
To Appear: Jr. of Software Maintenance and Evolution: Research and Practice, 2002.

Metrics for Maintainability of Class Inheritance Hierarchies

Frederick T. Sheldon1, Kshamta Jerath and Hong Chung2

Software Engineering for Dependable Systems Laboratory©

School of EECS, Washington State University
Pullman, Washington 99164-2752, USA

sheldon@wsu.edu | kjerath@eecs.wsu.edu | jhong@kmu.ac.kr

Abstract
Since the proposal for the six object-oriented metrics by CK (Chidamber and Kemerer) [8], several studies have
been conducted to validate their metrics and discovered some deficiencies. Consequently, many new metrics for
object-oriented systems have been proposed. Among the various measurements of object-oriented characteristics,
we focus on the metrics of class inheritance hierarchies in design and maintenance. As such, we propose two simple
and heuristic metrics for the class inheritance hierarchy for the maintenance of object-oriented software.

In this paper we investigate the work of CK [8] and Li [12], and have extended their work to apply specifically
to the maintenance of a class inheritance hierarchy. In doing so, we have suggest new metrics for understandability
and modifiability of a class inheritance hierarchy. The main contribution here includes the various comparisons that
we have been made. We discuss the advantages over CK's metrics [8] and Henderson-Sellers's metrics [18] in the
context of maintaining class inheritance hierarchies.

No. of Figures: 6. No. of Tables: 0. No. of References: 27.
KEY WORDS: software metrics, object-oriented, class inheritance, software maintenance.
*Correspondence to: Dr. Frederick Sheldon, Sch. of EECS, Washington State University, Pullman, WA, 99164-
2752
Email: Sheldon@acm.org
Contract/grant sponsor: This work was partially supported by Keimyung University, and small grants from Intel,
Microsoft and DaimlerChrysler.

1 Sheldon is currently on leave at DaimlerChrysler Research and Technology in System Safety, Stuttgart.
2 Hong Chung is a visiting scholar from the School of Computer and Electronics, Keimyung University, Taegu, 704-701, Korea.

This preprint is an article accepted for publication in the Journal of Software Maintenance and Evolution: Research and Practice
Copyright © 2002 (copyright owner as specified in the Journal)

2

1. Introduction
Measurement is fundamental to any engineering discipline, and software engineering is no exception [1]. Typically,
metrics are essential to software engineering for measuring software complexity and quality, estimating cost and
project effort to simply name a few. The traditional metrics like Function Point, Software Science and Cyclomatic
Complexity have been used well in the procedural paradigm. But they do not readily apply to aspects of the object-
oriented paradigm: class, inheritance, polymorphism, etc.

For about one decade, researchers have been discussing whether a separate set of objected-oriented software
metrics is needed and what this set should include[2]. Initial proposals focused more towards extension of existing
software metrics for procedure-oriented programming[3, 4]. However, almost all recent proposals are focused on
object-oriented programming[5-8].

Since the proposal of the six object-oriented metrics by CK (Chidamber and Kemerer)[7] in 1991, other
researchers have made efforts to validate the metrics both theoretically and empirically. CK's revised paper [8]
proposed a suite of object-oriented metrics which have a set of six simple measures: (1) Weighted Methods per
Class (WMC) which counts the number of methods in a class, (2) Depth of Inheritance Tree (DIT) which is the
number of ancestor classes that can affect a class, (3) Number Of Children (NOC) which is the number of subclasses
that inherit the methods of a parent class, (4) Coupling Between Object classes (CBO) which is a count of the
number of other classes to which it is coupled, (5) Response For a Class (RFC) which is a set of methods that can be
executed in response to a message received by an object of that class, and (6) Lack of Cohesion in Methods (LCOM)
which is a count of the inter-relatedness between portions of a program. These metrics were evaluated analytically
against Weyuker's measurement theory principles [9] and an empirical sample of these metrics was provided from
two commercial systems.

Several studies have been conducted to validate CK's metrics. Basili et al [10] presented the results of an
empirical validation of CK's metrics. Their results suggest that five of the six CK's metrics are useful quality
indicators for predicting fault-prone classes. Tang et al [11] validated CK's metrics using real-time systems and the
results suggest that WMC can be a good indicator for faulty classes and RFC is a good indicator for faults. Li [12]
theoretically validated CK's metrics using a metric-evaluation framework proposed by Kitchenham et al [13]. He
discovered some deficiencies of CK's metrics in the evaluation process and proposed a new suite of object-oriented
metrics that overcome these deficiencies. Balasubramanian [1] identified some deficiencies with the approach taken
by CK and proposed some new metrics. Briand et al [6] proposed a new suite of coupling measures for object-
oriented design that was empirically validated using a logistic regression technique. They have also suggested that
these object-oriented coupling measurement metrics are complementary quality indicator to CK's metrics.

Among various measurements, we focus on the metrics of class inheritance hierarchies in design and
maintenance. Class design is central to the development of object-oriented (OO) systems. Because class design deals
with the functional requirements of the system, it is the highest priority in OOD. Inheritance is a key feature of the
OO paradigm. The use of inheritance is claimed to reduce the amount of software maintenance necessary and ease
the burden of testing [8], and the reuse of software through inheritance is claimed to produce more maintainable,
understandable and reliable software [10]. However, industrial adoption of academic metrics research has been slow
due to, for example, lack of a perceived need. The results of such research are not typically applied to industrial
software [14], which makes validation a daunting and arduous task. For example, experimental research of Harrison
et al [15] indicates that a system not using inheritance is better for understandability or maintainability than a system
with inheritance. But Daly's experiment [16] indicates that a system with three levels of inheritance is easier to
modify than a system with no inheritance.

Ordinarily, it is agreed, that the deeper the inheritance hierarchy, the better the reusability of classes; but the
higher the coupling between inherited classes, making it harder to maintain the system. The designers may tend to
keep the inheritance hierarchies shallow, forsaking reusability through inheritance for simplicity of understanding
[8]. So, it is necessary to measure the complexity of the inheritance hierarchy to conciliate between the depth and
shallowness of it. We propose two simple and heuristic metrics for the class inheritance hierarchy in the
maintenance of OO software.

The rest of this paper is organized as follows. Section 2 presents some related research, especially the work by
CK and Li. We propose new metrics for maintenance of class inheritance hierarchies associated with understanding
and modifying OO software systems in Section 3, and discuss them in Section 4. A summary and concluding
remarks are presented in Section 5 while Section 6 includes future plans regarding validation.

3

2. Related work
Almost all researchers note the need to measure inheritance structure: in terms of depths and class density. This can
be measured as the depth of each class within its hierarchy, since this is likely to affect the distribution of inherited
features. Briand et al [17] empirically explored that the depth of a class in its inheritance hierarchy appears to be an
important quality factor.

CK [8] proposed DIT (Depth of Inheritance Tree) which is the length of the longest path from a class to the root
in the inheritance hierarchy and NOC (Number Of Children) which is the number of classes that directly inherit
from a given class, and Henderson-Sellers [18] suggested AID (Average Inheritance Depth) which is the mean depth
of inheritance tree which is the extension of CK's DIT. Li [12] suggested NAC (Number of Ancestor Class) metric
to measure how many classes may potentially affect the design of the class because of inheritance and NDC
(Number of Descendent Classes) metric to measure how many descendent classes the class may affect because of
inheritance. Tegarden et al [3] proposed CLD (Class-to-Leaf Depth) which is the maximum number of levels in the
hierarchy that are below the class and NOA (Number Of Ancestor) which is the number of classes that a given class
directly or indirectly inherits from. And Lake and Cook [19] suggested NOP (Number Of Parents) which is the
number of classes that a given class directly inherits from and NOD (Number Of Descendents) which is the number
of classes that directly or indirectly inherit from a class.

Among the metrics related to class inheritance hierarchy, we discuss in detail the work of CK [8] and Li [12].

2.1 CK's DIT and NOC Definitions
Consider the definition for the Depth of Inheritance Tree (DIT).

Definition: Depth of inheritance of a class is the DIT metric for the class. In cases
involving multiple inheritance, the DIT will be the maximum length from the node to
the root of the tree.

Theoretical Basis: DIT is a measure of how many ancestor classes can potentially
affect this class.

Viewpoints: 1) The deeper a class is in the hierarchy, the higher the degree of
methods inheritance, making it more complex to predict its behavior. 2) Deeper
trees constitute greater design complexity, since more methods and classes are
involved. 3) The deeper a particular class is in the hierarchy, the greater the
potential reuse of inherited methods.

Example: Consider the class inheritance tree in Figure 1, DIT(A)=0 because A is the root class.
DIT(B)=DIT(C)=1 because the length from class B and C to the root A is 1 each. And, DIT(D)=DIT(E)=2
because the maximum length from class D and E to the root A are 2 each.

Consider the definition for the Number of Children (NOC).

Definition: NOC is the number of immediate subclasses subordinate to a class in the class hierarchy.

Theoretical Basis: NOC is a measure of how many subclasses are going to inherit the methods of the parent
class.

Viewpoints: 1) The greater the number of children, the greater the potential for reuse, since inheritance is a
form of reuse. 2) The greater the number of children, the greater the likelihood of improper abstraction of the
parent class. 3) The number of children gives an idea of the potential influence a class has on the design.

Example: Consider the class inheritance diagram in Figure 1, NOC(A)=NOC(B)=2 because the number of
their immediate children are 2. NOC(C)=1 because the number of its immediate child is 1. And,
NOC(D)=NOC(E)=0 because they have no children.

DIT indicates the extent to which the class is influenced by the properties of its ancestors, and NOC indicates
the potential impact on the descendants. CK argue that depth is preferred to breadth in the hierarchy.

2.2 Li's NAC and NDC Definitions

Li [16] pointed out that CK's DIT metric has ambiguities. First, the definition of DIT is ambiguous when multiple
inheritance and multiple roots are present at the same time. Consider the class inheritance tree with multiple roots in
Figure 2, the maximum length from class E become unclear. There are two roots in this design; the maximum length
from class E to root B is one (DIT(E)=1) and the maximum length from class E to root A is two(DIT(E)=2).

A

B C

D E

Figure 1. A class
inheritance tree.

4

The second factor, which causes ambiguity, lies in
the conflicting goals stated in the definition and the
theoretical basis for the DIT metric. The theoretical
basis stated that "DIT is a measure of how many
ancestor classes can potentially affect this class." It is
seen and understood to indicate that the DIT metric
should measure the number of ancestor classes of a
class. However, the definition of DIT stated that it
should measure the length of the path in the inheritance
tree, which is the distance between two nodes in a
graph; this clearly conflicts with the measurement attribute declared in the theoretical
basis. This ambiguity is only visible when multiple inheritance is present, where the
distance between a class and the root class in the inheritance tree no longer yield the
same number as the number of ancestor classes for the class. This conflict is visualized
in Figure 1. In Figure 1, according to the definition, classes D and E have the same

maximum length from the root of the tree to the nodes respectively; thus DIT(D)=DIT(E)=2. However, class E
inherits from more classes than D does. According to the theoretical basis, class D and E should have different DIT
values.

Li proposed a new metric, the Number of Ancestor Classes (NAC), as an alternative to the DIT metric.

Definition: NAC measures the total number of ancestor classes from which a class inherits in the class
inheritance hierarchy.

Based on the definition, there exists no ambiguity on the NAC values for class D and E in both Figure 1 and
Figure 2. In Figure 1, class D inherits from classes B and A, therefore, yielding NAC(D)=2; class E inherits from
class B, C and A, thus, yielding NAC(E)=3. In Figure 2, class D inherits from class B, thus, yielding NAC(D)=1;
class E inherits class B, C and A, therefore, yielding NAC(E)=3.

Li[12] also points out that CK's NOC metric has some ambiguities. The stated theoretical basis and the
viewpoints indicate that the NOC metric measures the scope of the influence of a class on its subclasses because of
inheritance. It is not clear why only the immediate subclasses of a class are counted because a class has influence
over all its subclasses, immediate or non-immediate. To remedy this insufficiency, Li proposed a new metric, the
Number of Descendent Classes(NDC), as an alternative to the NOC metric.

Definition: NDC metric is the total number of descendent classes (subclasses) of a class.

Consider the class inheritance tree in Figure 1, NOC(A)=4, NOC(B)=2, and NOC(C)=1. In Figure 2,
NOC(A)=NOC(B)=2.

Inheritance helps reuse of already designed classes when designing a new class. But, it also introduces coupling
among the classes. If a change is made in the ancestor class, the change could potentially affect all its descendent
classes. Therefore, the NAC and NDC metrics are important in measuring potential change propagation through the
inheritance hierarchy [15]. We extend Li's metrics to apply specifically to the maintenance of class inheritance
hierarchy.

3. Metrics for maintainability
To begin, we change the notation of the class inheritance tree. The term, class inheritance tree, is not valid because,
if it has multiple inheritance, it is not a tree, but a graph. The most suitable mathematical model for describing an

object taxonomy with inheritances is a directed acyclic graph (DAG)
with no loops [20]. We change, therefore, the notation of class
inheritance tree to class inheritance DAG as in Figure 3.

For the definition of metrics for maintainability, we will use the
terms from graph theory. In the directed graph, such as Figure 4, whose
vertices represent the activities and edges represent the preceding
relationship, vertex i is a predecessor of vertex j under the following
conditions. If there exists a path from vertex i to vertex j, and vertex j is
a successor of vertex i [21] We define function PRED and SUCC as
follows.

A

B

D E

C

Figure 2. A class
inheritance tree with

multiple roots.

G H

FE

C D

A B

Figure 4 A class inheritance DAG.

A

B

A

B

Figure 3. Notation for class
inheritance hierarchy.

5

PRED(j): the total number of predecessor of node i,

SUCC(i): the total number of successors of node i,

For example in Figure 4, PRED(E)=3, PRED(A)=PRED(B)=0, SUCC(C)=4, SUCC(G)=SUCC(H)=0.

There are two activities in maintenance: understanding the structure of the system and modifying the system.
Understandability is defined as the ease of understanding a program structure or a class inheritance structure, and
modifiability is defined as the ease with which a change or changes can be made to a program structure or a class
inheritance structure. Consequently, we suggest a metric for understandability and a metric for modifiability as
constituting the metrics for maintainability.

The measurement Model of Kriz promoted by Zuse in [22] shows that measurement includes empirical
statements and results. Zuse claims that, for the most part, we use empirical statements and conditions and do not
use formal mathematical conditions. Weyuker [9] uses this notion to characterize properties of software
measurement. Indeed, some scientists argue that a (good) software measure is a function that includes all the
information needed and that it is not necessary to consider the empirical world (complicated by human aspects).
Moreover, it is true that all the information and interpretations are in the measure or in the numerical properties.
However, software engineering is without a doubt an empirical science, having on one side an empirical science
(among others), and on the other side measures as mathematical functions, presents the need to conciliate. In general
terms, the majority of recommended properties are qualitative in nature and, consequently, most proposals for
metrics have tended to be informal in their evaluation of metrics [8].

Furthermore, programming is sometimes called an art. In this sense programming may be viewed as a technique
complete with heuristics such as it is with art. It follows from this that software metrics should consider heuristic
properties. Accordingly, it is not reasonable to measure the software product and process, which is actually a labor-
intensive industry, only by mathematical and logical metrics without considering the human aspects. Therefore, we
shall consider the measurement of understandability and modifiability in a heuristic way.3

3.1 Metric of Understandability
Ideally, objects should be independent, which makes it easy to transplant an object from one environment to another
and to reuse existing objects when building new systems. But, the reality is that objects do have interdependencies,
and reusing them is rarely as simple as cutting and pasting [23]. The number of dependencies is typically so large
that understanding and modifying the objects is not very easy.

In Figure 4, if we want to understand the content of class F, we should heuristically, not only read class F, but
also read class C and D, which are superclasses due to inheritance. Additionally, we should also read class A and B
to understand C because they are superclasses of class C. As a result, we should understand 5 classes, F, C, D, A, B.
This value is PRED(F)+1. Consequently, we define the degree of understandability (U) of a class as follows.

U of class Ci = PRED(Ci)+1 (1)

where Ci is ith class

And the total degree of understandability (TU) of a class inheritance DAG is defined as follows.

TU of a class inheritance DAG = (PRED(iC) + 1)
i=1

t

∑ (2)

where t is the total number of classes in the class inheritance DAG.

When we talk about understandability or complexity of a program there are many factors that may be
considered. Such properties as timing correctness, synchronization are some examples of factors that affect the
degree of understandability. As a matter of direct observation, large sized programs are generally (but not
necessarily) more complex than small sized programs. Accordingly, it is more reasonable to compare the complexity
of a program (or portion there of) to the complexity of another program of the same size. In other words, we should
introduce the concept of average. It is the same for the class inheritance DAG. The average depth of inheritance

3 Heuristic: (1) involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-
error methods, (2) of or relating to exploratory problem-solving techniques that utilize self-educating techniques (as the
evaluation of feedback) to improve performance (e.g., a heuristic computer program).

6

indicates the general level of modeling or abstraction used in the hierarchy [18]. Therefore, we define the average
degree of understandability (AU) of a class inheritance DAG as follows.

AU of a class inheritance DAG = ((PRED(iC) +1)
i =1

t

∑)/ t (3)

For example in Figure 4, by expression (1),

U(A)=U(B)=1, U(C)=3, U(D)=2, U(E)=4, U(F)=5, and U(G)=U(H)=5,

hence, by expression (2),

TU = 1+1+3+2+4+5+5+5 = 26

and, by expression (3),

AU = 26/8 = 3.25

This value represents the degree of understandability as defined above, for the class inheritance hierarchy of
Figure 4. Naturally, as we have pointed out above (beginning of Section 3), understandability is a property that
must be validated initially in a heuristic way and then empirically. At this time, we argue that from a heuristic point
of view that this connotation is appropriate and later (in Sections 5 and 6) acknowledge there is need for further
experimentation to indeed show the correlation between our AU metric and the concept of understandability.

The value of AU above, is the same as the mean value of Li’s NAC metric plus one (see Section 2.2 and Figure
2). An important point to emphasize here is that a lower value of AU highlights better understandability, since the
figure actually reflects the degree of interdependence with other classes. When understanding a class, the lesser
number of interdependencies there are, the easier will it be to understand it. The value of AU is defined to provide
completeness to our metrics and subsequently, the metric of AM (Average Modifiability) is defined on the basis of
AU in the next section.

3.2 Metric of Modifiability

In Figure 4, if we want to modify the content of the class C, we should, first, understand what is the U(C) value of
U, and only then modify class C. If class C affects subclass E and/or F, we should understand them to modify class
C. Also, if the class E affects subclass G and/or H, we should understand them to modify class E. In the worst case,
all the successor subclasses of class C must be modified! Naturally, in the best case, only class C will need to be
modified. It follows that half of the successor subclasses should be modified on average. Modifiability of class C,
therefore, could be U(C)+ SUCC(C)/2. Consequently, we define the degree of modifiability(M) of a class as
follows.

M of a class Ci = U(Ci)+SUCC(Ci)/2 (4)

where Ci is ith class.

And the total degree of modifiability (TM) of a class inheritance DAG is as follows.

TM of the class inheritance DAG = TU + (SUCC(iC) / 2)
i=1

t

∑ (5)

where t is the total number of classes in the class inheritance DAG.

Average degree of modifiability (AM) of a class inheritance DAG is as follows.

AM of the class inheritance DAG = AU + ((SUCC(iC) /2)
i=1

t

∑) / t (6)

For example in Figure 4, by expression (4),

M(A) = U(A)+SUCC(A)/2=1+5/2 = 3.5

M(B) = U(B)+SUCC(B)/2=1+6/2 = 4

M(C) = U(C)+SUCC(C)/2=3+4/2 = 5

7

M(D) = U(D)+SUCC(D)/2=2+1/2 = 2.5

M(E) = U(E)+SUCC(E)/2=4+2/2 = 5

M(F) = U(F)+SUCC(F)/2=5+0/2 = 5

M(G) = U(G)+SUCC(G)/2=5+0/2 = 5

M(H) = U(H)+SUCC(H)/2=5+0/2 = 5

therefore, by expression (5),

TM = 3.5+4+5+2.5+5+5+5+5 = 35

and, by expression (6)

AM = 35/8 = 4.38

This value represents the degree of modifiability of the class inheritance hierarchy in Figure 4. Similarly, as
pointed out in the case of Average Understandability in the previous section, a lower value of AM represents a better
index for modifiability. CK's DIT of Figure 4 is 3. Henderson-Sellers [18] recommended 7 as a rough guideline for
maximum DIT.4

Coad's one heuristic recommendation is: "Avoid having too many services per class. Each class typically has no
more than six or seven public services"[24]. Therefore, we recommend that the maximum value of AM of the class
inheritance hierarchy be under 7. Heuristically, we recommend that the best value of AM is 4, the median of 1
through 7 (as a general, yet speculative, guideline).

4. Discussion
We discuss our metrics along with comparing them to CK's DIT and Henderson-Sellers's AID.

4.1 CK's DIT

CK [7] proposed that it is better to have depth than breadth in the inheritance hierarchy so that the NOC measure,
which counts the number of immediate subclasses, has larger values for poorer designs. In contrast, from the
maintenance viewpoint, this is not reasonable. For example in Figure 5, CK prefers class inheritance hierarchy (a) to
(b). Yet, from the heuristic point of view, Figure 5(b) is usually easier
to understand than Figure 5(a). Arguably, the hierarchy of Figure 5(a)
is straightforward as compared to 5(b) yet, when this general trend is
extrapolated the premise that 5(b) should be preferred becomes much
stronger from the heuristic viewpoint.

AU of Figure 5(a): (1+2+3+4)/4=10/4=2.5

AM of (a): 2.5+(3/2+2/2+1/2)/4=3.25

AU of Figure 5(b): (1+2+2+2)/4=7/4=1.75

AM of (b): 1.75+(3/2)/4=2.13

Understandability and modifiability of Figure 5(b) is better than
Figure 5(a) in our metrics.

4.2 Henderson-Sellers's AID

AID (average inheritance depth) of a class is calculated by [18] as:

(∑ depth of each class) / number of classes

For example, consider two class inheritance DAGs in Figure 6.

AID of Figure 6(a): (0+0+1+1+(1+2)/2)/5 = 0.7

4 Research has shown that people remember at best seven things at one time.

(a)
(b)

Figure 5 Two class inheritance DAGs.

8

AID of Figure 6(b): (0+1+1+ 1)/4 = 0.75

Figure 6(b) is definitely easier to understand than Figure 6(a), but the AID values for them are just the reverse.
Calculations of the AU are as follows.

AU of Figure 6(a): (1+1+2+2+4)/5 = 2

AM of (a): 2+(2/2+2/2+1/2)/5=2.5

AU of Figure 6(b): (1+2+2+2)/4 = 1.75

AM of (b): 1.75+(3/2)/5=2.05

Understandability and modifiability of Figure 6(b) is better than
Figure 6(a) in our metrics.

5. Conclusion
There is no single measure that captures all the features of an object-oriented software product [2]. Based on this
fact, we have proposed two simple and heuristically validated metrics to assess class inheritance hierarchy in terms
of understandability and modifiability.

These metrics were developed in the light of an extensive review of the work of CK and Li. We have extended
their metrics to apply specifically to maintenance of class inheritance hierarchy. We suggest new metrics for
understandability and modifiability of class inheritance hierarchy. In addition, several comparisons have been made
using two different design versions to give an illustrative example. The advantages over CK's metrics and
Henderson-Sellers's metrics are explained in the context of maintenance for a class inheritance hierarchy. We have
given several theoretical and intuitive arguments to support our claims in this regard. More empirical evidence is
required before these new metrics can be claimed to work better in practice.

Our primary premise argues that the deeper the hierarchy of an inheritance tree, the better it is for reusability,
but the worse for maintenance (i.e., detrimental results can be expected). The shallower the hierarchy, the less the
abstraction, but the better it is for understanding and modifying. Taking the maintenance point of view, it is
recommended that a deep inheritance tree should be split into a shallow inheritance tree. In this way, the benefit of
using the AU and AM metrics is the added insight gained about trade-offs among conflicting requirements that
promote increased reuse (via inheritance) and ease of maintenance (via a less complicated inheritance hierarchy).
Both designers and managers can benefit from the use of these proposed metrics: (1) the former from checking the
quality of their work and as a guide for improvement, and (2) the latter to estimate, schedule and control the design
and maintenance activities for the project.

6. Future work

The AU and AM metrics were developed for application during the design phase of the lifecycle to measure the
maintainability of a class inheritance hierarchy. The metrics assume that the complexity of all the classes are the
same value (i.e., one). These metrics can be extended to comprehend the complexity of a class inheritance
hierarchy. For example, one approach might look as the following.

A class is composed of attributes and methods. The complexity of a class is, therefore, the sum of the
complexity of attributes and that of the methods[25-27]. Thus, the complexity of Ci could be expressed as follows.

Complexity of Ci = attr(Ci) + method(Ci)

where,

attr(Ci) = sum of the weighted attributes depending on variable, array, structure, etc. in the class Ci, and

method(Ci) = sum of cyclomatic number of each method in the class Ci

Therefore, in terms of future research, we plan to study some fundamental issues. We will investigate (1)
extending our current set of metrics by addressing how to strengthen the inherent assumptions and, (2) to determine
whether there is an optimum level of inheritance for reducing the maintenance efforts while at the same time
preserving the potential for reuse. From this cause, our next study is to extend and evaluate our metrics empirically
by using real data.

(a) (b)

Figure 6 Another two class inheritance
DAGs.

9

7. References
1. Balasubramanian, N.V., Object Oriented Metrics. IEEE, 1996. p. 30-34.
2. Tahvildari L., Singh A., Categorization of Object-Oriented Software Metrics. IEEE, 2000. p. 235-239.

3. Tegarden D.P., Sheetz S.D., Monarchi D.E., A Software Complexity Model of Object-Oriented Systems.
Decision Support Systems 13, 1992. p. 241-262.

4. McCabe T.J., Dreyer L.A., Dunn A.J., Watson A.H., Testing an Object-Oriented Application. Quality
Insurance Institute, 1994: p. 21-27.

5. Abreu F., The MOOD Metrics set. Proc. ECOOP'95, 1995.

6. Briand L.C., Morasoa S., Defining and Validating Measures for Object-Based High Level Design. IEEE
Transactions on Software engineering, 1999. 25(5). p. 722-743.

7. Chidamber S.R., Kemerer C.F., Towards a Metric Suite for Object-Oriented Design. Proc. OOPSLA'91,
1991: p. 197-211.

8. Chidamber S.R., Kemerer C.F., A Metrics Suite for Object Oriented Design. IEEE Trans. on Software
Engineering, 1994. 20(6): p. 476-493.

9. Weyuker E.J., Evaluating Software Complexity Measures. IEEE Trans. on Software Engineering, 1988. 14:
p. 1357-1365.

10. Basili V.R., Briand L.C., Melo W.L., A Validation of Object-Oriented Design Metrics as Quality
Indicators. Technical Report, Univ. of Maryland, Dept. of Computer Science, 1995. p. 1-24.

11. Tang M.H., Kao M.H., Chen M.H., An Empirical Study on Object-Oriented Metrics. IEEE, 1999: p. 242-
249.

12. Li W., Another Metric Suite for Object-Oriented Programming. The Journal of Systems and Software,
1998. 44: p. 155-162.

13. Kitchenham B., Pfleeger S.L., Fenton N.E., Towards a Framework for Software Measurement Validation.
IEEE Trans. on Software Engineering, 1995. 21(12). p. 929-944.

14. Fenton N.E., Neil M., Software metrics : successes, failures and new directions. The Journal of Systems
and Software, 1999. 47: p. 149-157.

15. Harrison R., Counsell S.J., Nithi R.V., An Evaluation of the MOOD Set of Object-Oriented Software
Metrics. IEEE Trans. on Software Engineering, 1998. 24(6): p. 491-496.

16. Daly J., Brooks A., Miller J., Roper M., Wood M., Evaluating Inheritance Depth on the Maintainability of
Object-Oriented Software. Empirical Software Engineering 1, 1996: p. 109-132.

17. Briand L., Wust J., Daly J., Porter V., Exploring the Relationships between Design Measures and Software
Quality on Object-Oriented Systems. The Journal of Systems and Software, 2000. 51: p. 245-273.

18. Henderson-Sellers B., Object Oriented Metrics: Measures of Complexity. 1996. Prentice Hall.

19. Lake A., Cook C., Use of Factor Analysis to Develop OOP Software Complexity Metrics. in Proc. of the
Annual Oregon Workshop on Software Metrics, April 10-12, 1994, Silver Falls, Oregon.

20. Wang C.C., Shih T.K., Pai W.C, An Automatic Approach to Object-Oriented Software Testing and Metrics
for C++ Inheritance hierarchies. International Conference on Information, Communication and Signal
Processing, 1997, p. 934-938.

21. Horowitz E., Sahni S., Fundamentals of Data Structures in C. 1993: Computer Science Press.

22. Zuse H., A Framework of Software Measurement. 1998, Berlin: Walter de Gruyter.
23. Schroeder M., A Practical Guide to Object Oriented Metrics. IT Pro, 1999, Vol. 1 No.6. p. 30-36.

24. Coad P., OOD Criteria, Part 3. Journal of Object Oriented Computing, 1991, p. 67-70.

25. Kafura D.G., Reddy G.R., The Use of Software Complexity Metrics in Software Maintenance, IEEE Trans.
on Software Engineering, 1987, Vol. 13, No. 3, p. 335-343.

26. Navlakha J.K., A Survey of System Complexity Metrics, The Computer Journal, Vol. 30, No. 3, 1987, p.
233-238.

27. Shin D. Cha, Information Theoretical Complexity Metrics for Concurrent Programs, PhD Thesis, KAIST
(Korea Advanced Institute of Science and Technology), 1995.

10

AUTHORS’ BIOGRAPHIES
Frederick T. Sheldon is an Assistant Professor at the Washington State University teaching and conducting
research in the area of software engineering, developing and validating methods and tools for creation of safe and
correct software (including software evolution in the area of extensibility). He is currently on leave at
DaimlerChrysler Research and Technology in Stuttgart. Dr. Sheldon received his Ph.D. at the University of Texas at
Arlington (UTA) and has worked at NASA Langley and Ames Research Centers, General Dynamics (Lockheed
Martin) and Texas Instruments (Raytheon).

Kshamta Jerath is a Graduate Student at the Washington State University pursuing a master’s degree in Computer
Science. Her research interests include Software Engineering, Safety and Reliability Analysis. Ms. Jerath was
working as a software engineer with IBM India till December 2000. She holds a bachelor’s degree in Computer
Engineering from Delhi College of Engineering, India.

Hong Chung is an Associate Professor at the Keimyung University, Korea. His research interests include Object-
Oriented Software Metrics, Software Design Methodology and Data Mining. Dr. Chung received his Ph.D. at
Catholic University at Taegu, Korea. He also holds an MBA in Production Control from Korea University. Dr.
Chung has worked as an Instructor at Sogang University and as a Senior Researcher, Computer Lab., Korea Institute
of Science and Technology, Seoul.

