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Abstract—Peak Signal-to-Noise Ratio (PSNR) is the simplest
and the most widely used video quality evaluation methodology.
However, traditional PSNR calculations do not take the packet
loss into account. This shortcoming, which is amplified in wireless
networks, contributes to the inaccuracy in evaluating video
streaming quality in wireless communications. Such inaccuracy
in PSNR calculations adversely affects the development of video
communications in wireless networks. This paper proposes a
novel video quality evaluation methodology. As it not only con-
siders the PSNR of a video, but also with modifications to handle
the packet loss issue, we name this evaluation method MPSNR.
MPSNR rectifies the inaccuracies in traditional PSNR compu-
tation, and helps us to approximate subjective video quality,
Mean Opinion Score (MOS), more accurately. Using PSNR values
calculated from MPSNR and simple network measurements, we
apply linear regression techniques to derive two specific objective
video quality metrics, PSNR-based Objective MOS (POMOS)
and Rates-based Objective MOS (ROMOS). Through extensive
experiments and human subjective tests, we show that the two
metrics demonstrate high correlation with MOS. POMOS takes
the averaged PSNR value of a video calculated from MPSNR as
the only input. Despite its simplicity, it has a Pearson correlation
of 0.8664 with the MOS. By adding a few other simple network
measurements, such as the proportion of distorted frames in
a video, ROMOS achieves an even higher Pearson correlation
(0.9350) with the MOS. Compared with the PSNR metric from
the traditional PSNR calculations, our metrics evaluate video
streaming quality in wireless networks with a much higher
accuracy while retaining the simplicity of PSNR calculation.

I. INTRODUCTION

Multimedia streaming is becoming one of the most popular
applications in today’s computer networks. Video streaming
penetrates every aspect of our lives, ranging from commu-
nications to entertainment. With the wide deployment of
IEEE 802.11 Wireless Local Area Networks (WLANs), video
streaming over WLANs is very common. Video quality mea-
surement, based on criteria and metrics that can be mea-
sured objectively and automatically by a computer program,
is important to various parties, including government and
industries. People evaluate video quality for specification of
system performance requirements, comparison of competing
service offerings, network maintenance and so on. From the
beginning of digital imagery and video, the video research
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community has proposed a number of metrics to measure
video quality. The common metrics include Peak Signal-to-
Noise Ratio (PSNR), Structure Similarity (SSIM) index [1],
Czekanowski Distance (CZD) [2], etc. PSNR as well as the
other objective video quality metrics do not perfectly correlate
to perceived visual quality. In addition to the non-linearity
of the human visual system, these metrics fail to capture the
packet loss characteristics of wireless networks. While these
metrics work well for evaluating video quality in the en-
coding/decoding process and streaming over wired networks,
noticeable inaccuracy arises when they evaluate video quality
over wireless networks, particularly in lossy networks such
as multihop wireless mesh networks. For instance, it could
happen that a video stream with a PSNR around 38dB (the
full score of PSNR is 100dB) is actually perceived to have
the same quality as the original undistorted video. In our
subjective video quality evaluation, that will be discussed in
Section V-A, all the viewers rate this video stream at the
highest subjective quality.

Video streaming applications use UDP, which unlike TCP,
provides unreliable transmissions as the transport layer proto-
col as a trade off for satisfying delay requirements. In WLANs,
due to the instability of wireless channels, the probability of
a packet loss is much higher than that in wired networks.
Losing consecutive packets causes the loss of an entire image
frame in the video’s raw format (for example, raw YUV-
formatted video file is a sequence of image frames in YUV
color space). Most of the objective video quality metrics,
including PSNR, are per-pixel quality metrics. They compare
every pixel in each frame of a processed video (for example,
a video after streaming) with the corresponding pixel in each
corresponding frame of a reference video (the original video)
to evaluate the quality of a processed video. If a frame in the
processed video is lost during streaming, the metrics compare
two non-corresponding frames from the processed video and
the reference video. This discrepancy results in inaccuracies
in the final metric value. We will explain this phenomenon in
more detail in Section III-A.

In this paper, we propose a new objective video quality
evaluation methodology particularly well suited for video
streaming over lossy wireless networks. Because of the pop-
ularity and simplicity of PSNR, our evaluation method also
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calculates the PSNR of a video. However, we modify the
traditional PSNR calculation for video so that it handles
video frame losses. As it involves the modification of PSNR
calculations, we name our new evaluation method MPSNR.
Using linear regression against Mean Opinion Score (MOS)
collected from human subjective evaluation, we derive two
specific objective video quality metrics from MPSNR. The first
metric, called PSNR-based Objective MOS (POMOS), takes
the averaged PSNR calculated from MPSNR as the only input
for predicting MOS. Despite its simplicity, it has a Pearson
correlation [3] of 0.8664 with the MOS. By adding a few other
simple network measurements, such as the distorted frame
rate and frame loss rate in a video streaming, the second
metric, called Rates-based Objective MOS (ROMOS, achieves
an even higher Pearson correlation of 0.9350 with the MOS.
Using MPSNR, the required parameters, such as PSNR and
frame loss rate, can all be measured when both the processed
and the reference videos are available. 1 Other objective
video quality metrics that closely approximate MOS, such
as Perceptual Evaluation of Video Quality (PEVQ) [4] and
National Telecommunication and Information Administration
Video Quality Metric (NTIA VQM) [5], are complex and do
not explicitly handle frame losses in wireless channels. In
contrast to these metrics, the proposed MPSNR-based metrics
consider frame losses while retaining the simplicity of PSNR.

The contribution of this paper is two-fold:

• We identify the detrimental impact of packet losses
during video streaming on video quality metrics, such
as PSNR.

• We propose a simple objective video quality evalua-
tion methodology, MPSNR, that alleviates the inaccuracy
caused by packet losses. We also derive two specific
video quality metrics from MPSNR. The metrics provide
a tool for evaluating video streaming over lossy wireless
networks.

The rest of the paper is organized as follows. Section II
describes related work on video quality measurements. The
motivation for developing our new video quality evaluation
methodology, MPSNR, is given in Section III. The proposed
MPSNR is discussed in Section IV. In Section V, we present
experiments that measure the MOS of video streaming in lossy
wireless networks and we develop our objective metrics. We
compare MPSNR-based metrics with MOS and evaluate their
effectiveness in Section VI. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

For most applications, video quality is a subjective term.
It is evaluated visually by the viewers. The subjective video
quality is measured through each viewer giving a score ranging
from one (worst) to five (best). The metric, Mean Opinion
Score (MOS), is the arithmetic mean of all these individual
scores. However, the measurement of MOS is an expensive

1The method proposed in this paper is mainly used for evaluating the video
streaming capability of wireless networks. Therefore, similar to PSNR, the
video evaluation we propose is a full reference (FR) method. That means the
reference (original) video is also available in the receiver.

process as it needs a large number of viewers and controlled
evaluation environments, such as a fixed screen size for
displaying a video. It is often impossible to conduct video
quality measurements by collecting MOS for every processed
video. To cope with this difficulty, objective video quality
measurement is used. Objective video quality is based on
the criteria and metrics that can be measured objectively
and automatically by a computer program. The goal of an
objective video quality metric is to approximate the subjective
measurement such as the MOS. PSNR is the most widely
used objective video quality metric. But due to its inability of
approximating the non-linearity of the human visual system,
it does not perfectly correlate with the human perceived visual
quality. Other complex metrics, such as SSIM [1] and CZD [2]
have been proposed to simulate the non-linearity of the human
visual system. However, all these metrics were developed from
evaluating static image quality, so they are based on a pixel-
by-pixel comparison [6]. More importantly, their computation
methods do not consider the case in which some frames in the
video raw file are lost in the streaming process. Such losses
result in mis-alignment of frame sequences in the processed
video and the reference video, causing inaccuracies in quality
metrics calculation. More complex objective measurements,
such as PEVQ [4] and NTIA VQM [5] have been proposed
recently. Although they could approximate MOS accurately
in general, they still do not explicitly handle frame losses in
wireless channels. For example, NTIA VQM requires users to
ensure there is no frame missed or dropped in the process;
otherwise the quality evaluation will be affected [7].

Besides these traditional and standard metrics, researchers
have also proposed other objective metrics. The proposals
in [8], [9] are good examples. Engelke et al [8] suggested
a hybrid image quality metric that extracts different image
features, such as blocking, blur, and etc., for video quality
evaluation. It is a frame-by-frame video evaluation method.
Its simulation results showed a close correlation between the
metric and MOS, but the metric does not consider frame
loss. Furthermore, these image features extraction algorithms
greatly increase the complexity of the video evaluation com-
pared with other frame-by-frame evaluation methods (for
example, SSIM [8]). On the other hand, the work of [9]
proposed a content-based metric. It evaluates the quality of
a video by categorizing the types of content of the video.
For each type of content, different parameters are used in the
evaluation function. This method avoids the issue of frame loss
in the processed video, but it tends to complicate the design
and the resource demands in the implementation process.

Due to its simplicity, PSNR still remains the most widely
used objective video quality metric. In a recent meeting of
International Telecommunication Union (ITU-T), an improved
PSNR calculation algorithm was proposed to tackle the prob-
lem of constant delay in a processed video [10]. Although it
did not tackle the problem of frame losses in the processed
video, its approach of finding the corresponding frame can
be utilized. We propose our objective video quality evaluation
methodology, MPSNR, that enhances the PSNR calculation
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Fig. 1. Illustration of video streaming quality evaluation.

of a video. Using an approach similar to [10], we address
the problem of frame losses in the processed video, while
retaining the simplicity of the computation. We also use linear
regression against MOS to derive two specific metrics from
MPSNR.

III. MOTIVATION FOR DEVELOPING A NEW VIDEO

QUALITY EVALUATION METHODOLOGY

A. Inaccuracy in the Existing PSNR Calculation

PSNR, as a video quality measurement, does not accurately
indicate the subjective quality of a video. In addition to
the effect of the non-linearity of human visual system, the
calculation method for PSNR of a video introduces errors in
evaluating quality, especially when a video is streamed over a
lossy wireless channel.

Traditionally, PSNR is calculated by comparing the first
frame of the streamed video (i.e. processed video) with the
first frame of the reference video, and then comparing the
second frames of the streamed and the reference videos, and
so on. This simple calculation method assumes no frames are
lost in the streamed video. It works well for evaluating video
encoding/decoding errors and video streaming in wired net-
works, where the frame losses in a video stream rarely occur.
However, frame losses are prevalent in wireless networks. In
wireless networks, contiguous packet losses could cause the
loss of an entire frame in the video stream. (A frame in a
video is composed of several packets in the network layer).
Figure 1 shows how a video in the original YUV format is
encoded, streamed and converted back to the YUV format for
evaluation. Due to packet losses during streaming, some YUV
frames are missing after converted from the stream file (for
example, an mpeg4 file). A missing frame results in the latter
frames in shifted positions when compared with the reference
video. The shifted frame position causes incorrect frames
to be compared in the PSNR calculations. A human cannot
usually detect the loss of a few frames, but the off-position
comparisons severely underestimate the average PSNR value
of the streamed video.

Figure 2 shows the snapshots of three videos. Figure 2(a) is
a snapshot of the reference video that has the “highest” quality.
The other two snapshots are from the videos as they are being
streamed over a wireless network. The average PSNR value
of the reference video is 100dB, that is the highest value. It
refers to the case when there are no distortions in any frame
of the video. Note that if there is no distortion, the PSNR
value should be infinity according to the definition. But for

the sake of calculation and analysis, we use the same approach
in [8] to define the highest value of PSNR to be 100dB. The
average PSNR of video streaming A (Figure 2(b)) is about
38dB, while that of video streaming B (Figure 2(c)) is about
40dB. However, we can clearly see that the quality of the
video stream A is much better than that of the video stream
B. This example demonstrates how the off-positioned frames
(due to the loss of few frames in video A) causes the PSNR
to be severely underestimated. This simple example provides
the motivation to develop a more comprehensive evaluation
method for video streaming in wireless networks. However, it
is important to preserve the simplicity of PSNR in any new
metric as the expensive hardware and software for complex
video evaluation are not always available, and the speed for
video evaluation is important especially when there are a large
number of videos to be evaluated.

B. Brief Description of the New PSNR Calculation

The error introduced to PSNR calculation due to frame
losses in video streaming cannot be easily corrected, as there is
no timing information recorded in the raw video frames. Thus,
the correct corresponding frame pair from the streaming video
and the reference video is not easily identifiable. To solve this
problem without introducing significant overhead, we calculate
the PSNR of the video frames using a different approach.
Instead of ignoring the lost frames and blindly comparing
frames from the reference video with those from a streamed
video in the order of received, we introduce a “matching”
process before determining the “actual” PSNR of the frames
in the streamed video. The matching process is critical in our
proposed MPSNR (modified PSNR calculation), as it helps
us locate the correct frame to compare and calculate the
“actual” PSNR value. In Section IV, we discuss an optimized
algorithm for matching process. To reduce the complexity of
the matching process, and thus the complexity of MPSNR, we
also present a heuristic.

In the video stream A (Figure 2(b)), the matching process
indicates that 0.3% of the frames are lost, but none of the
received frames have any distortion. That means that all
the received frames should have the PSNR value of 100dB
when compared with the correct corresponding frames in the
reference video. Due to the frame losses, the traditional PSNR
calculation compares the incorrect frames and returns low
PSNR values. However, the proposed MPSNR calculation uses
the correct corresponding frames for comparison and returns
100dB of PSNR for every received frame. Therefore, the
average PSNR of video streaming A is 100dB. For the video
stream B, although there are no frame losses, the received
frames have distortion. MPSNR also returns the average PSNR
value of about 40dB for video streaming B. This example
shows the importance of our matching process in the correct
PSNR calculation.

IV. ANATOMY OF MPSNR

As an objective video quality evaluation methodology,
MPSNR measures PSNR of the streamed (i.e. processed) video
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(a) Reference video (b) Video streaming A (c) Video streaming B

Fig. 2. Snapshots of different videos.

frames and other network parameters such as loss rate of
the video frame, proportion of distorted video frames in a
video streaming, etc. These measurements are plugged into
linear models, which will be detailed in Section V, to predict
the MOS of the video. As mentioned in Section III-B, the
matching of correct corresponding frames in the streamed and
the reference videos is critical in MPSNR. We first discuss an
optimized algorithm for the matching process.

A. An Optimized Algorithm for Matching Corresponding
Frames

As shown in Section III, the limitation of the traditional
video PSNR calculation is its erroneous pair-up of the corre-
sponding frames from the streamed video and the reference
video. An intuitive way to fix this limitation is to incorporate
timing information into the raw video, for example the YUV
file. However, this approach involves modifications in the
decoding mechanism that coverts the streaming file (e.g.
mpeg4) to the raw video (e.g. YUV). A number different video
coding standards use different coding/decoding mechanisms
[11]. Inserting timing information to the raw video is also
different from one coding standard to another, and hence
increases the complexity in video decoding and affects many
other aspects of video processing.

Instead of modifying the decoding mechanism and the raw
video file format, we improve the PSNR measurement by
introducing a “frame matching process.” The matching process
helps us locate the correct frame to compare with. We use the
similarity of the streamed video and the reference video to find
the correct match. First, we make the following assumption.
The sum of PSNR of all frames in a streamed video is the
maximum when all the frames are correctly matched with the
corresponding frames in the reference video. We make this
assumption because the corresponding pair of frames should
have the greatest similarity and their PSNR value should
be the largest among the PSNR values of other unmatched
frame pairs. The same assumption was also made in [10]
to determine the most probable corresponding frame in the
reference video. In [10], the corresponding frame in the
reference video is located only for the first frame in the
processed (e.g. streamed) video that may experience a constant
delay. In our approach, we use this assumption to locate the
corresponding frames for all frames in the streamed video.

Each frame in a streamed video must have a matched frame
in the reference video, and we consider a global maximization
of the sum of PSNR. Therefore, the problem of the matching
process is stated as:
Match each frame in a streamed video to a frame in the
reference video so that the sum of PSNR of all frame pairs
are maximized.

It is very similar to a sequence alignment problem in bioin-
formatics [12]. In bioinformatics, DNA or RNA sequences
are aligned to identify the region of similarity. In our video
quality evaluation, the streamed video and the reference video
frame sequences are aligned to find the match. The difference
is that in sequence alignment, unmatches (called gaps) are
allowed in both sequences, while in our case, every frame in
the streamed video must find a match in the reference video.
Although there is a standard optimized algorithm to solve the
sequence alignment problem [13], due to this difference, we
need a new algorithm for our use.

We define OPT(i, j) to be the maximum total PSNR value
achieved when a streamed video with j frames is matched
to the reference video with i frames. Let psnr(x, y) be the
PSNR value of frame x and frame y. If no match can be
found for a frame in the reference video, we ignore the frame
in the calculation of the total PSNR value. Figure 3 shows
the three possible cases for the last match in two videos. An
underline segment indicates no frame is matched. Different
from an ordinary sequence alignment, the Case 3 in Figure 3
would never happen as the reference video is always longer
than the streamed video. In other words, all frames in the
streamed video must find the match in the reference video.
But the reverse, that all frames in the reference video must
find the match in the streamed video, is not true, so Case 2 is
possible. Therefore, the recurrence equation in MPSNR is

OPT(i, j) = max[ psnr(i, j) + OPT(i − 1, j − 1),
OPT(i − 1, j) ]

(1)

Equation (1) states that when Case 1 is selected,
the largest possible total PSNR value for the video is
psnr(i, j)+OPT(i − 1, j − 1). The largest possible total
PSNR is OPT(i − 1, j) when Case 2 is selected. So, for
OPT(i, j), we have to choose the largest among these two
possible cases. The recurrence equation (1) shows that similar
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Fig. 3. Three possible cases for the last match.

to a sequence alignment problem, our matching process can be
solved by a dynamic programming algorithm [13]. By using
dynamic programming, we can find the optimum match of the
frames in the streamed video to the frames in the reference
video with the maximum total PSNR.

In MPSNR, a frame in the streamed video does not have to
compare with every frame in the reference video to find the
optimized match. Suppose there are a total of g frames lost
during streaming. A frame in the streamed video should only
compare with at most g frames in the reference video. To see
this, consider frame q in the streamed video. Frame q can only
match with a frame between p + 1 and p + g, where frame p
matched with frame q−1 of the streamed video in the previous
iteration of dynamic programming. If frame q matches with
any frame beyond frame p + g, that implies there are more
than g frames lost in the streamed video. It is contradictory
to the fact that the total number of frame losses in streaming
is g. Adding this constraint to the dynamic programming and
together with the recurrence equation (1), the time complexity
of the optimized matching process in MPSNR is O(gn), where
n is the number of frames in the streamed video and g is the
total number of frames lost.

B. A Heuristic Algorithm for Matching Corresponding Frames

Although the time complexity of the optimized matching
algorithm is polynomial, the running time can be significant
when both the number of frames in the streamed video (n) and
the number of frame losses (g) are large. If a poor wireless
channel quality results in a constant loss rate of streaming
video and when the length of streaming video increases, the
execution time of the matching process will be increased in a
much faster rate than the video length because the total number
of lost frames also increases. In practice, given a streamed
video of 40 seconds (1000 frames) with 20 frames lost (about
2% frame loss rate), a personal computer with 2.8GHz CPU
and 1GB RAM needs about 20 seconds to run MPSNR and
return the PSNR values of all the frames in the streamed video.
The traditional PSNR calculation on the other hand takes less
than two seconds for the same video in the same computer.
Therefore, we need a faster algorithm for the matching process
in MPSNR.

Instead of considering the global maximization of total
PSNR in the optimized algorithm, we consider a local maxi-
mum PSNR search. Let inPSNRji be the PSNR value calcu-
lated for frame j in the streamed video when it is compared
with frame i in the reference video. Frames i and j are
not necessary the last frames in the reference video and the
streamed video respectively. We use window to denote a group
of continuous frames in the reference video for the matching
process. Let Wj be the set containing the continuous frames

in the reference video when frame j in the streamed video is
processed. Window size, w, is the number of continuous frames
in Wj . Let PSNRj be the PSNR value of the frame j in the
streamed video. PSNRj is determined using the following.

PSNRj = maxi∈Wj
(inPSNRji) (2)

When PSNRj is determined, we know the frame, say k, in
the reference video is matched with frame j in the streamed
video. At this moment, the window moves. Now, Wj+1

contains frames from (k+1) to (k+w). The matching process
is then carried out for frame j + 1 in the streamed video. The
matching of frame j implies that all the frames that precede
frame k in Wi in the referenced video cannot be found in the
streamed video (i.e., they are lost in the streaming process).
When we perform the matching, we must make sure that the
number of remaining frames in the referenced video is no less
then the number of remaining frames (the frames that have
not gone through the matching process) in the streamed video.
Otherwise, some frames in the streamed video cannot match
to any reference frame.

According to Equation (2), we take the maximum value
of inPSNRji, as the final PSNR, PSNRj , of frame j in
the streamed video. It could happen that frame j in the
streamed video is distorted severely and has a larger similarity
to a non-corresponding frame, k, than to the actual corre-
sponding frame, h. For example, inPSNRjk = 10.25 while
inPSNRjh = 10.19. In this case, the matching process returns
an incorrect corresponding frame. To mitigate this problem,
we introduce a parameter called PSNR threshold, thresh, into
the matching process. We take the maximum inPSNRji, as the
final PSNR, only if it is greater than thresh. This ensures the
returned matched frame has a certain large degree of similarity
with the frame j in the streamed video. The larger the PSNR
threshold, the more accurate the frame matched. However, if
thresh is too large, the probability of returning a matched
frame from the matching process becomes very small. Even for
the corresponding frame pair, the frame in the streamed video
could have a certain degree of distortion which decreases the
PSNR to be less than thresh. If this case happens (i.e., the
maximum inPSNRji is not larger than thresh), we will regard
the first frame in Wj as the matched frame.

Setting an appropriate thresh is not straightforward as it
depends on how much the streamed video is distorted and
it is unknown before the evaluation. We try different thresh
values around 30dB for each run of MPSNR and take the
largest overall averaged PSNR as the final PSNR value of the
streamed video. The reason for choosing 30dB as the mid
value is that the distorted frames have an average PSNR of
30dB in lossless streaming. If the maximum inPSNRji is not
less than 30dB, we are confident that frame j is the same frame
as frame i, but with distortion. In our multihop wireless video
streaming environment that will be discussed in Section V-A,
we use three different thresh values of 20dB, 30dB and 40dB.

Another important parameter that affects the performance
of this algorithm is window size, w. If the window size is
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too small, the “real” matching frame may be outside of the
window, and it results in an incorrect match. A large window
size has a high probability of finding the correct match, but
at the cost of a long computation time. The selection of the
window size should consider how much loss the streaming
suffers from. In our multihop 802.11 wireless video streaming
environment (see Section V-A), a window size of five is large
enough.

Using this heuristic matching algorithm we can reduce the
time complexity of MPSNR. The time complexity for this
heuristic algorithm is O(twn), where t is the number of
different thresh tried, w is the window size and n is the total
number of frames in the streamed video. Both t and w depend
on how lossy the wireless channel is. They are constants in a
particular wireless system, for example, in our 4-hop wireless
network, t = 3 and w = 5. Although the values of t and w vary
from networks to networks, in any given wireless network, t
and w are small constants. Therefore, the time complexity
of this heuristic matching algorithm is O(n), the same as
that of traditional PSNR calculation. Using the same example
scenario of a streamed video of 40 seconds (1000 frames)
with 20 frames lost (2% frame loss rate), a personal computer
with 2.8GHz CPU and 1GB RAM needs about four seconds
to run this heuristic in MPSNR and return the PSNR values
of all the frames in the streamed video. To further evaluate
the effectiveness of this heuristic matching algorithm, we use
this heuristic in MPSNR to evaluate video quality and derive
quality metrics in Section V. In Section VI, we also derive the
metrics from MPSNR using the optimized matching algorithm.
The two sets of metrics have similar performances.

C. Measuring Other Parameters

Calculating PSNR of the video frames is the major func-
tion of MPSNR. Along with the PSNR calculation, MPSNR
measures other following video streaming related parameters.

• Distorted frame rate (d): the percentage of distorted
frames (in which the PSNR is less than 100dB) in a
streaming video;

• Averaged PSNR of distorted frames (dPSNR): the mean
PSNR value of all the distorted frames;

• Frame loss rate (l): the percentage of lost frames in a
streaming video. We derive it from comparing the total
number of frames in the received streamed video with
that in the reference video;

Once the corresponding frames in a streamed video and the
reference video are matched and the PSNR of each frame
in the streamed video is calculated, all the above parameters
are readily available. In Section V, we use these parameters
together with the average PSNR of a video calculated from
MPSNR, aPSNR, to derive objective metrics for predicting
Mean Opinion Score (MOS) of videos.

V. DEVELOPING METRICS FROM EXPERIMENTS

A. Experiments

1) Collecting videos of different quality: We first collect
videos from a series of streaming experiments over multihop

wireless mesh network [14]. Figure 4 shows the different
scenarios in which the video streaming is performed. M1,
M2 and M3 are three mesh access points (MAPs). They are
mesh routers that relay the network traffic from a client (for
example, C1) to another (C2). In our case, C1 is a video
streaming server and the video is streamed from C1 to C2
(video streaming client). Figure 4(a) shows a 4-hop wireless
mesh network. To collect videos with varying qualities, we
configured 3-hop and 2-hop networks as well by removing
one and two MAPs, respectively. The degree of intra-flow
interference affects the video quality, with longer-hop paths
suffering from more interference [15]. We also add inter-
flow interference by having another client (C3) receive video
streaming from C1 at the same time (Figure 4(b)). In another
setting, we add background TCP and UDP data traffic to
interfere the video streaming (Figure 4(c)). In each scenario,
we also vary the limit of link-layer retransmissions in video
streaming. The standard “highway” video [16] is used for
streaming because it has constant moving scenes that are
sensitive to the frame distortion and loss. Our MPSNR can
also apply to videos of other contents. For demonstrating
the principle of deriving new quality evaluation metrics from
MPSNR, we only focus on the “highway” video in this paper.

Through these experiments, a total of 40 streamed videos
with different qualities are collected. We randomly divide
these 40 video clips into two groups, a training set and a
validation set. We have 30 video clips in the training set that
is used to derive the objective video quality metrics. The other
10 video clips form the validation set and they are used to
evaluate the effectiveness of the derived objective metrics. It
is worth noting that in [9] 39 videos are used for deriving
video quality metrics by a linear regression method. Their
training set and validation set contain the same set of videos,
but with different human subjects to evaluate. We believe this
approach is inadequate as different videos could have very
different qualities but the scores from different human subjects
actually have good agreement. Therefore, different videos in
the training set and the validation set give higher confidence
in evaluating the performance of the metrics.

2) Collecting subjective evaluation for video quality: We
engaged 21 volunteers as the subjects to score the quality of
every video clip (according to ITU-R BT.500-11 subjective
assessment standard [17], at least 15 subjects are needed for
subjective quality evaluation, so 21 subjects in our case should
be enough). Each subject was asked to score the watched video
on a standard five-grade scale [17]. Score 1 is for a video with
the worst quality and it means the impairment in the video is
very obvious and very annoying. Score 5 is for a video with
the best quality and it means the impairment is imperceptible
and the video is perfect.

Our test was performed according to the single-stimulus
(SS) method [17]. The standard videos with the five different
scores were shown to the viewer at the beginning of the test.
During the test, only the videos to be scored were shown
without any display of the standard/perfect video. For each
video clip, we average the quality scores given by the subjects
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(a) Streaming with intra-flow interference.

(b) Streaming with inter-flow interference.

(c) Streaming with background data flow.

Fig. 4. Video streaming in different scenarios.

Fig. 5. MOS and 95% confidence intervals of videos in the training set.

and obtain a mean score that is the Mean Opinion Score
(MOS).

Diversity was taken into account when we chose the test
volunteers. The age of our volunteers ranges from 20 to 45.
Eight of them (38.1%) are female while 13 are male. Their
occupation ranges from university undergraduate students to
laboratory technicians. Each subject was asked to score the
same set of video clips (but in different sequence order)
twice. To avoid unreliable and inconsistent results, for each
video, if scores from a particular subject in the two rounds
of experiments differed by two or more, the score from this
specific subject is discarded. Throughout the entire test, 1.19%
of the scores were rejected under this condition.

Figure 5 shows that the MOS of the videos in the training
set ranges from 1.095 to 5. This shows that we have chosen a
set of videos with a wide range of quality. The averaged size
of 95% confidence interval among the videos in the training
set is 0.38 in the 1 to 5 MOS scale. This indicates a good
agreement among the subjects.

B. Deriving Metrics from Subjective Evaluation and MPSNR

1) POMOS: By applying MPSNR with the heuristic match-
ing algorithm to the videos in the training set, we first obtain
the aPSNR (the average PSNR calculated from MPSNR) and
the traditional PSNR (tPSNR) for each video. Noted that
traditional PSNR of the video can also be obtained from
MPSNR by setting the window size (w) to one. Figure 6(a)
shows the scattered-plot of MOS for both aPSMR and tPSNR
of each video in the training set. Compared with tPSNR,
aPSNR demonstrates a more consistent relationship with MOS.
Although the tPSNR also demonstrates a linear trend with
MOS when PSNR values are small, they deviate significantly
when the PSNR gets larger. Thus, the mapping of traditional
PSNR to MOS does not hold. However, aPSNR demonstrates
a close-to-linear relationship with MOS. Hence, we use linear
regression to predict MOS of a video from its aPSNR.

We propose a two-parameter linear model to predict MOS.

POMOS = β0 + β1aPSNR (3)

for some constants β0 and β1. In this linear model, we use
the average PSNR, aPSNR, calculated from MPSNR as the
predictor variable. POMOS is the predicted MOS, not the
actual MOS that is evaluated from the human subjects. Hence,
POMOS is an objective video quality metric (“objective
MOS”) based on aPSNR.

Since POMOS itself is already a mean value (as MOS is
a mean value), the error term, ε, that is usually added in a
regression analysis can be dropped [18]. If we predict a quality
score, Y , given by a particular user, we have

Y = β0 + β1X + ε E[ε] = 0 (4)

where X can be any predictor variable. We are only interested
in predicting the mean value of Y that is POMOS, hence we
ignore the error term, ε.

Figure 6(b) shows the linear fit of the estimated POMOS,
̂POMOS. We use the linear model package of the statistics

tool, R [19], to derive β̂0 and β̂1, that are respectively the
estimates of β0 and β1 in Equation (3). The final linear
equation for estimating MOS is

̂POMOS = 0.8311 + 0.0392aPSNR (5)

The 95% confidence interval for β̂1 is (0.03431, 0.04411).
The small interval indicates that the sample size (number
of videos) in the training set is large enough for a good
estimation. Mean of β̂1 (0.0392) is significant to POMOS
prediction as POMOS ranges only from 1 to 5 while aPSNR
ranges from 0 to 100. This justifies our decision of including
aPSNR in our linear model for predicting MOS.

aPSNR is a mean value over all PSNR values of the frames
in a video clip calculated from MPSNR. According to the
definition of PSNR, if the received frame has no distortion
compared with the corresponding frame in the referenced
video, the PSNR value of this perfect frame is infinity. For
calculation of aPSNR, we must give a finite value for the
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Fig. 6. Mapping of different measurements of videos to MOS.

PSNR of such frame. Therefore, we assigned a PSNR of
100dB for the perfect frames. However, the PSNR value of
such perfect frames affects aPSNR and in turn the MOS
prediction. To mitigate this problem, we develop another linear
model that does not use the PSNR value of the perfect frames.

2) ROMOS: As in Section IV-C, we define dPSNR as the
averaged PSNR of all the distorted frames in a streamed video,
and d as the distorted frame rate. The video quality decreases
as dPSNR decreases, but the video quality also decreases as
d increases. From Figure 6(c), we find that as the ratio of
distorted frame rate to averaged PSNR of distorted frames
(d/dPSNR) increases, MOS of the video decreases. Therefore,
instead of using aPSNR, we use d/dPSNR in our linear model
to predict MOS of a video. For those lost frames, they are
neither perfect frames nor distorted frames. We must take the
lost frames into account in the prediction of MOS. Thus, we
include the frame loss rate, l, in the prediction. Finally, we
have our linear model of MOS prediction as Equation (6).

ROMOS = β0 + β1
d

dPSNR
+ β2l (6)

Like POMOS, ROMOS is an objective video quality metric,
but it is based on rates d and l. Figure 6(d) shows the plane
fits the scatter MOS values. Again, we use the linear model
package of R to derive β̂0, β̂1 and β̂2, that are respectively the
estimates of β0, β1 and β2 in Equation (6). The final linear
equation for estimating MOS is

̂ROMOS = 4.367 − 0.5040
d

dPSNR
− 0.0517l (7)

where ̂ROMOS is the estimated ROMOS from our linear
model (6). The 95% confidence interval for β̂1 is (-0.58902,
-0.41894). The small interval indicates that the sample size
(the number of videos) in the training set is large enough
for a good estimation. Mean of β̂1 (-0.5040) is significant
to ROMOS prediction as ROMOS ranges only from 1 to 5
while d/dPSNR in our case ranges from 0 to 8. This justifies
the inclusion of d/dPSNR in our linear model. For β̂2, its
mean is -0.0517 and the 95% confidence interval is (-0.15428,
0.05098). Its mean is close to zero and its 95% confidence

interval is large. These imply that the inclusion of l is not
significant for the prediction of MOS and the sample size in
training set is not large enough to show the significance of l in
prediction. The reason is that the frame loss rate is often small
(around 0.2%) in our wireless video streaming experiments.
Such a small frame loss rate causes significant inaccuracy in
traditional PSNR calculation, but it does not greatly affect the
subjective quality evaluation. However, in some other wireless
scenarios, the frame loss rate may be much severe, and hence
we include it in our linear model for predicting MOS.

VI. EVALUATION OF OBJECTIVE METRICS

In Section V-B, we use the 95% confidence interval of the
estimated coefficients of the linear models to evaluate the
effectiveness of different predictor variables. In this section,
with the help of the validation set of videos, we evaluate
the accuracy of our newly developed objective video quality
metrics. We first find the MOS of each video in the validation
set by recording all the quality scores rated by the 21 subjects.
For each video in the validation set, we then calculate ̂POMOS
and ̂ROMOS from Equations (5) and (7) respectively. For
comparison, we also develop a linear model for predicting
MOS from the traditional PSNR (tPSNR).

TOMOS = β0 + β1tPSNR (8)

The model is similar to Equation (3), with traditional PSNR
tPSNR replacing aPSNR calculated from MPSNR. We find
the Pearson correlation (also known as correlation coefficient)
[3] between the MOS and the estimated MOS values from

̂TOMOS, ̂POMOS and ̂ROMOS, where ̂TOMOS is an estimated
value of Equation (8). Pearson correlation is used to evaluate
the prediction accuracy of the linear models. The higher the
correlation, the more accurate the prediction. For ̂POMOS, it
has a Pearson correlation of 0.8666 with MOS. For ̂ROMOS,
it has an even higher Pearson correlation of 0.9346. Although
we see a linear trend of MOS against traditional PSNR in
Figure 6(a), the Pearson correlation of ̂TOMOS with MOS is
only 0.7274. Figure 7(a) visualizes the relationship between
the actual MOS from 21 subjects and the estimated MOS val-
ues from the objective calculation of different linear models.
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Fig. 7. Scatter plot of estimated (objective) MOS values against actual
(subjective) MOS.

We can see that for the videos in the validation set, ̂ROMOS
are the closest to the reference line and ̂TOMOS are the
farthest from the reference line. Compared with [8] that
also used the “highway” video clip as the evaluation video,
their objective video quality evaluation metric only achieves
a Pearson correlation of 0.896. The content based metric
in [9] although classify the content categories of the video,
its averaged Pearson correlation is only 0.8303. Furthermore,
their objective metrics have much higher complexity than ours
as we use a simple pixel-by-pixel PSNR calculation algorithm.

We now change the matching algorithm in MPSNR from
heuristic to optimized, and again perform the derivation of
metrics. As expected, the Pearson correlation of the metrics
with the MOS increases, but the improvement is not signifi-
cant. For ̂POMOS, it has a Pearson correlation of 0.8838 with
MOS while for ̂ROMOS, 0.9509. The scatter plot of these
estimated MOS values against MOS is shown in Figure 7(b),
that is quite similar to Figure 7(a). This similarity shows that
our heuristic matching algorithm works very well.

It is worth noting that the coefficient values we derived in
Equation (5) for ̂POMOS, and in Equation (7) for ̂ROMOS
are specific for videos with the content belonging to the same
category as “highway” video. According to [9], there are only
five different video content categories and technologies exist
to classify the content category of a video. By following the
same procedure in Section V to derive the coefficient values
of Equation (3) and Equation (6) for each content category,
we can apply POMOS and ROMOS to all other videos.

VII. CONCLUSION

Traditional PSNR calculation overlooks the packet loss in
wireless networks, and hence it is not an adequate method
to compute PSNR of video streaming over wireless net-
works. We develop a novel video quality evaluation method-
ology, MPSNR, to address the shortcomings of the traditional
method. By matching the correct frame pairs in the streamed
video and the reference video, MPSNR calculates accurate
PSNR of the streamed videos. From human subjective video
evaluations, we find that the PSNR value calculated from
MPSNR demonstrates a close-to-linear relationship with the
subjective MOS. Using linear regression, we derive an ob-
jective video quality metric, POMOS, based on PSNR value

to predict the MOS of a video. POMOS has a high Pearson
correlation of 0.8664 with the MOS. Adding other video
streaming measurements, such as the proportion of distorted
frames in video streamings, we derive a more comprehensive
metric, ROMOS, to predict the MOS of a video. ROMOS
has a Pearson correlation of 0.9350 with the MOS. Both
metrics assess the video quality more accurately than the
traditional PSNR while retaining the simplicity of PSNR.
With the popularity of video applications in wireless networks,
these two metrics provide a significant tool for evaluating the
performance of such applications. Based on the correct video
quality evaluation, we expect further advancement of video
over wireless network technologies.
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