
1 of 8

Metrics for Analyzing Module Interactions in Large Software Systems

Santonu Sarkar
*
, Avinash C Kak

#
, N S. Nagaraja

*

* SETLABS, Infosys Technologies Ltd, Bangalore India

School of Elect. & Comp. Engrg., Purdue Univ., W. Lafayette, IN, USA

santonu_sarkar@infosys.com kak@ecn.purdue.edu nsn@infosys.com

Abstract

We present a new set of metrics for analyzing the

interaction between the modules of a large software

system. We believe that these metrics will be important

to any automatic or semi-automatic code

modularization algorithm. The metrics are based on

the rationale that code partitioning should be based on

the principle of similarity of service provided by the

different functions encapsulated in a module. Although

module interaction metrics are necessary for code

modularization, in practice they must be accompanied

by metrics that measure other important attributes of

how the code is partitioned into modules. These other

metrics, dealing with code properties such as the

approximate uniformity of module sizes, conformance

to any size constraints on the modules, etc., are also

included in the work presented here., To give the

reader some insight into the workings of our metrics,

this paper also includes some results obtained by

applying the metrics to the body of code that

constitutes the open-source Apache HTTP server. We

apply our metrics to this code as packaged by the

developers of the software and to the other partially

and fully randomized versions of the code.

1. Introduction
 Much work has been done during the last several

years on automatic approaches for code reorganization.

This work is motivated by the need to bring legacy

code to modern software engineering standards [4].

Fundamental to any attempt at code reorganization is

the division of the software into modules, publication

of the API functions for the modules, and then

requiring that the modules access each other’s

resources only through the published interfaces.

 The precise methodology used for code

reorganization depends on 1) whether the software

started out from a well-modularized state and gradually

degraded into a state of disorganization as new features

were added to the software under tight deadlines and

other business constraints; or 2) whether the software

was never modularized in the first place. When legacy

code is of relatively recent vintage, it is likely that the

first scenario applies, that is that the code started out as

being well-modularized but subsequently became

disorganized. If some sort of a temporal history of all

the changes to such code is available (as would be the

case when software is developed with the help of IDEs

that maintain change histories), that fact can play an

important role in the reorganization of the code. Each

new feature added to the code after a certain date can

be tested vis-à-vis all the modules in the system to

determine the best location for the new feature.

Obviously, newly added features could also result in

either the splitting or the joining of some of the

existing modules, or in the creation of new ones. Our

current work does not deal with such cases.

 Our ongoing effort, from which we draw the work

reported here, is focused on the case of reorganization

of legacy code that was never modularized to begin

with. We believe that this problem is more complex

compared to the case mentioned above, especially for

applications consisting of millions of lines of code.

We can think of the problem as reorganization of

millions of lines of code residing in thousands of files

in hundreds of directories into a new directory tree in

which some of the mid-level nodes correspond to

modules, with each module making itself available to

the other modules (and to the rest of the world) through

a set of published API functions.

This paper appears in: The 12th Asia-Pacific Software Engineering Conference (APSEC'05)

2 of 8

 The work we report here addresses the fundamental

issue of how to measure the quality of a given

modularization of the software. Note that

modularization quality is not synonymous with

modularization correctness. Obviously, after software

has been modularized and the API of each of the

modules published, the correctness can be established

by checking function call dependencies at compile

time and at run time. If all inter-module function calls

are routed through the published API functions, the

modularization is correct. As a theoretical extreme,

retaining all of the software in a single monolithic

module is a correct modularization though it is not an

acceptable solution. On the other hand, the quality of

modularization has more to do with partitioning

software into more maintainable (and more easily

extendible) modules on the basis of the cohesiveness of

the service provided by each module. Ideally, while

containing all of the major functions that directly

contribute to a specific service vis-à-vis the other

modules, each module would also contain all of the

ancillary functions and data if they are only needed in

that module. Capturing these “cohesive of service”

and “ancillary support” criteria into a metric is an

important goal of our research. The work that we

report here is a step in that direction.

More specifically, we present in this work a set of

metrics that measure in different ways the interactions

between the different modules of a software system. It

is important to realize that metrics that only analyze

inter-module interactions cannot exist in isolation from

other metrics that measure the quality of a given

partitioning of the code. To explain this point, it is not

very useful to partition a software system containing of

a couple of million lines of code into two modules,

each consisting of a million lines of code, and justify

the two large modules purely on the basis of function

call routing through the published APIs for the two

modules. Each module would still be much too large

from the standpoint of code maintenance and code

extension. The module interaction metrics must

therefore come with a sibling set of metrics that record

other desirable properties of the code. The metrics we

present in Section 4, while focusing primarily on

module interactions, also include other necessary

measures of the quality of a given partitioning of code.

In the rest of this paper, we briefly survey in Section 2

the past literature relevant to the goals of our work.

Section 3 discusses the relationship between previous

work and our current work. We present the metrics in

Section 4. In Section 5, we apply the metrics to what

is generally considered to be a well-organized body of

code - the HTTPD server code from Apache.

2. Previous Work

Research in code modularization and metrics that test

the effectiveness of a given modularization date back

to the early seminal work of Parnas [17]. Historically

speaking, he was one of the first to focus on the notion

of a module in software. According to him, a software

module should be characterized by a design decision

that it hides from all other modules and that module

interface should not reveal any inner workings of the

module.

A descendent of [17] is the contribution by Schwanke

[3]. He sought to create optimized code partitions by

characterizing the partitions with a set of numerically

measurable features and then trying to find a global

best solution in the feature space. One of his primary

features is a measure of “information sharing” between

the functions that are meant to be in the same module.

Information sharing is derived form the commonality

of names used in the functions and the functional

purpose of those names. For example, if two functions

share names that imply that the functions are sharing

data objects, then the two functions belong together in

the same module. Another feature used by Schwanke

is derived from function-call dependencies. If a

function A calls function B, then both A and B

presumably belong to the same module. That brings us

to a brief description of the various efforts that have

been undertaken over the years to partition code purely

on the basis of function-call dependencies or criteria

that are based primarily on such dependencies.

 In code modularization driven by function-call

dependencies, one first constructs a function-

dependency graph or a file-dependency graph (that is

derived from function dependencies), the nodes of the

graph being the individual functions (or files) and the

edges representing either the function-call

dependencies or some other inter-function or inter-file

attributes. The nodes of the graph may then be

clustered together on the basis of certain edge

properties or criteria derived therefrom. Each cluster

thus discovered becomes a suggestion for a module.

The research contributions by Fahme and Holt [11],

Mitchell et. al [7][10][12], etc., are representative of

this line of work. When graph partitions are optimized

with respect to some integrated measure of edge

attributes, the optimum partitions would generally

correspond to the eigenvectors of a matrix

representation of the edge attributes [10]. Optimized

partitioning of a graph in this manner can also be

achieved by other modern tools such as those based on

3 of 8

genetic algorithms (GA), simulated annealing, etc. The

contribution by Zhang and Jacobson [15] is also

relevant to our work. Their wok is focused primarily

on the development of tools for characterizing aspects

and for the discovery of aspects in legacy code. An

aspect represents a feature of the software that applies

at a more global level to all the units of the software.

For example, one can talk about aspects related to

security, logging, tracing, etc. Aspects that can be

recognized by statement-level “cross cutting” structure

may be discovered through lexical pattern matching.

Zhang and Jacobson’s goal is to modularize code on

the basis of the discovered aspects. If successful, this

effort would repackage legacy code in the form of an

aspect-oriented architecture.

Yet another previous contribution relevant to our work

is the work of Rysselberghe and Demeyer [16] on how

to gain evolutionary insights into large software by

analyzing the change histories. It seems that history

logs could aid in the remodularization of code that

started out being well-partitioned but then gradually

devolved into an unstructured body of code.

Specifically with regard to the issue of metrics, we

must mention the work of Oman and

Hagemeister[1][2] They have applied themselves to the

formulation of metrics that assess the maintainability

of code In particular, this work presents an empirical

formula for calculating a maintainability index (MI)

that is based on Halstead and Cyclomatic complexity

measures derived from source code analysis. The

utility of these metrics has been evaluated by

comparing the MI with human perception of

maintainability. This work is important to us since a

well-modularized body of code will also be easy to

maintain. So, one would think that we could use the

same metrics to assess the goodness of our

modularization at least from the standpoint of the effort

required for code maintenance.

3. Relationship of Previous Work to Our

Present Goals

 We believe that many of these previous approaches

suffer from shortcomings with regard to the goals we

have in mind. The approaches that carry out software

partitioning purely on the basis of function call

dependencies (or file-dependencies that are derived

from function-call dependencies) are obviously not

suitable for meeting our goals. Function call

dependencies are semantically orthogonal to the

groupings on the basis of cohesiveness of service. To

elaborate, in code partitioning on the basis of function-

call dependencies, if a function A calls a function B,

then both A and B must belong together in the same

module. But using function call dependencies as the

sole basis for modularization runs counter to the very

spirit of what is meant by modules in modern code

writing. Modules pull together functions not because

they call one another, but because they serve similar

purposes with respect to the rest of the software. For

example, the number of intra-module function calls in

the java.util module (referred to as a package in the

Java parlance) is minimal. The main reason for why

the functions in the java.util module belong together is

because they provide very similar services to the rest of

the software.

 The approaches that try to cluster together functions

based on what [3] refers to as information sharing are

also deficient because they do not scale well to large

software.

Our mention of prior work would be incomplete

without mentioning the system modernization effort of

the Object Management Group. OMG has started an

initiative to define a standard [16] for application

metadata description that is meant to facilitate

interoperability of modernization tools. To the extent

the modernization tools under consideration by OMG

include those intended for legacy code, the OMG effort

is relevant to the work being reported here.

4. Module Interaction and Other Related

Metrics

Modern software engineering dictates that large

software be organized along the following lines:

1. The software system should consist of a set of

modules where each module is a collection of data

structures and functions that together offer a well-

defined service. In other words, the structures used

for representing knowledge and any associated

functions in the same module should cohere on the

basis of similarity-of-service as opposed to on the

basis of function call dependencies.

2. The modules should interact with one another only

through the exposed API functions. With regard to

code maintenance, this is desirable for isolating

faults and rectifying them quickly.

3. Whenever feasible, the modules should be organized

in a hierarchical manner in a set of layers. A layer

should only be aware of the layers below it (that is,

function calls are only made to the lower layers) and

should not be aware of the layers above it. A layer

4 of 8

can be thought of as horizontal partitioning of the

system.

4. Modules should be independently testable and

releasable. The impact of a single change should

typically stay confined to a module and should

minimally impact other modules.

These considerations have led us to formulate the

following metrics for measuring the quality of module

interactions. Of the four considerations listed above,

the testability related consideration is more complex

and depends on what tools are brought to bear and

what protocols are used for testing code. Therefore,

for now, we will ignore this consideration. Given the

importance of this issue, we certainly plan to take up

testability related issues in a future research

contribution. Additionally, as was stated in the

introduction, metrics that focus solely on the

interactions between the modules cannot exist in

isolation from the metrics that measure other qualities

of code modularization. Therefore, the set of metrics

shown below includes those that are needed to

simultaneously report these other attributes.

M1: Module Interaction Index:

Suppose that a module M has n functions f1 ,.., fn and

suppose that there are Nint number of calls made to a

function f from other functions internal to module M

and Next number of calls made to f from other functions

external to module M. Also suppose that there are m

modules in the system. Then the following ratio

measures the utility of a function with regard to its

usefulness to other modules:

 MII(f) =
intNNext

Next

+

An average measure of this utility over all the

functions in a given module is:

 MII(M) = ∑
=

n

i

fiMII
n 1

)(
1

.

This measure is averaged over all the modules to yield

the following metric that applies to the entire software:

 MII(System)= = ∑
=

m

i

iMMII
m 1

)(
1

A well designed module often exposes a limited set of

API functions through which other modules interact.

These API functions are generally a small percentage

of all the functions that constitutes the module. They

represent the service that the module has to offer. Since

these API functions are meant to be used by other

modules, the internal functions of a module typically

do not call API functions of the module. Therefore, for

an API function f of a well designed module, MII(f)

1. By the same argument, a non-API function should

not have any external calls at all, i.e. its MII should be

0. Since the majority of the functions in a module

should ideally be non-API, an average of all MIIs at

the module level would be low for a well designed

module.

M2: Non-API Function Closedness Index:

As one is experimenting with different ways of

partitioning code, one is bound to go through stages

when the code may be considered to be semi-

modularized. That is, the code partitions may be in a

state in which most inter-module function-call traffic is

routed through the published API’s for each of the

modules, but there remain some residual inter-module

function calls outside the API’s. For all those

functions in a module that have not yet been declared

to be API functions, we calculate a metric that we call

the “Non-API Function Closedness Index”. This metric

represented by C(f) is measured by the following

formula. C(f)=

called is timesofnumber Total

module same in the functionsother by called is times#

f

f

Assuming that a module has p non-API functions, we

average C(f) as follows over a module:

 C (M) = ∑
=

p

i

fiC
p 1

)(
1

 = 0 if there are no non-API functions

Averaging C(M) over all the modules m1 having non-

zero C(M) yields:

 C(System) = ∑
=

1

1

)(
1

1 m

i

iMC
m

Since a well designed module does not expose the non-

API functions to the external world, C(fna) 1 for a

non-API function fna. Since the average is taken over

non-API functions only, C(M) for a well designed

module should also be close to 1.

M3: API Function Usage Index:

This index determines what fraction of the API

functions exposed by a module is being used by the

other modules. When a big monolithic module M

presents a large and versatile collection of API

functions offering many different services, any one of

the other modules may not need all of its services.

That is, any single other module may end up using

only a small part of the API. The intent of this index is

5 of 8

to discourage the formation of such large monolithic

modules offering services of disparate nature and

encourage modules that offer specific functionalities.

Currently, we have formulated this index as:

APIU(M) =

 M of functions API ofnumber Total

 Mj) moduleother any by called functions API of(Number Max

 = 0 if M has no API functions

The System level APIU(System) can be computed as

APIU(System) = ∑
=

2

1

)(
2

1 m

i

iMC
m

assuming that there are m2 modules with non-zero

APIU values.

 M4: Module Size Uniformity Index:

Within reason, of course, all modules should be

roughly equal in size. A strong deviation from this

constraint of uniformity in size would generally be

indicative of poor modularization. Therefore, a

modularization algorithm needs to possess a bias

towards making the modules as equal in size as

possible, subject to the fulfillment of other

modularization constraints. This constraint can be

expressed in terms of the average value µ and the

standard deviation σ associated with the module sizes.

We can define a Module Size Uniformity Index

(MSUI) as the ratio;

 MSUI(System) =
µ

σµ −

Obviously, the closer this index is to 1 the greater the

uniformity of the module sizes. The formula for this

metric assumes that the standard deviation is not

comparable to the average size value.

 M5: Module Size Boundedness Index:

While the previous metric will “push” a

modularization algorithm to make the modules as

nearly uniform in size as possible, it could still result in

modules that are too large. Many practitioners of the

art and science of code modularization recommend

that, ideally, no module should significantly exceed

some recommended particular size that is expressed in

terms of the number of lines of code. Assuming that

this “magic number” is N, if we want a modularization

algorithm to try to honor this number, we can do so by

first defining an average deviation in module length

from the magic length by

 av∂ = ∑ − NN
m

i

1

where iN is the number of lines in the
thi module

and m is the number of modules. As a fraction of the

largest of either the magic length, N , or any of the

module lengths, this deviation is re-expressed as

),max(i

av

fav
NN

δ
δ = . The metric may now be

defined as :

favSystemMSBI δ−= 1)(

5. Experiments with Well-Organized

Code

In order to validate the efficacy of the metrics, we

applied them to the roughly 350,000 lines of the Apache

web server code written in C. This software is highly

regarded in industry and academia for its quality and

robustness. The software is well-organized into a

directory structure on the basis of the services provided

by the various sub-directories and files. Functionally

distinct sub-directories carry mnemonic names that

correspond to the corresponding services. That makes it

relatively easy to identify the various modules

comprising the system..

Before the metrics are applied to the Apache software,

the code was first analyzed by the open-source tool

Sourcenav [18] that yielded a database containing the

associations between the function definitions and the

corresponding file names and also the function-call

dependency information. Subsequently we ran a set of

tools written in Perl and Java to extract the above

mentioned metrics. The approach has been depicted in

Figure 1.

Figure 1 Schematic diagram of Metric Extraction

Process

System

Source

Code

Metadata
Repository

(MySQL)

SourceNav

SourceNav

Output

Metadata

Extractor

Module
Analyzer

Scenarios

1-4

Metrics

Calculator

6 of 8

Shown below is a sample of metadata collected by the

Metadata Extractor:

System Metadata Value

Total files 689

Total LOC 370,000

LOC without Comments 336000

Function call cross reference obtained

from static analysis

7213

Total leaf directories 110

To establish the usefulness of our metrics, we not only

need to show that the numbers look good for well-

written code; we also need to demonstrate that the

numbers yielded by the metrics become progressively

worse as the code becomes increasingly disorganized. In

order to make such a demonstration, we created four

different modularized versions of the software. These

versions of the software correspond to the following

scenerios:

Scenario 1 (Human): We considered the directory

leaf nodes of the directory hierarchy of the original

source code to be the most fine-grained functional

modules. All the files (and functions within) inside a

leaf level directory were considered to belong to a

single module --- the module corresponding to the

directory itself. In this manner, all leaf level directories

formed the module set for the software. We call this

module set the Developer Generated Module Set.

Scenario 2 (Random): Functions were assigned

randomly to modules in such a manner that we ended

up with the same number of modules as in the

developer generated module set. We call this the

Randomly Generated Module Set.

Scenario 3 (Semi-Random): Instead of functions,

we now assign files randomly to modules. All the

functions in the same file are considered to belong to

the module to which the file was assigned. Note that in

this case whereas a file-to-module assignment is

completely random, the same cannot be said of the

function-to-module assignment. We call this as Semi-

Random Module Set.

Scenario 4 (Concept Driven): We used a heuristic

approach to assign functions to modules. Recall that

our long-term goal is to be able to examine millions of

lines of code and cluster together data structures and

functions on the basis of similarity of purpose. It will

obviously be the case that we will have a set of

heuristics that will “measure” the purpose of a data

structure or a function. The heuristics would provide us

with a first cut at the modularization of the code; the

metrics would measure the quality of the

modularization thus obtained; and iterative algorithms

(whose discussion is beyond the scope of this paper)

would then refine the modularization until certain

criteria are met with regard to the quality of

modularization. As a step in that direction, the work

reported in this paper used a simple heuristic for

function clustering — clustering driven by keywords

denoting the service performed by the function. We

may think of these keywords as domain concepts that

provide a clue as to the service performed by the

function. The domain concepts are matched with the

full directory pathnames to the files containing the

functions and the function names to provide a weight

value as to whether the function corresponds to the

purpose corresponding to the domain concepts. Here

is a pseudo-code description of how the domain

concepts are matched with directory pathnames and the

filenames:

GetSimilarity(filename f, concept string c) {

1. PathArray = get the directory path of f.

2. for each directory name d ε PathArray {

i. Find out how close c matches with d.

Let this number be υ [0..1].

ii. Calculate the weight ω of d.

/** We have used a function that assigns

high ω to d if d appears in the middle of

the path. The idea is that the leftmost and

the rightmost directories are too coarse-

grained and too fine-grained, respectively,

and should play no role in matching d with

c. The directories that appear in the middle

are good candidates for matching.

**/

iii. The similarity Sd is = ω *υ;
 }

3. Return S = Max (Sd);

 }

 AssignModule(filename f, concept-list C,

threshold τ) {

 Let Smax = Max(Sc) where Sc=

GetSimilarity(f, c) and cmax be the concept for

which the similarity is maximum;

If Smax > τ {

Assign cmax to be module for f;

Return cmax ;

 }

}

In each of the four scenarios, a key challenge was as to

how to identify the API functions vis-à-vis the non-API

functions in a given module.. For the purpose of this

particular experiment with the Apache code, we identify

API functions with the heuristic that an ideal API

7 of 8

function is mostly called by functions belonging to other

modules. Similarly, an ideal non-API function is never

exposed, i.e. it is never called by functions from other

modules. According to this heuristic, in each

modularized version, a module function was declared to

be an API function or a non-API function depending on

whether or not it was called by other modules. In several

cases a function is called externally as well as internally.

In such cases we have considered the function as API as

well as non-API depending on the metric we are

calculating.

Experimental Results

The following table shows the metrics calculated

from the application metadata by the Metrics

Calculator tool in Figure 1 for each of the four

scenarios mentioned previously. The abbreviations

used for the names of the metrics in the top row are the

same as in the formulas of the previous section.

Experi-

ment #

#Mod-

ules

MII C APIU MSUI MSBI

Developer

Generated

110 0.228 0.874 0.8392

0.5978 0.6914

Randomly

Generated

110 0.985 0.445 0.1586 0.752 0.2235

Semi-

randomly

generated

110 0.333 0.833 0.7269 0.1362 0.3352

Concept

Driven

40 0.196 0.915 0.8109 0.1276 0.7129

In the rest of this section, we will briefly discuss the

nature of the values calculated for the metrics in each

of the four scenarios. The abbreviations used for the

metric names are the same as in the column headings

of the table.

MII: The values obtained for this metric are in

agreement with our designation of functions as API

functions and non-API functions. For the developer

generated and concept driven scenarios, the number of

functions declared as API is 224 and 185, respectively,

out of a total 1684 functions as per our heuristic for

designating API functions.. In the random scenario

almost all of 1684 functions (1674 to be exact) became

API functions due to the random allocation of

functions to modules. Thus, the MII values for human

and concept driven scenarios become small when we

take an average over all the functions of a module

(since most of the functions are non-API and their

MIIs are 0).

C: As evident from the table, this metric is consistently

high for the human and concept-driven scenarios and

low for random and semi-random scenarios. This once

again validates our observation on the characteristics of

C as described in Section 4.

APIU: This metric shows high values for the human

and concept-driven scenarios and low values for

random & semi-random scenarios. The random

assignment of functions to modules, causing arbitrary

declaration of API functions, results in disparate-

natured services offered by a module. Clearly such a

scenario is discouraged (low value).

MSUI: The MSUI metric shows high values for

random and semi-random scenarios. Since the random

number generation follows a uniform distribution, the

functions are randomly but uniformly distributed

across several generated modules in random and semi-

random scenarios. This in turn results in smaller

standard deviations for these two scenerios, causing

high values for MSUI.

6. Conclusion

Despite all the attention that code modularization

has received over the last couple of decades, one has

yet to see a set of metrics that can be used for the

partitioning of legacy code on the basis of the services

provided by the functions and the data structures in the

modules. The metrics that have been proposed in the

past, while useful for generating measures of software

quality with regard to maintainability, extendibility,

portability, modularity on the basis of function-call and

data dependencies, etc., appear to be unsuitable for

modularization on the basis of the similarity of services

rendered. The metrics proposed in this paper are a step

in the direction of rectifying this deficiency.

The experiments described in this paper seek to

establish whether our proposed metrics can distinguish

a well modularized system from a randomly

modularized one. In order to simulate the condition of

gradual degradation of modularity, we started with a

well modularized open source system as packaged by

the developers of the software and created a semi-

randomly modularized version (intermediate state of

disorganization) and a randomly modularized version

(state of complete disarray) of the software. The

metrics when calculated for each version confirmed the

degradation trend. We also wanted to determine

whether the values yielded by the metrics for a services

based modularization are close to the values for the

developer-generated modularization. As an initial step

8 of 8

towards this direction, we simulated a services-based

modularization by clustering functions on the basis of

keywords, with each keyword denoting a service. The

metric values in this case were close to the ones

obtained for developer-generated modularization.

Although still preliminary, our experimental results do

indicate that the proposed metrics are of the sort that

will be needed by the code modularization algorithms

of the future.

7. References

[1] Oman, P. & Hagemeister, J. "Metrics for

Assessing a Software System's Maintainability,"

337-344. Conference on Software Maintenance

1992. Orlando, FL, November 9-12, 1992.
[2] Oman, P. & Hagemeister, J. "Constructing and Testing

of Polynomials Predicting Software Maintainability."

Journal of Systems and Software 24, 3 (March 1994):

251-266

[3] Schwanke, Robert. W. “An intelligent tool for re-

engineering software modularity”, in Proceedings of the

lSth International Conference on Software Engineering

(May 1991), pp. 83-92

[4] Keith Bennett, “Legacy Systems: Coping with Success”,

IEEE Software, Jan 1995, pp 19-23.

[5] M. P. Ward and Keith Bennett, "Formal Methods for

Legacy Systems", Journal of Software Maintenance:

Research and Practice,Vol 7, no 3, May-June 1995, pp

203-219.

[6] T.A. Wiggerts, “Using Clustering Algorithms in Legacy

Systems Remodularization”, Proceedings of the 4th

Working Conference on Reverse Engineering (WCRE

'97)

[7] S Mancoridis, Brian S Mitchell, C Rorres, Y Chen, ER,

“Using automatic clustering to produce high-level

system organizations of source code”, Proc. 6th Intl.

Workshop on Program Comprehension, 1998

[8] C Lindig, G Snelting, A Softwaretechnologie,

“Assessing modular structure of legacy code based on

mathematical concept analysis”,

[9] C. J. Alpert, A. B. Kahng, and S. Yao, “Spectral

Partitioning with Multiple Eigenvectors,” Discrete Appl.

Math., Vol. 90, pp. 3-26, 1999

[10] D Doval, S Mancoridis, B Mitchell, “Automatic

clustering of software systems using a genetic

algorithm”, Proceedings of Software Technology and

Engineering Practice, 1999.

[11] H. Fahmy and R.C. Holt. "Software Architecture

Transformations", Proceedings of the International

Conference on Software Ma intenance, San Jose, Oct.

2000 pp 88-96

[12] Brian S. Mitchell, Spiros Mancoridis and Martin

Traverso, "Search Based Reverse Engineering", SEKE

2002, July 15-19 2002. Italy

[13] D Vecchio, “Legacy Modernization Provides

Applications for Tomorrow”, ID Number: M-19-3671,

5th March 2003.

[14] C Zhang, HA Jacobsen, “A Prism for Research in S

oftware Modularization through Aspect Mining”,

Technical report, Middleware Systems Research Group,

Sept 2003

[15] F.V. Rysselberghe and S Demeyer, “Studying Software

Evolution Information by Visualizing the Change

History”, 20th IEEE International Conference on

Software Maintenance, Sep 2004, pp 328-337

[16] White paper from OMG: "Modernization Scenarios:

Mapping the KDM to Modernization Initiatives", Draft

#3-9/9/2004

[17] Parnas, D. L. “On the Criteria to be used in

Decomposing Systems into Modules”, Communications

of the ACM, 15(12) pp 1053-1058, 1972.

[18] Source-Navigator
TM 5.4.1 Source Code Analysis Tool ,

2003, URL:http://sourcenav.sourceforge.net

