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Two distance measures for attributed graphs are presented that are based on the maxi-
mal similarity common subgraph of two graphs. They are generalizations of two existing
distance measures based on the maximal common subgraph. The new measures are su-
perior to the well-known measures based on elementary edit transformations in that no
particular edit operations (together with their costs) need to be defined. Moreover, they
can deal not only with structural distortions, but also with perturbations of attributes.
It is shown that the new distance measures are metrics.

1. Introduction

Graphs have long been an important tool in the computer vision and pattern recog-

nition fields, especially because of their representational power and flexibility, and

recently there has been a renewed and growing interest towards formulating ab-

stract, internal representations of objects and scene in terms of graphs, as well as

explicitly formulating computer vision problems as graph problems.6 As a repre-

sentational device, graphs are often used to describe objects by representing, for

example, their parts by vertices and the relations between them by edges,1 and once

objects are abstracted in terms of graphs, object recognition becomes the problem

of matching graphs. Graph matching is therefore a fundamental problem in com-

puter vision and pattern recognition, and a great deal of effort has been devoted

over the past decades to devise efficient and robust algorithms for it (see Ref. 3 for

an update on recent developments).

A crucial aspect of matching and recognition problems involves determining a

suitable similarity measure between “objects”. In many applications it is required

that such a measure possesses certain properties. In particular, it is often desired

that a distance measure d fulfills the following properties:
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• d(A, B) ≥ 0 (nonnegativity)

• d(A, A) = 0 (identity)

• d(A, B) = 0 ⇐⇒ A = B (uniqueness)a

• d(A, B) = d(B, A) (symmetry)

• d(A, B) + d(B, C) ≥ d(A, C) (triangle inequality).

A distance function satisfying these five properties is called a metric. It establishes

a partial order over the objects in consideration, and is particulary important for

searching and indexing in large databases, or whenever some numerical comparisons

between distances have to be done.

A classical approach to comparing graphs is based on the idea of computing their

edit-distance, namely, the minimum cost to transform one graph into another by

elementary edit operations. This idea is attractive especially when the structures

being matched are subject to significant structural distortions. Unfortunately, it

turns out that computing the edit-distance on arbitrary graphs is NP-complete,

which implies that all exact algorithms have a worst-case time complexity that very

likely is exponential in the number of vertices in the graph. Moreover, determining

the set of elementary edit operations and the associated costs depends heavily on

the application domain and can be problematic (see, e.g. Refs. 8 and 9 for some

examples of edit operations motivated by shape matching problems). This choice

is in fact crucial as two graphs that are similar under one cost function may be

quite dissimilar using another, and the optimal node correspondences may vary

considerably.

Recently, another approach has emerged to measuring the distance between

graphs, namely substructure-based methods. Within this framework, one looks for

a common substructure that satisfies some properties, which typically is maximum

cardinality. Specifically, Bunke and Shearer4 developed a graph distance metric

based on maximal common subgraph of two graphs. A variant of their distance is

the union-based graph distance introduced by Wallis et al.11 Finally, Fernandez and

Valiente7 measured the distance between graphs by measuring the missing struc-

tural information expressed as the difference between minimal common supergraph

and maximal common subgraph. The approach can naturally deal with several

types of noise and distorsions such as the addition or deletion of nodes in both

graphs and is particularly advantageous as it does not require the use of any cost

function, thereby avoiding the major drawback of edit-distance-based approaches.

It is also worth mentioning that Bunke5 has shown that on generic graphs, under

certain assumptions concerning the edit-costs, determining the maximum common

subgraph is equivalent to computing the graph edit-distance.

In many computer vision and pattern recognition applications, however, ab-

stract representations of complex objects and patterns are often endowed with

aIn the case of graphs, we replace the property of being “equal” with that of being “isomorphic”
(see below for a formal definition).
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information regarding geometric properties. Hence, the graphs being matched are

typically equipped with symbolic and/or numeric attributes, which encode geo-

metric information. All substructure-based measures developed so far deal only

with structural distortions, and are therefore not applicable to attributed relational

structures. In this paper, we present a generalization of Bunke and Shearer’s work

to this kind of structures. In an attempt to also take into account the noise and

errors in attributes that are very likely to rise in real-world applications, we use the

concept of maximal similarity, instead of maximal cardinality, and propose two new

attributed graph distance measures based on the maximal similarity common sub-

graph of two graphs, thereby generalizing previous works by Bunke and Shearer,4

and Wallis et al.11 The main contribution of this paper is the definition of these

new distance measures and the formal proof that they fulfill the metric properties.

2. Preliminaries

Let G = (V, E) be a graph, where V = {1, · · · , n} is the set of nodes and E ⊆ V ×V

is the set of edges. Two nodes u, v ∈ V are said to be adjacent if they are connected

by an edge. Given a subset of nodes C ⊆ V , the induced subgraph G[C] is the graph

having C as its node set, and two nodes are adjacent in G[C] if and only if they

are adjacent in G.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Any bijection f : H1 → H2,

with H1 ⊆ V1 and H2 ⊆ V2, that preserves the adjacency relationships between the

matched nodes is called a subgraph isomorphism. Formally, this amounts to stating

that, given u, v ∈ H1, we have (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2. If

H1 = V1 and H2 = V2, then we say that G1 and G2 are isomorphic, in which case

we write G1
∼= G2. A subgraph isomorphism is maximal if there is no other subgraph

isomorphism f ′ : H ′
1 → H ′

2 with H1 a strict subset of H ′
1, and maximum if H1 has

largest cardinality. The maximal (maximum) subgraph isomorphism problem is to

find a maximal (maximum) subgraph isomorphism between two rooted trees.

A word of caution about terminology is in order here. Despite name similarity,

we are not addressing the standard subgraph isomorphism problem, which consists

of determining whether a given graph is isomorphic to a subgraph of a larger one.

In fact, we are dealing with a generalization thereof, the maximum common sub-

graph problem, which consists of determining the largest isomorphic subgraphs of

two given graphs. We shall continue to use our own terminology, however, as it

emphasizes the role of the isomorphism f .

Formally, an attributed graph is a triple G = (V, E, α), where (V, E) is the

“underlying” graph and α is a function which assigns an attribute vector α(u) to

each node u ∈ V . It is clear that in matching two attributed graphs, our objective is

to find an isomorphism which pairs nodes having “similar” attributes. To this end,

let σ be any similarity measure on the attribute space, i.e. any (symmetric) function

which assigns a positive number to any pair of attribute vectors. If f : H1 → H2

is a subgraph isomorphism between two attributed graphs G1 = (V1, E1, α1) and
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G2 = (V2, E2, α2), the overall similarity between the induced subgraphs G1[H1] and

G2[H2] can be defined as follows:

S(f) =
∑

u∈H1

σ(α1(u), α2(f(u))) . (1)

The isomorphism f is called a maximal similarity subgraph isomorphism if there is

no other subgraph isomorphism f ′ : H ′
1 → H ′

2 such that H1 is a strict subset of H ′
1

and S(f) < S(f ′). It is called a maximum similarity subgraph isomorphism if S(f)

is largest among all subgraph isomorphisms between G1 and G2.

In what follows, we shall assume that the similarity function is bounded from

above, namely that it is a function of the form σ : A × A → [0, M ], where A is the

space of attribute vectors, and M ∈ R+ is the upper bound. Moreover, we shall

assume throughout that σ is “derived” from a metric, i.e. it is of the form

σ(a, b) = M − δ(a, b) ∀a, b ∈ A (2)

where δ is a metric. Note that for M = 1, δ is a normalized metric. The metric

properties of δ imply that the function σ fulfills the following properties:

1. 0 ≤ σ(a, b) ≤ M

2. σ(a, b) = M iff a = b

3. σ(a, b) = σ(b, a)

4. σ(a, c) ≥ σ(a, b) + σ(b, c) − M

(3)

for all a, b, c ∈ A. These properties will be instrumental to show that our distance

measures are indeed metrics.

3. Distance Based on the Maximal Similarity Common Subgraph

Let G1 = (V1, E1, α1) and G2 = (V2, E2, α2) be two nonempty attributed graphs,

and let f : H1 → H2 be a maximum similarity subgraph isomorphism between

G1 and G2 (H1 ⊆ V1, H2 ⊆ V2). Let also G12 be the maximum similarity com-

mon subgraph induced by f . The first graph distance we propose in this paper is

defined as:

d(G1, G2) = 1 −
W (G12)

M max(|G1|, |G2|)
(4)

where

W (G12) = S(f) (5)

is the overall similarity of nodes paired by f , as defined in (1).

Note that the choice of the similarity measure depends on the particular set

of attributes assigned to the nodes in the graph. Therefore, (4) describes a whole

family of distance measures between attributed graphs and not just one.
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Theorem 1. Let G1, G2, G3 be three nonempty attributed graphs. If the similarity

σ is derived from a metric, as in (2), then the following properties hold true:

1. 0 ≤ d(G1, G2) ≤ 1

2. d(G1, G2) = 0 iff G1
∼= G2

3. d(G1, G2) = d(G2, G1)

4. d(G1, G2) + d(G2, G3) ≥ d(G1, G3) .

In other words, d is a normalized metric.

Proof. 1. Nonnegativity: 0 ≤ d(G1, G2) ≤ 1

G12 ⊆ G1 , G12 ⊆ G2 ⇒ |V12| ≤ min(|V1|, |V2|) ≤ max(|V1|, |V2|)

(3) ⇒ W (G12) =
∑

v1∈H1
σ(α1(v1), α2(f(v1)))

≤ M |H1| = M |V12| ≤ M max(|V1|, |V2|)

⇒ 0 ≤ d(G1, G2) ≤ 1 .

2. Uniqueness and identity: d(G1, G2) = 0 iff G1
∼= G2

Let d(G1, G2) = 0 ⇔ W (G12) = M max(|V1|, |V2|)

G12 ⊆ G1, G2 ⇒ |V12| ≤ min(|V1|, |V2|)

(5) ⇒ W (G12) ≤ M |V12| ⇒ max(|V1|, |V2|) ≤ |V12|

⇒ max(|V1|, |V2|) = |V12| = min(|V1|, |V2|)

⇒ |V12| = |V1| = |V2| ⇒ W (G12) = M |V12|

⇒ σ(α1(vi), α2(f(vi))) = M ∀vi ∈ V1

⇒ α1(vi) = α2(f(vi)) ∀vi ∈ V1 [due to (3)]

(|V1| = |V2| ∧ α1(vi) = α2(f(vi)) ∀vi ∈ V1) ⇒ G1
∼= G2 .

On the other hand,

G1
∼= G2 ⇔ |V12| = |V1| = |V2| and α1(vi) = α2(f(vi)) ∀ vi ∈ V1

α1(vi) = α2(f(vi)) ∧ (3)

⇒ σ(α1(vi), α2(f(vi))) = M

⇒ W (G12) = M |V12| = M max(|V1|, |V2|)

⇒ d(G1, G2) = 0 .

3. Symmetry: d(G1, G2) = d(G2, G1)

It follows directly by the symmetry of the function σ (3) and that of the maxi-

mum function: max(|V1|, |V2|) = max(|V2|, |V1|).
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4. Triangle inequality:

It has to be shown:

1 −
W (G12)

M max(|G1|, |G2|)
+ 1 −

W (G23)

M max(|G2|, |G3|)
≥ 1 −

W (G13)

M max(|G1|, |G3|)
. (6)

Let:

• f : V
′

1 → V
′

2 a maximal similarity subgraph isomorphism between G1 and G2

that introduces the maximum similarity common subgraph G12 = (V12, E12) ⇒

|V
′

1 | = |V
′

2 | = |V12|.

• g : V
′′

2 → V
′′

3 a maximal similarity subgraph isomorphism between G2 and G3

that introduces the maximum similarity common subgraph G23 = (V23, E23) ⇒

|V
′′

2 | = |V
′′

3 | = |V23|.

• h : V
′′′

1 → V
′′′

3 a maximal similarity subgraph isomorphism between G1 and G3

that introduces the maximum similarity common subgraph G13 = (V13, E13) ⇒

|V
′′′

1 | = |V
′′′

3 | = |V13|.

Let also V123 = V
′

2

⋂

V
′′

2 , i.e. the set of nodes belonging to both G12 and G23

and hence, common to all three graphs. It induces the common subgraph of G1 and

G3 with the weight:

W13(G123) =
∑

v2∈V123

σ(f−1(v2), g(v2)) . (7)

G123 is not necessarily of maximum similarity when considered as subgraph of G1

and G3, but it obviously holds true that W13(G123) ≤ W (G13) where W (G13) is the

weight of the maximum similarity common subgraph of G1 and G3. The inequality

W13(G123) > W (G13) being in contradiction with the fact that G13 is of the

maximum similarity, does not hold true.

Therefore, to prove the triangle inequality, it suffices to show

1 −
W (G12)

M max(|G1|, |G2|)
+ 1 −

W (G23)

M max(|G2|, |G3|)
≥ 1 −

W13(G123)

M max(|G1|, |G3|)
(8)

which, after some algebra, is equivalent to:

M max(|G1|, |G2|)max(|G2|, |G3|)max(|G1|, |G3|)

≥ W (G12)max(|G2|, |G3|)max(|G1|, |G3|)

+ W (G23)max(|G1|, |G2|)max(|G1|, |G3|)

−W13(G123)max(|G1|, |G2|)max(|G2|, |G3|) . (9)

Before beginning the formal proof of the last inequality, some additional useful

relations are to be noted:

W (G12) =
∑

v2∈V ′

2
\V123

σ(f−1(v2), v2) +
∑

v2∈V123

σ(f−1(v2), v2)

≤ M(|V
′

2 | − |V123|) +
∑

v2∈V123

σ(f−1(v2), v2) .
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The analogue relation holds true for W (G23):

W (G23) ≤ M(|V23| − |V123|) +
∑

v2∈V123

σ(v2, g(v2))

W (G13) ≥
∑

v2∈V123

σ(f−1(v2), g(v2)) .

We also have:

M |V2| ≥ M(|V12| + |V23| − |V123|)

= M(|V12| − |V123|) + M(|V23| − |V123|) + M |V123|

≥ W (G12) −
∑

v2∈V123
σ(f−1(v2), v2)

+ W (G23) −
∑

v2∈V123
σ(v2, g(v2)) + M |V123|

i.e.

M |V2| ≥ W (G12) + W (G23) −
∑

v2∈V123

(σ(f−1(v2), v2) + σ(v2, g(v2)) − M) .

Two cases are to be distinguished now:

1.
∑

v2∈V123

(σ(f−1(v2), v2)+σ(v2, g(v2))−M) < 0

⇒ M |V2| ≥ W (G12) + W (G23) ≥ W (G12) + W (G23) − W13(G123)

due to W13(G123) ≥ 0 .

2.
∑

v2∈V123

(σ(f−1(v2), v2)+σ(v2, g(v2))−M) ≥ 0 .

From property 4 of (3), it follows:
∑

v2∈V123

σ(f−1(v2), g(v2)) ≥
∑

v2∈V123

(σ(f−1(v2), v2) + σ(v2, g(v2)) − M) (10)

that implies:

M |V2| ≥ W (G12) + W (G23) −
∑

v2∈V123

σ(f−1(v2), g(v2))

= W (G12) + W (G23) − W13(G123) .

Therefore, we can conclude:

M |V2| ≥ W (G12) + W (G23) − W13(G123) . (11)

Another note regarding the notation that will be used during the proof:

W
′

(G12) =
∑

v2∈V
′

2
\V123

σ(f−1(v2), v2), W
′

(G23) =
∑

v2∈V
′′

2
\V123

σ(v2, g(v2)) .
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There are six possible cases to be distinguished and proven:

• Case 1: |V1| ≥ |V2| ≥ |V3|.

In this case, inequality (9) is equivalent to the following one:

M |V1||V2| ≥ |V2|W (G12) + |V1|W (G23) − |V2|W13(G123) .

Consider the inequality: |V2| ≥ |V12| + |V23| − |V123|

M |V1||V2|

≥ M |V1||V12| + M |V1||V23| − M |V1||V123|

= |V1| M(|V12| − |V123|) + |V1|M(|V23| − |V123|) + M |V1||V123|

≥ |V1|W
′

(G12) + |V1|W
′

(G23) + M |V1||V123|

= |V1|W
′

(G12) + |V1|W
′

(G23) + M |V2||V123| + (|V1| − |V2|)M |V123|

≥ |V2|W
′

(G12) + |V1|W
′

(G23) + M |V2||V123| + (|V1| − |V2|)
∑

v2∈V123

σ(v2, g(v2))

= |V2|W
′

(G12) + |V1|W
′

(G23) + (|V1| − |V2|)
∑

v2∈V123

σ(v2, g(v2))

+ M |V2||V123| + |V2|

[

∑

v2∈V123

σ(f−1(v2), v2) −
∑

v2∈V123

σ(f−1(v2), v2)

]

= |V2|

[

W
′

(G12) +
∑

v2∈V123

σ(f−1(v2), v2)

]

+ |V1|

[

W
′

(G23) +
∑

v2∈V123

σ(v2, g(v2))

]

− |V2|

[

∑

v2∈V123

σ(f−1(v2), v2) +
∑

v2∈V123

σ(v2, g(v2)) − M |V123|

]

= |V2|W (G12) + |V1|W (G23) − |V2|
∑

v2∈V123

(σ(f−1(v2), v2) + σ(v2, g(v2)) − M) .

If
∑

v2∈V123
(σ(f−1(v2), v2)+σ(v2, g(v2))−M) < 0 then the following holds true:

M |V1||V2| ≥ |V2|W (G12) + |V1|W (G23)

≥ |V2|W (G12) + |V1|W (G23) − |V2|W13(G123) .

If, on the other hand,
∑

v2∈V123
(σ(f−1(v2), v2)+σ(v2, g(v2))−M) ≥ 0, (10) implies:

M |V1||V2| ≥ |V2|W (G12) + |V1|W (G23) − |V2|
∑

v2∈V123

σ(f−1(v2), g(v2))

= |V2|W (G12) + |V1|W (G23) − |V2|W13(G123) .

In both cases we have

M |V1||V2| ≥ |V2|W (G12) + |V1|W (G23) − |V2|W13(G123) .
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• Case 2: |V1| ≥ |V3| ≥ |V2|.

In this case, inequality (9) is equivalent to:

M |V1||V3| ≥ |V3|W (G12) + |V1|W (G23) − |V3|W13(G123) .

The proof is analogous to Case 1.

• Case 3: |V2| ≥ |V1| ≥ |V3|.

In this case, inequality (9) is equivalent to:

M |V1||V2| ≥ |V1|W (G12) + |V1|W (G23) − |V2|W13(G123) .

From inequality (11) it follows:

M |V1||V2| ≥ |V1|W (G12) + |V1|W (G23) − |V1|W13(G123)

≥ |V1|W (G12) + |V1|W (G23) − |V2|W13(G123)

due to |V1| ≤ |V2| ⇒ −|V1| ≥ −|V2|.

• Case 4: |V2| ≥ |V3| ≥ |V1|.

In this case, inequality (9) is equivalent to:

M |V3||V2| ≥ |V3|W (G12) + |V3|W (G23) − |V2|W13(G123) .

The proof is analogous to Case 3.

• Case 5: |V3| ≥ |V1| ≥ |V2|.

In this case, inequality (9) is equivalent to:

M |V1||V3| ≥ |V3|W (G12) + |V1|W (G23) − |V1|W13(G123) .

The proof is analogous to Case 1.

• Case 6: |V3| ≥ |V2| ≥ |V1|.

In this case, inequality (9) is equivalent to:

M |V2||V3| ≥ |V3|W (G12) + |V2|W (G23) − |V2|W13(G123) .

The proof is analogous to Case 1.

It has been proven that in all six possible cases, inequality (9) holds true. Its

equivalence to the triangle inequality also implies that the latter one is always

satisfied. This concludes the proof of the metric properties of the new distance

measure based on the maximal similarity common subgraph we proposed.



308 D. Hidović & M. Pelillo

If we restrict ourselves to mappings that preserve the attributes assigned to

nodes, i.e. match nodes with identical attribute vectors, then W (G12) = M |V12|.

The same relation also holds when the graphs at hand are unlabeled, by assuming

w.l.o.g. that all nodes carry the same label, or attribute vector. In these cases, our

distance measure becomes:

d(G1, G2) = 1 −
|G12|

max(|G1|, |G2|)
(12)

which coincides with the distance based on the maximum common subgraph defined

by Bunke and Shearer in Ref. 4, and is therefore a proper generalization thereof.

4. A Distance Based on the Graph Union

Another distance measure between graphs that follows the idea of finding the maxi-

mum common subgraph was introduced by Wallis et al. in Ref. 11. It is very similar

to the distance proposed by Bunke and Shearer4 since both can be expressed in the

same form:

d(G1, G2) = 1 −
m(G1, G2)

M(G1, G2)

with m(G1, G2) representing the similarity of graphs while M(G1, G2) represents

the size of the problem. In both distances m(G1, G2) = |G12|, while they differ in

the definition of M(G1, G2). Bunke and Shearer used the size of the larger of two

graphs, while Wallis et al. used the size of the graph union to model the size of the

problem. The authors explained the last choice by observing that it can capture the

variance in the size of the smaller of the two graphs, which is important in some

applications.

In Ref. 11, the union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is defined

as a graph G = (V1 ∪ V2, E1 ∪ E2), where the common nodes, i.e. nodes belonging

to the intersection of sets of nodes of two graphs, are nodes made correspondent

by the maximum subgraph isomorphism between G1 and G2. That is one possible

interpretation of the graph union when graphs being isomorphic, but not equal are

considered as equivalent. The distance measure based on the graph union is then

defined as follows11:

d(G1, G2) = 1 −
|G12|

|G1| + |G2| − |G12|
(13)

where |G| represents the cardinality of the node set of the graph G. The measure

of distance above defined is a normalized metric as was formally proven in Ref. 11.

We now generalize this measure on attributed graphs.

The generalization of the union-based graph distance on attributed graphs uses

the analogous idea of pairing the nodes having assigned similar, but not exactly

equal, set of attributes. Once again the subgraph isomorphism we are interested in

is characterized by the maximal similarity instead of maximal cardinality.
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A straightforward generalization of the union-based distance measure to at-

tribute graphs would be the following:

d(G1, G2) = 1 −
W (G12)

M(|G1| + |G2| − |G12|)
(14)

where again, G12 is a maximal similarity common subgraph derived from a maximal

similarity subgraph isomorphism f , and W (G12) = S(f). Note, however, that since

the function σ fulfills the property of nonnegativity, a maximal similarity common

subgraph has also maximal cardinality. G12 has been derived from the maximal

similarity subgraph isomorphism, but there could exist another subgraph G′
12 such

that

W (G12) = W (G′
12) ∧ |G12| < |G′

12| .

In this case we should have:

d(G1, G2) = 1 −
W (G12)

M(|G1| + |G2| − |G12|)

> 1 −
W (G′

12)

M(|G1| + |G2| − |G′
12|)

= d′(G1, G2)

which obviously makes no sense. Hence, to correctly define the graph distance based

on graph union, it is necessary that the maximal similarity common subgraph used

to measure the distance has the largest cardinality among all maximal similarity

common subgraphs. This leads to our “correct” union-based distance.

Let G1 = (V1, E1, α1) and G2 = (V2, E2, α2) be two nonempty attributed graphs

and let f : H1 → H2 (H1 ⊆ V1, H2 ⊆ V2) be a subgraph isomorphism between

G1[H1] and G2[H2]. The distance between graphs G1 and G2 based on the union

is defined as:

d(G1, G2) = 1 − max
f :H1→H2

S(f)

M(|G1| + |G2| − |H1|)
. (15)

Theorem 2. Let G1, G2, G3 be three nonempty attributed graphs. If the similarity

σ is derived from a metric, as in (2), then the distance function defined in (15) is

a normalized metric.

Proof. In order to simplify the notation we write the distance in the form given

in (14), remembering that G12 has the largest cardinality between all the maximal

similarity common subgraphs of G1 and G2.

To prove the theorem it is necessary to show that the distance function sat-

isfies the properties of nonnegativity, uniqueness, identity, symmetry and triangle

inequality.

1. Nonnegativity: 0 ≤ d(G1, G2) ≤ 1

G12 ⊆ G1, G12 ⊆ G2 ⇒ |V12| ≤ min(|V1|, |V2|) .



310 D. Hidović & M. Pelillo

(3) ⇒ W (G12) =
∑

v1∈H1

σ(α1(v1), α2(f(v1)))

≤ M |H1| = M |V12| ≤ M(|V1| + |V2| − |V12|)

⇒ 0 ≤ d(G1, G2) ≤ 1 .

2. Uniqueness and identity: d(G1, G2) = 0 iff G1
∼= G2

Let d(G1, G2) = 0 ⇔ W (G12) = M(|V1| + |V2| − |V12|)

G12 ⊆ G1, G2 ⇒ |V12| ≤ min(|V1|, |V2|).

(3) ⇒ W (G12) ≤ M |V12|

⇒ |V1| + |V2| − |V12| ≤ |V12|

⇒ |V12| = |V1| = |V2| ⇒ W (G12) = M |V12|

⇒ σ(α1(v1), α2(f(v1))) = M ∀v1 ∈ V1

⇒ α1(v1) = α2(f(v1)) ∀v1 ∈ V1 [due to (3)]

( |V1| = |V2| ∧ α1(v1) = α2(f(v1)) ∀v1 ∈ V1) ⇒ G1
∼= G2 .

For the opposite direction, we have:

G1
∼= G2 ⇔ |V12| = |V1| = |V2| e α1(v1) = α2(f(v1)) ∀v1 ∈ V1

α1(v1) = α2(f(v1)) ∧ (3)

⇒ σ(α1(v1), α2(f(v1))) = M ∀v1 ∈ V1

⇒ W (G12) = M |V12| = M(|V1| + |V2| − |V12|)

⇒ d(G1, G2) = 0 .

3. Symmetry: d(G1, G2) = d(G2, G1)

It follows directly from the symmetry of function σ (3).

4. Triangle inequality:

1 −
W (G12)

M(|G1| + |G2| − |G12|)
+ 1 −

W (G23)

M(|G2| + |G3| − |G23|)

≥ 1 −
W (G13)

M(|G1| + |G3| − |G13|)
. (16)

Analogous to what was proved for the labeled or unlabeled graphs, the maximal

similarity common subgraph is considered like the intersection of two graphs.

G1 ∩ G2 = G12 ⇒ |G1 ∪ G2| = |G1| + |G2| − |G12| .

Therefore, the triangle inequality (16) can be rewritten as:

1 −
W (G12)

M |G1 ∪ G2|
+ 1 −

W (G23)

M |G2 ∪ G3|
≥ 1 −

W (G13)

M |G1 ∪ G3|
.
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Let us denote:

• x1 the number of nodes of G1 that do not belong to G2 ∪ G3

• x12 the number of nodes of G1 ∩ G2 that do not belong to G3

• x123 = |G123| the number of nodes common to all three graphs

• X the total number of nodes in: G1 ∪ G2 ∪ G3.

Analogously, we can define x2, x3, x13, x23. Using this notation the previous in-

equality can be rewritten as:

1 −
W (G12)

M(X − x3)
+ 1 −

W (G23)

M(X − x1)
≥ 1 −

W (G13)

M(X − x2)
(17)

⇔ M(X − x1)(X − x2)(X − x3) − W (G12)(X − x1)(X − x2)

− W (G23)(X − x2)(X − x3)

+ W (G13)(X − x1)(X − x3) ≥ 0 .

⇔ Dis = X2(MX − Mx1 − Mx2 − Mx3 − W (G12) − W (G23))

+ X [W (G12)(x1 + x2) + W (G23)(x2 + x3) + Mx1x3]

+ x1x2(MX − W (G12) − Mx3) + x2x3(MX − W (G23))

+ x1x3W (G13) + XW (G13)(X − x1 − x3) ≥ 0 .

Recall that

W (G12) ≤ M |G12| = M(x12 + x123)

W (G23) ≤ M |G23| = M(x23 + x123) .

Using last two relations and the implication:

∀a, b ≥ 0 a ≤ b ⇒ −a ≥ −b we obtain:

Dis ≥ X2M(X − x1 − x2 − x3 − x12 − x23 − x123 − x123)

+ X [W (G12)(x1 + x2) + W (G23)(x2 + x3) + Mx1x3]

+ x1x2M(X − x12 − x123 − x3) + x2x3M(X − x23 − x123))

+ x1x3W (G13) + XW (G13)(X − x1 − x3) .

Dis ≥ X2M(X − x13 − x123) + x1x3W (G13) + XW (G13)(X − x1 − x3)

+ x1x2M(X − x12 − x123 − x3) + x2x3M(X − x23 − x123)

+ X [W (G12)(x1 + x2) + W (G23)(x2 + x3) + Mx1x3] ≥ 0 .

This implies that the inequalities (17) and (16) are always true that concludes the

proof of the metric properties of the distance function given in (15).
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5. Conclusions

We have proposed two new attributed graph distance measures that are based on

the notion of a maximal similarity common subgraph. Their main advantage is the

fact that they do not depend on the definition of elementary edit operations and

their costs, which represents a difficult task in traditional edit-distance measures.

We have proven that the new distance measures are metrics. The proposed distance

measures are general and therefore applicable in a variety of domains. Whenever

abstract representations of complex objects and patterns are given by attributed

graphs, our framework can be applied to deal not only with structural perturbations

but also with geometric distorsions.

The main drawback of our distance measures, shared by all other metrics based

on common substructures, is the associated computational complexity. This coin-

cides with the complexity of determining the maximum similarity common sub-

graph, which is an NP-complete problem. A recently introduced approach to at-

tack this problem consists of transforming it into the equivalent problem of finding

a maximum weight clique (i.e. a complete subgraph having largest weight) in an

auxiliary structure called the (weighted) association graph.10 Although the maxi-

mum weight clique problem is NP-complete, many powerful heuristics have been

developed which efficiently find good approximate solutions.2
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