaged by the 

developers of the software and to the other partially 

and fully randomized versions of the code. 

 

1. Introduction 
     Much work has been done during the last several 

years on automatic approaches for code reorganization.  

This work is motivated by the need to bring legacy 

code to modern software engineering standards [4].  

Fundamental to any attempt at code reorganization is 

the division of the software into modules, publication 

of the API functions for the modules, and then 

requiring that the modules access each other’s 

resources only through the published interfaces.  

 

      The precise methodology used for code 

reorganization depends on 1) whether the software 

started out from a well-modularized state and gradually 

degraded into a state of disorganization as new features 

were added to the software under tight deadlines and 

other business constraints; or 2) whether the software 

was never modularized in the first place.  When legacy 

code is of relatively recent vintage, it is likely that the 

first scenario applies, that is that the code started out as 

being well-modularized but subsequently became 

disorganized.   If some sort of a temporal history of all 

the changes to such code is available (as would be the 

case when software is developed with the help of IDEs 

that maintain change histories), that fact can play an 

important role in the reorganization of the code.  Each 

new feature added to the code after a certain date can 

be tested vis-à-vis all the modules in the system to 

determine the best location for the new feature.  

Obviously, newly added features could also result in 

either the splitting or the joining of some of the 

existing modules, or in the creation of new ones.  Our 

current work does not deal with such cases. 

 

    Our ongoing effort, from which we draw the work 

reported here, is focused on the case of reorganization 

of legacy code that was never modularized to begin 

with.  We believe that this problem is more complex 

compared to the case mentioned above, especially for 

applications consisting of millions of lines of code.  

We can think of the problem as reorganization of 

millions of lines of code residing in thousands of files 

in hundreds of directories into a new directory tree in 

which some of the mid-level nodes correspond to 

modules, with each module making itself available to 

the other modules (and to the rest of the world) through 

a set of published API functions.  
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     The work we report here addresses the fundamental 

issue of how to measure the quality of a given 

modularization of the software.  Note that 

modularization quality is not synonymous with 

modularization correctness. Obviously, after software 

has been modularized and the API of each of the 

modules published, the correctness can be established 

by checking function call dependencies at compile 

time and at run time.  If all inter-module function calls 

are routed through the published API functions, the 

modularization is correct.  As a theoretical extreme, 

retaining all of the software in a single monolithic 

module is a correct modularization though it is not an 

acceptable solution. On the other hand, the quality of 

modularization has more to do with partitioning 

software into more maintainable (and more easily 

extendible) modules on the basis of the cohesiveness of 

the service provided by each module.   Ideally, while 

containing all of the major functions that directly 

contribute to a specific service vis-à-vis the other 

modules, each module would also contain all of the 

ancillary functions and data if they are only needed in 

that module.  Capturing these “cohesive of service” 

and “ancillary support” criteria into a metric is an 

important goal of our research.  The work that we 

report here is a step in that direction. 

 

More specifically, we present in this work a set of 

metrics that measure in different ways the interactions 

between the different modules of a software system. It 

is important to realize that metrics that only analyze 

inter-module interactions cannot exist in isolation from 

other metrics that measure the quality of a given 

partitioning of the code. To explain this point, it is not 

very useful to partition a software system containing of 

a couple of million lines of code into two modules, 

each consisting of a million lines of code, and justify 

the two large modules purely on the basis of function 

call routing through the published APIs for the two 

modules. Each module would still be much too large 

from the standpoint of code maintenance and code 

extension. The module interaction metrics must 

therefore come with a sibling set of metrics that record 

other desirable properties of the code.  The metrics we 

present in Section 4, while focusing primarily on 

module interactions, also include other necessary 

measures of the quality of a given partitioning of code. 

 

In the rest of this paper, we briefly survey in Section 2 

the past literature relevant to the goals of our work.  

Section 3 discusses the relationship between previous 

work and our current work.  We present the metrics in 

Section 4.  In Section 5, we apply the metrics to what 

is generally considered to be a well-organized body of 

code - the HTTPD server code from Apache. 

 

2.  Previous Work 
 

Research in code modularization and metrics that test 

the effectiveness of a given modularization date back 

to the early seminal work of Parnas [17]. Historically 

speaking, he was one of the first to focus on the notion 

of a module in software. According to him, a software 

module should be characterized by a design decision 

that it hides from all other modules and that module 

interface should not reveal any inner workings of the 

module. 

 

A descendent of [17] is the contribution by Schwanke 

[3].  He sought to create optimized code partitions by 

characterizing the partitions with a set of numerically 

measurable features and then trying to find a global 

best solution in the feature space.  One of his primary 

features is a measure of “information sharing” between 

the functions that are meant to be in the same module. 

Information sharing is derived form the commonality 

of names used in the functions and the functional 

purpose of those names. For example, if two functions 

share names that imply that the functions are sharing 

data objects, then the two functions belong together in 

the same module.  Another feature used by Schwanke 

is derived from function-call dependencies. If a 

function A calls function B, then both A and B 

presumably belong to the same module.  That brings us 

to a brief description of the various efforts that have 

been undertaken over the years to partition code purely 

on the basis of function-call dependencies or criteria 

that are based primarily on such dependencies. 

 

 In code modularization driven by function-call 

dependencies, one first constructs a function-

dependency graph or a file-dependency graph (that is 

derived from function dependencies), the nodes of the 

graph being the individual functions (or files) and the 

edges representing either the function-call 

dependencies or some other inter-function or inter-file 

attributes. The nodes of the graph may then be 

clustered together on the basis of certain edge 

properties or criteria derived therefrom.  Each cluster 

thus discovered becomes a suggestion for a module.  

The research contributions by Fahme and Holt [11], 

Mitchell et. al [7][10][12], etc., are  representative of 

this line of work.  When graph partitions are optimized 

with respect to some integrated measure of edge 

attributes, the optimum partitions would generally 

correspond to the eigenvectors of a matrix 

representation of the edge attributes [10].  Optimized 

partitioning of a graph in this manner can also be 

achieved by other modern tools such as those based on 
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genetic algorithms (GA), simulated annealing, etc. The 

contribution by Zhang and Jacobson [15] is also 

relevant to our work. Their wok is focused primarily 

on the development of tools for characterizing aspects 

and for the discovery of aspects in legacy code.  An 

aspect represents a feature of the software that applies 

at a more global level to all the units of the software.  

For example, one can talk about aspects related to 

security, logging, tracing, etc. Aspects that can be 

recognized by statement-level “cross cutting” structure 

may be discovered through lexical pattern matching. 

Zhang and Jacobson’s goal is to modularize code on 

the basis of the discovered aspects.  If successful, this 

effort would repackage legacy code in the form of an 

aspect-oriented architecture.  

 

Yet another previous contribution relevant to our work 

is the work of  Rysselberghe and Demeyer [16] on how 

to gain evolutionary insights into large software by 

analyzing the change histories.  It seems that history 

logs could aid in the remodularization of code that 

started out being well-partitioned but then gradually 

devolved into an unstructured body of code. 

 

Specifically with regard to the issue of metrics, we 

must mention the work of Oman and 

Hagemeister[1][2] They have applied themselves to the 

formulation of metrics that assess the maintainability 

of code  In particular, this work presents an empirical 

formula for calculating a maintainability index (MI) 

that is based on Halstead and Cyclomatic complexity 

measures derived from source code analysis. The 

utility of these metrics has been evaluated by 

comparing the MI with human perception of 

maintainability.  This work is important to us since a 

well-modularized body of code will also be easy to 

maintain.  So, one would think that we could use the 

same metrics to assess the goodness of our 

modularization at least from the standpoint of the effort 

required for code maintenance. 

 

3. Relationship of Previous Work to Our 

Present Goals 

 
     We believe that many of these previous approaches 

suffer from shortcomings with regard to the goals we 

have in mind. The approaches that carry out software 

partitioning purely on the basis of function call 

dependencies (or file-dependencies that are derived 

from function-call dependencies) are obviously not 

suitable for meeting our goals. Function call 

dependencies are semantically orthogonal to the 

groupings on the basis of cohesiveness of service.  To 

elaborate, in code partitioning on the basis of function-

call dependencies, if a function A calls a function B,  

then both A and B must belong together in the same 

module.  But using function call dependencies as the 

sole basis for modularization runs counter to the very 

spirit of what is meant by modules in modern code 

writing.  Modules pull together functions not because 

they call one another, but because they serve similar 

purposes with respect to the rest of the software.  For 

example, the number of intra-module function calls in 

the java.util module (referred to as a package in the 

Java parlance) is minimal.  The main reason for why 

the functions in the java.util module belong together is 

because they provide very similar services to the rest of 

the software. 

 

     The approaches that try to cluster together functions 

based on what [3] refers to as information sharing are 

also deficient because they do not scale well to large 

software. 

 

Our mention of prior work would be incomplete 

without mentioning the system modernization effort of  

the Object Management Group. OMG has started an 

initiative to define a standard [16] for application 

metadata description that is meant to facilitate 

interoperability of modernization tools. To the extent 

the modernization tools under consideration by OMG 

include those intended for legacy code, the OMG effort 

is relevant to the work being reported here.  
 

4. Module Interaction and Other Related 

Metrics 
 

Modern software engineering dictates that large 

software be organized along the following lines:  

 

1. The software system should consist of a set of 

modules where each module is a collection of data 

structures and functions that together offer a well- 

defined service. In other words, the structures used 

for representing knowledge and any associated 

functions in the same module should cohere on the 

basis of  similarity-of-service as opposed to on the 

basis of  function call dependencies. 

2. The modules should interact with one another only 

through the exposed API functions. With regard to 

code maintenance, this is desirable for isolating 

faults and rectifying them quickly. 

3. Whenever feasible, the modules should be organized 

in a hierarchical manner in a set of layers. A layer 

should only be aware of the layers below it (that is, 

function calls are only made to the lower layers) and 

should not be aware of the layers above it. A layer 
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can be thought of as horizontal partitioning of the 

system. 

4. Modules should be independently testable and 

releasable. The impact of a single change should 

typically stay confined to a module and should 

minimally impact other modules.   

These considerations have led us to formulate the 

following metrics for measuring the quality of module 

interactions. Of the four considerations listed above, 

the testability related consideration is more complex 

and depends on what tools are brought to bear and 

what protocols are used for testing code.  Therefore, 

for now, we will ignore this consideration.  Given the 

importance of this issue, we certainly plan to take up 

testability related issues in a future research 

contribution.  Additionally, as was stated in the 

introduction, metrics that focus solely on the 

interactions between the modules cannot exist in 

isolation from the metrics that measure other qualities 

of code modularization.  Therefore, the set of metrics 

shown below includes those that are needed to 

simultaneously report these other attributes. 

 

M1: Module Interaction Index: 

Suppose that a module M has n functions f1 ,.., fn and 

suppose that there are Nint number of calls made to a 

function f from other functions internal to module M 

and Next number of calls made to f from other functions 

external to module M. Also suppose that there are m 

modules in the system. Then the following ratio 

measures the utility of a function with regard to its 

usefulness to other modules: 

 

       MII(f) = 
intNNext

Next

+
         

 

An average measure of this utility over all the 

functions in a given module is: 

       MII(M) = ∑
=

n

i

fiMII
n 1

)(
1

.  

This measure is averaged over all the modules to yield 

the following metric that applies to the entire software:  

         MII(System)=   = ∑
=

m

i

iMMII
m 1

)(
1

 

A well designed module often exposes a limited set of 

API functions through which other modules interact. 

These API functions are generally a small percentage 

of all the functions that constitutes the module. They 

represent the service that the module has to offer. Since 

these API functions are meant to be used by other 

modules, the internal functions of a module typically 

do not call API functions of the module. Therefore, for 

an API function f of a well designed module, MII(f)  

1. By the same argument, a non-API function should 

not have any external calls at all, i.e. its MII should be 

0. Since the majority of the functions in a module 

should ideally be non-API, an average of all MIIs at 

the module level would be low for a well designed 

module. 

 

M2: Non-API Function Closedness Index: 

As one is experimenting with different ways of 

partitioning code, one is bound to go through stages 

when the code may be considered to be semi-

modularized. That is, the code partitions may be in a 

state in which most inter-module function-call traffic is 

routed through the published API’s for each of the 

modules, but there remain some residual inter-module 

function calls outside the API’s.   For all those 

functions in a module that have not yet been declared 

to be API functions, we calculate a metric that we call 

the “Non-API Function Closedness Index”. This metric 

represented by C(f)  is measured by the following 

formula. C(f)=  

 

called is   timesofnumber  Total

module same in the  functionsother by  called is  times#

f

f
 

Assuming that a module has p non-API functions, we 

average C(f) as follows over a module: 

 

       C (M) = ∑
=

p

i

fiC
p 1

)(
1

 

    = 0 if there are no non-API functions 

 

Averaging C(M) over all the modules m1 having non-

zero C(M) yields: 

        C(System) = ∑
=

1

1

)(
1

1 m

i

iMC
m

 

   

Since a well designed module does not expose the non-

API functions to the external world, C(fna)  1 for a 

non-API function fna. Since the average is taken over 

non-API functions only, C(M) for a well designed 

module should also be close to 1.     

 

M3: API Function Usage Index: 

This index determines what fraction of the API 

functions exposed by a module is being used by the 

other modules. When a big monolithic module M 

presents a large and versatile collection of API 

functions offering many different services, any one of 

the other modules  may not need all of its services. 

That is, any single other module may end up using 

only a small part of the API. The intent of this index is 
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to discourage the formation of such large monolithic 

modules offering services of disparate nature and  

encourage modules that offer specific functionalities. 

Currently, we have formulated this index as: 

 

APIU(M) = 

 

 M of functions API ofnumber  Total

 Mj) moduleother any by  called functions API of(Number Max 

               = 0 if M has no API functions     

 

The System level APIU(System) can be computed as  

 

APIU(System) =    ∑
=

2

1

)(
2

1 m

i

iMC
m

 

assuming that there are m2 modules with non-zero 

APIU values.  

     

    M4: Module Size Uniformity Index: 

Within reason, of course, all modules should be 

roughly equal in size.  A strong deviation from this 

constraint of uniformity in size would generally be 

indicative of poor modularization.  Therefore, a 

modularization algorithm needs to possess a bias 

towards making the modules as equal in size as 

possible, subject to the fulfillment of other 

modularization constraints.  This constraint can be 

expressed in terms of the average value µ and the 

standard deviation σ associated with the module sizes.  

We can define a Module Size Uniformity Index 

(MSUI) as the ratio; 

    MSUI(System)  =  
µ

σµ −
    

Obviously, the closer this index is to 1 the greater the 

uniformity of the module sizes.  The formula for this 

metric assumes that the standard deviation is not 

comparable to the average size value. 

    

    M5:   Module Size Boundedness Index:         

While the previous metric will “push” a 

modularization algorithm to make the modules as 

nearly uniform in size as possible, it could still result in 

modules that are too large.  Many practitioners of the 

art and science of code modularization recommend 

that, ideally, no module should significantly exceed 

some recommended particular size that is expressed in 

terms of the number of lines of code.  Assuming that 

this “magic number” is N, if we want a modularization 

algorithm to try to honor this number, we can do so by 

first defining an average deviation in module length 

from the magic length by 

    av∂ = ∑ − NN
m

i

1
 

where iN is the number of lines in the 
thi  module 

and m is the number of modules. As a fraction of the 

largest of either the magic length, N , or any of the 

module lengths, this deviation is re-expressed as  

    
),max( i

av

fav
NN

δ
δ = .  The metric may now be 

defined as :  

 

favSystemMSBI δ−= 1)(  

       

5. Experiments with Well-Organized 

Code 
 

In order to validate the efficacy of the metrics, we 

applied them to the roughly 350,000 lines of the Apache 

web server code written in C.  This software is highly 

regarded in industry and academia for its quality and 

robustness. The software is well-organized into a 

directory structure on the basis of the services provided 

by the various sub-directories and files. Functionally 

distinct sub-directories carry mnemonic names that 

correspond to the corresponding services. That makes it 

relatively easy to identify the various modules 

comprising the system..  

 

Before the metrics are applied to the Apache software, 

the code was first analyzed by the open-source tool 

Sourcenav [18] that yielded a database containing the 

associations between the function definitions and the 

corresponding file names and also the function-call 

dependency information.  Subsequently we ran a set of 

tools written in Perl and Java to extract the above 

mentioned metrics. The approach has been depicted in 

Figure 1. 

 

 

Figure 1 Schematic diagram of Metric Extraction 
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Shown below is a sample of metadata collected by the 

Metadata Extractor: 

 

System Metadata Value 

Total files 689 

Total LOC 370,000 

LOC without Comments 336000 

# Function call cross reference obtained 

from static analysis 

7213 

Total leaf directories 110 

 

To establish the usefulness of our metrics, we not only 

need to show that the numbers look good for well-

written code; we also need to demonstrate that the 

numbers yielded by the metrics become progressively 

worse as the code becomes increasingly disorganized. In 

order to make such a demonstration, we created four 

different modularized versions of the software.  These 

versions of the software correspond to the following 

scenerios: 

 

Scenario 1 (Human): We  considered the directory 

leaf nodes of the directory hierarchy of the original 

source code to be the most fine-grained functional 

modules. All the files (and functions within) inside a 

leaf level directory were considered to belong to a 

single module --- the module corresponding to the 

directory itself. In this manner, all leaf level directories 

formed the module set for the software. We call this 

module set the Developer Generated Module Set. 

Scenario 2 (Random): Functions were assigned 

randomly to modules in such a manner that we ended 

up with the same number of modules as in the 

developer generated module set. We call this the 

Randomly Generated Module Set. 

Scenario 3 (Semi-Random):  Instead of functions, 

we now assign files randomly to modules. All the 

functions in the same file are considered to belong to 

the module to which the file was assigned. Note that in 

this case whereas a file-to-module assignment is 

completely random, the same cannot be said of the 

function-to-module assignment. We call this as Semi-

Random Module Set.  

Scenario 4 (Concept Driven): We used a heuristic 

approach to assign functions to modules. Recall that 

our long-term goal is to be able to examine millions of 

lines of code and cluster together data structures and 

functions on the basis of similarity of purpose.  It will 

obviously be the case that we will have a set of 

heuristics that will “measure” the purpose of a data 

structure or a function. The heuristics would provide us 

with a first cut at the modularization of the code; the 

metrics would measure the quality of the 

modularization thus obtained; and iterative algorithms 

(whose discussion is beyond the scope of this paper) 

would then refine the modularization until certain 

criteria are met with regard to the quality of 

modularization.  As a step in that direction, the work 

reported in this paper used a simple heuristic for 

function clustering — clustering driven by keywords 

denoting the service performed by the function.  We 

may think of these keywords as domain concepts that 

provide a clue as to the service performed by the 

function. The domain concepts are matched with the 

full directory pathnames to the files containing the 

functions and the function names to provide a weight 

value as to whether the function corresponds to the 

purpose corresponding to the domain concepts.   Here 

is a pseudo-code description of how the domain 

concepts are matched with directory pathnames and the 

filenames: 

 

GetSimilarity(filename f, concept string c) { 

1. PathArray = get the directory path of f. 

2. for each directory name d ε PathArray { 

i. Find out how close c matches with d. 

Let this number be υ [0..1]. 

ii. Calculate the weight ω of d.  

/** We have used a function that assigns 

high ω to d if d appears in the middle of 

the path. The idea is that the leftmost and 

the rightmost directories are too coarse-

grained and too fine-grained, respectively, 

and should play no role in matching d with 

c. The directories that appear in the middle 

are good candidates for matching. 

**/ 

iii. The similarity Sd is = ω *υ; 
      } 

3. Return S = Max (Sd );  

   } 

 

   AssignModule(filename f, concept-list C, 

threshold τ) { 

 Let Smax = Max(Sc) where Sc= 

GetSimilarity(f, c) and cmax be the concept for 

which the similarity is maximum; 

If Smax > τ { 

Assign cmax to be module for f;  

Return cmax ; 

     } 

} 

    

In each of the four scenarios, a key challenge was as to 

how to identify the API functions vis-à-vis the non-API 

functions in a given module.. For the purpose of this 

particular experiment with the Apache code, we identify 

API functions with the heuristic that an ideal API 
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function is mostly called by functions belonging to other 

modules. Similarly, an ideal non-API function is never 

exposed, i.e. it is never called by functions from other 

modules. According to this heuristic, in each 

modularized version, a module function was declared to 

be an API function or a non-API function depending on 

whether or not it was called by other modules. In several 

cases a function is called externally as well as internally.  

In such cases we have considered the function as API as 

well as non-API depending on the metric we are 

calculating.   

 

Experimental Results 
 

The following table shows the metrics calculated 

from the application metadata by the Metrics 

Calculator tool in Figure 1 for each of the four 

scenarios mentioned previously. The abbreviations 

used for the names of the metrics in the top row are the 

same as in the formulas of the previous section. 

 
Experi-

ment # 

#Mod-

ules 

MII C APIU MSUI MSBI 

Developer 

Generated 

110 0.228 0.874 0.8392 

 

0.5978 0.6914 

Randomly 

Generated 

110 0.985 0.445 0.1586 0.752 0.2235 

Semi-

randomly 

generated 

110 0.333 0.833 0.7269 0.1362 0.3352 

Concept 

Driven 

40 0.196 0.915 0.8109 0.1276 0.7129 

 

In the rest of this section, we will briefly discuss the 

nature of the values calculated for the metrics in each 

of the four scenarios. The abbreviations used for the 

metric names are the same as in the column headings 

of the table. 

  

MII: The values obtained for this metric are in 

agreement with our designation of functions as API 

functions and non-API functions. For the developer 

generated and concept driven scenarios, the number of 

functions declared as API is 224 and 185, respectively, 

out of a total 1684 functions as per our heuristic for 

designating API functions.. In the random scenario 

almost all of 1684 functions (1674 to be exact) became 

API functions due to the random allocation of 

functions to modules. Thus, the MII values for human 

and concept driven scenarios become small when we 

take an average over all the functions of a module 

(since most of the functions are non-API and their 

MIIs are 0).    

 

C: As evident from the table, this metric is consistently 

high for the human and concept-driven scenarios and 

low for random and semi-random scenarios. This once 

again validates our observation on the characteristics of 

C as described in Section 4. 

 

APIU: This metric shows high values for the human 

and concept-driven scenarios and low values for 

random & semi-random scenarios. The random 

assignment of functions to modules, causing arbitrary 

declaration of API functions, results in disparate-

natured services offered by a module. Clearly such a 

scenario is discouraged (low value).   

 

MSUI:  The MSUI metric shows high values for 

random and semi-random scenarios. Since the random 

number generation follows a uniform distribution, the 

functions are randomly but uniformly distributed 

across several generated modules in random and semi-

random scenarios. This in turn results in smaller 

standard deviations for these two scenerios, causing 

high values for  MSUI.  

 

6. Conclusion 
 

Despite all the attention that code modularization 

has received over the last couple of decades, one has 

yet to see a set of metrics that can be used for the 

partitioning of legacy code on the basis of the services 

provided by the functions and the data structures in the 

modules.  The metrics that have been proposed in the 

past, while useful for generating measures of software 

quality with regard to maintainability, extendibility, 

portability, modularity on the basis of function-call and 

data dependencies, etc., appear to be unsuitable for 

modularization on the basis of the similarity of services 

rendered.  The metrics proposed in this paper are a step 

in the direction of rectifying this deficiency. 

 

The experiments described in this paper seek to 

establish whether our proposed metrics can distinguish 

a well modularized system from a randomly 

modularized one. In order to simulate the condition of 

gradual degradation of modularity, we started with a 

well modularized open source system as packaged by 

the developers of the software and created a semi-

randomly modularized version (intermediate state of 

disorganization) and a randomly modularized version 

(state of complete disarray) of the software. The 

metrics when calculated for each version confirmed the 

degradation trend. We also wanted to determine 

whether the values yielded by the metrics for a services 

based modularization are close to the values for the 

developer-generated modularization. As an initial step 
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towards this direction, we simulated a services-based 

modularization by clustering functions on the basis of 

keywords, with each keyword denoting a service. The 

metric values in this case were close to the ones 

obtained for developer-generated modularization. 

Although still preliminary, our experimental results do 

indicate that the proposed metrics are of the sort that 

will be needed by the code modularization algorithms 

of the future. 
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