
Metrics for text entry research: An evaluation of
MSD and KSPC, and a new unified error metric

R. William Soukoreff 1 and I. Scott MacKenzie 1,2

1 Department of Computer Science

York University
Toronto, Ontario, Canada, M3J 1P3

{will, smackenzie}@acm.org

2 Unit for Computer-Human Interaction (TAUCHI)

Dept. of Computer & Information Sciences
FIN-33014 University of Tampere

Tampere, Finland

ABSTRACT
We describe and identify shortcomings in two statistics
recently introduced to measure accuracy in text entry
evaluations: the minimum string distance (MSD) error rate
and keystrokes per character (KSPC). To overcome the
weaknesses, a new framework for error analysis is
developed and demonstrated. It combines the analysis of
the presented text, input stream (keystrokes), and
transcribed text. New statistics include a unified total error
rate, combining two constituent error rates: the corrected
error rate (errors committed but corrected) and the not
corrected error rate (errors left in the transcribed text).
The framework includes other measures including error
correction efficiency, participant conscientiousness,
utilised bandwidth, and wasted bandwidth. A text entry
study demonstrating the new methodology is described.
INTRODUCTION
The introduction of computers and word-processors has
changed text entry forever. In the past, using typewriters,
speed was measured with a stopwatch and errors were
tallied by hand. Technology has changed this. Today,
document preparation is less about dictating text sent to the
typing pool, and more about using a word-processor as an
composition aid. This change has left the term error rate
ill-defined and difficult to measure.
Facing the problem of calculating text entry error rates, we
discovered an algorithm well-known in some areas of
computer science, but, to our knowledge, without previous
application in text entry [7]. The algorithm and
accompanying analysis technique involve two statistics: the
minimum string distance error rate (MSD error rate) and
keystrokes per character (KSPC).
The primary weakness of the analysis technique is the lack
of a single error rate metric combining the desirable
features of both statistics. A combined metric is both
psychologically and theoretically desirable, but a means to

combine the existing metrics has so far been elusive. In
view of this, we devised a novel analysis framework that
generates the two previous error metrics and that gives rise
to a new combined error rate.
We begin with an introduction to error rate analysis in text
entry studies. Next, the new framework and combined
error rate metric are described. Finally, the new
methodology is used to analyse the results of a study.
ERROR RATE ANALYSIS IN TEXT ENTRY STUDIES
Ubiquitous computing and mobile text messaging are
driving the search for efficient text entry technologies for
mobile devices. Novel methods are evaluated in controlled
experiments where humans enter text while speed and
accuracy are observed. Measuring speed is relatively easy;
however, this is not true of error rate. Consider the
following example:

Presented text: the quick brown fox
Transcribed text: the quixck brwn fox

A character-wise comparison suggests that six errors were
committed (indicated in boldface), although two errors
seems more likely: an extra ‘x’ was typed, and an ‘o’ was
omitted. Although character-wise comparisons are easy to
implement in software, the result is problematic, as just
demonstrated. Two pragmatic solutions used in previous
research are to preclude errors (i.e., the user must correctly
enter each character before proceeding, [1]) or to force
users to maintain synchronicity with the presented text (so
error analysis degenerates to a simple pair-wise comparison
of characters, [5]). Both of these procedures are unnatural,
compromising the external validity of the experiment.
Recently we proposed a methodology for measuring error
rates using the minimum string distance (MSD) and
keystrokes per character (KSPC) statistics [7]. There are
two advantages of the technique:
1. Participants are allowed to enter text naturally. They

may commit errors and make corrections,
unencumbered by artificial experimental procedures.

2. The identification of errors and generation of error rate
statistics is easy to automate, without requiring tedious
manual tabulation.

The following section describes the MSD / KSPC error
analysis methodology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004...$5.00.

Minimum String Distance Error Rate
Text entry experiments generate pairs of strings: presented
text (what participants were asked to enter) paired with
transcribed text (what was actually entered). The minimum
string distance (MSD) between the strings is the minimum
number of primitives – insertions, deletions, or
substitutions – to transform one string into the other.
(Pseudo-code of an MSD algorithm is provided in [7].)
The MSD statistic represents the number of errors
committed by the user while entering the presented text.
The MSD error rate is a simple extension of the MSD
statistic:

%100
),(max
),(×=

TP
TPMSDRateErrorMSDOld (1)

where P and T are the presented and transcribed text
strings, and the vertical bars, |⋅|, represent the length of the
strings. Using the maximum length of the two strings in
the denominator ensures (a) the error rate upper limit is
100%, (b) undue credit is not given if the user enters less
text than presented, and (c) an appropriate penalty is
exacted if the user enters more text than presented.
Equation 1 is the original formulation of the MSD error rate
[7]. In further work, we found that the MSD error rate (as
given above) was occasionally wrong when analysing the
specific errors committed [4]. In view of this, we
introduced a slight correction to the MSD error rate
formula. The correction reconciles the disparity in lengths
of the alignments (in essence, ASCII representations of the
differences between the presented and transcribed text
strings). For a given presented-transcribed text pair, there
may be multiple alignments, comprising a set of possible
explanations of the erroneous behaviour. This set of
alignment strings was used to formulate a new MSD error
rate:

() %100, ×=
AS

TPMSDRateErrorMSDNew (2)

where AS is the mean length of the alignment strings in
the set. Equation 2 is heretofore preferred because it
always yields the same error rate as that obtained by a
character-by-character analysis of errors. In practice,
Equation 2 yields a value similar to but less than
Equation 1, because ()TPS A ,max≥ .

Key Strokes per Character (KSPC)
The natural experimental procedure afforded by
introducing the MSD error rate produces an interesting side
effect. Now, there are two classes of errors: those not
corrected (the MSD error rate measures these), and those
that are corrected. The latter do not appear in the
transcribed text. Previously we noted that the KSPC
statistic captures this second class of errors [7]. 1

1 As well as the KSPC statistic, corrected errors also affect the
speed of text entry. We will return to this point later.

Consider this example:
Presented Text: the quick brown
Input Stream: the quix←←←←ck brown
Transcribed Text: the quick brown

The user entered an incorrect character (‘x’) that was
deleted with a backspace (‘←’). These keystrokes do not
appear in the transcribed text, hence the transcribed text is
error free and the MSD error rate is 0%. Cleary, the MSD
error rate is not telling the whole story.
KSPC is defined as

dTextTranscribe

mInputStrea
KSPC = . (3)

Assuming a regular keyboard was used for the-quick-brown
example above, the input stream contains 17 keystrokes
(including ‘x’ and ‘←’), and the transcribed text contains
15 characters. So there were 17 / 15 = 1.13 keystrokes per
character. If the text was entered without errors, KSPC
would be 1.00. In general, the more errors and corrections
made, the higher the resulting KSPC.
KSPC is a useful characteristic of text input methods. For
example, error-free typing on a Qwerty keyboard averages
around 1.0 KSPC because each keystroke generates one
character, whereas entering text using multi-tap2 on a
mobile phone requires 2.03 KSPC on average [2].
However, as we now demonstrate, the utility of KSPC to
capture the overhead of correcting errors is less than ideal.
There are three shortcomings of KSPC that limit its utility
as an error metric:
1. KSPC measures a combination of two interesting

quantities, without providing a means to separate them.
KSPC is interpreted as the cost of committing errors
and fixing them. A large KSPC value indicates that
many errors were committed and correction was easy
(took few keystrokes) or that few errors were
committed but correcting them was arduous (requiring
many keystrokes). However, KSPC does not
distinguish between these two opposing conditions.

2. KSPC depends on the text input method under study.
As noted, error-free typing results in a different KSPC
for a Qwerty keyboard than for multi-tap on a mobile
phone. So a study comparing the error rates or
efficiency of error correction of these two text input
methods cannot meaningfully compare their KSPC
values. For example, a user committing few errors
with multi-tap would still have about twice the KSPC
value as an error-prone user using a Qwerty keyboard.

2 Multi-tap is a common text input method for mobile phones.
With this approach, the user presses each key one or more times
to specify the input character. For example, the 2 key is pressed
once for the character A, twice for B, three times for C.

3. Although there is an inverse relationship between the
KSPC and MSD, there is no obvious way to combine
them in an over-all error rate. The-quick-brown
example above yielded a 0% MSD error rate and 1.13
KSPC. However, if the user did not notice the mistake
and made no correction, the input stream would
contain 16 keystrokes (i.e., no ‘←’) and the transcribed
text would contain 16 characters (the erroneous ‘x’
remains). Hence, by not correcting the error, the MSD
error rate rises to 6.25%, while KSPC falls to 1.0.
Clearly an inverse relationship exists: participants can
shift errors back-and-forth between the MSD error rate
and KSPC by investing more or less effort in error
correction. It is desirable to have a single error rate
metric combining both error rates.

DECONSTRUCTING THE TEXT INPUT PROCESS
The example above illustrates that there is more
information in the input stream than in the transcribed text.
It is by analysing the classes of keystrokes in the input
stream that a new perspective of error rate arises.
Constituents of the Input Stream
Our earlier observation that users produce transcribed text
while entering presented text is an over-simplification. In
reality, users produce an input stream that when processed
by a text-box widget, command line, or word processor, is
converted into the transcribed text. Within the input stream
are keystrokes (some correct, some erroneous) and editing
commands (backspace, delete, cursor movements, etc.).
Figure 1 divides the keystrokes of the input stream into four
classes, depending upon how they affect the error rate.

Incorrect
Not Fixed

(INF)

Fixes (F)

Incorrect
Fixed (IF)

Correct
(C)

Figure 1 - Constituents of the input stream

Correct keystrokes correspond to the Correct (C) sector of
Figure 1. Errors unnoticed by the typist and hence
remaining in the transcribed text, correspond to the
Incorrect and Not Fixed (INF)3 sector. Together, these two
classes of keystrokes (not shaded in Figure 1) comprise all
of the characters in the transcribed text.

3 Note that the INF class also includes characters mistakenly
omitted from the transcribed text. So INF contains any errors that
are not rectified by the subject – extra characters (insertions),
incorrect characters (substitutions), and omitted characters
(deletions).

Figure 1 has two shaded sectors. These represent
keystrokes in the input stream that are not present in the
transcribed text. Errors corrected correspond to the
Incorrect but Fixed (IF) sector, and keystrokes performing
the corrections comprise the Fixes (F) area. F keystrokes
annihilate IF keystrokes, and hence neither are present in
the transcribed text.
Given the presented text, input stream, and transcribed text,
it is straightforward to classify keystrokes with the
preceding taxonomy.
C & INF - All characters in the transcribed text belong to

the C or INF classes. The INF keystrokes are
identifiable with the MSD function. The C
keystrokes are the correct characters in the
transcribed text.

 F - Keystrokes belonging to the F class are easy
to identify because they are editing functions.
Examples include backspace, delete, cursor
movement, as well as modifier keys (shift, alt,
and control) when used in conjunction with
these editing functions.

 IF - The IF keystrokes are those in the input
stream, but not in the transcribed text, that are
not editing keys.

Given this taxonomy, it is clear that classifying keystrokes
is not difficult, and can be relegated to software. Finding
the particular characters in each class affords a more
detailed analysis of errors on a character-by-character basis
[4]. However, in computing error rates, the particular
characters do not interest us. Instead it is the size of the
classes that is important. Therefore, as a notational
convenience let C, INF, IF, and F, denote the number of
keystrokes in each of their respective classes.4 It is now
possible to define analogues of the MSD error rate and
KSPC statistic in terms of the keystroke taxonomy,

%100×
+

=
INFC

INFRateErrorMSD , and (4)

INFC
FIFINFCKSPC

+
+++≈ . (5)

An Example
Consider how the keystrokes of the following example map
into the classes above.

Presented text: the quick brown
Input stream: th quix←←←←ck brpown
Transcribed text: th quick brpown

In this example there are three errors: an ‘e’ is omitted,
there is an extra ‘x’ that is corrected with a backspace, and

4 As only the size of the sets is required, we introduce a
simplification: INF = MSD(P, T), and C = max(|P|, |T|) –
MSD(P, T). The sizes of the IF and F sets are found by scanning
the input stream.

there is an extra ‘p’ that remains uncorrected. These
keystrokes are mapped into the keystroke taxonomy in
Figure 2.

Input Stream: th quix←←←←ck brpown

C

C IF

F INF

C

Figure 2 - Classifying the keystrokes in an example

One detail missing in Figure 2 is that the INF class also
includes the missing ‘e’ keystroke. In this example,
C = 14, INF = 2 (counting the extra ‘p’, and the missing
‘e’), IF = 1, and F = 1.
Table 1 compares the formulations for MSD error rate and
KSPC discussed so far. As noted, the old and new
formulations of MSD do not always yield identical results,
but they are comparable in value. Note also that the
formulation of KSPC based on the keystroke taxonomy
does not yield an identical value to the usual definition of
KSPC, although it is very close in value. This difference
arises because the INF class includes characters that were
omitted from the transcribed text (like ‘e’ in the example);
if there were no omitted characters, then the two KSPC
values are identical.

Table 1 - Comparison of Error Statistics

Statistic Eq. Value

Old MSD error rate 1 13.3 %

New MSD error rate 2 12.5 %

%100MSD ×
+

≈
INFC

INF 4 12.5 %

KSPC 3 1.13

INFC
FIFINFC

+
+++≈KSPC 5 1.125

The keystroke taxonomy yields expressions that, while not
necessarily identical to the MSD error rate and KSPC
statistic, are essentially equivalent. Next we consider what
new statistics and insights are possible with the taxonomy.
NEW METRICS ARISING FROM THE TAXONOMY
The first shortcoming of KSPC listed earlier is the inability
to separate corrected errors from fixes. With the taxonomy,
this is trivial. The taxonomy tells us the number of errors
made and corrected (IF), the number of errors made but not
corrected (INF), the total number of errors (INF + IF), and
the number of keystrokes invested in error correction (F).
The keystroke taxonomy will, as described in the next
section, allow us to formulate the combined (total) error
rate. First, however, we present a few other interesting
statistics now available.

Error correction efficiency refers to the ease with which the
participant performed error corrections. It is defined as

F
IFEfficiencyCorrection = . (6)

Using the IF and F values from the previous example,
IF / F = 1 / 1 = 1. In other words, fixing the error took
about the same effort as creating the error in the first place.
This result arises only because the error was noticed and
fixed immediately by the typist, and because the keyboard
provides an efficient means to correct the error (the
backspace key). Typical behaviour, however, is not always
so efficient. Consider the input stream when an error is
noticed two or three words behind the cursor position. We
may see repeated cursor-left keystrokes, some correction
key-strokes, and perhaps a cursor-end keystroke to
reposition the cursor to where it began. In this case the
error correction efficiency will be less than one. On the
other hand, if whole words, lines, or paragraphs must be
deleted, one could hold down the shift and control keys
while pressing the cursor keys, to select large blocks of
text. It is possible to perform a large correction with only a
few keystrokes resulting in an efficiency greater than one.
Correction efficiency is most useful when taken as an
average over many trials.
Another statistic of interest is participant conscientious-
ness, expressed

INFIF
IFousnessConscientitParticipan
+

= . (7)

Participant conscientiousness represents the ratio of
corrected errors to the total number of errors. In the
example, IF / (IF + INF) = 1 / (1 + 2) = 1/3, indicating that
the participant caught and fixed one third of their errors.
This statistic provides a means to distinguish perfectionists
from apathetic participants.
If text entry is viewed as information transfer, then C
represents the amount of useful information transferred,
and INF, IF, and F represent wasted bandwidth.5 The
proportion of bandwidth representing useful information
transfer is

FIFINFC
CBandwidthUtilised

+++
= , (8)

and the proportion of wasted bandwidth is

FIFINFC
FIFINFBandwidthWasted
+++

++= . (9)

5 Purists will rightfully disagree. The units of C, INF, IF, and F,
are characters, not bits. Yet Shannon [6] argues that it is possible
to measure the information content of a character. A future
direction for this work is to cast these formulae in terms of
information content, instead of characters. Then these relations
would also apply to non-character-based text input methods.
Equations 8 and 9 represent a first step toward this goal.

The above statistics provide a convenient over-all picture of
the efficiency of the strategies and behaviours of a
participant. Calculating means of these statistics provides a
characterisation of the over-all efficiency of a text entry
method.
Total Error Rate
In the preceding section we demonstrated how the
taxonomy provides many useful statistics for the text entry
investigator. The taxonomy also provides an intuitive
definition of total error rate:

%100×
++

+=
IFINFC

IFINFRateErrorTotal . (10)

If no errors are made, then INF and IF are both zero,
resulting in a zero total error rate. If errors are made, they
result in the same error rate regardless of whether they were
corrected or not. Putting effort into correcting errors,
transfers keystrokes from INF to IF, but does not affect the
total error rate. In the previous example the total error rate
would be (INF + IF) / (C + INF + IF) = 3 / 17 = 17.6%.
Conveniently, the formulation above naturally splits into
corrected and not corrected error rates:

%100×
++

=
IFINFC

INFRateErrorCorrectedNot , (11)

%100×
++

=
IFINFC

IFRateErrorCorrected , (12)

with the property that Not Corrected Error Rate +
Corrected Error Rate = Total Error Rate. Using values
from the previous example, the Not Corrected Error Rate =
INF / (C + INF + IF) = 2 / (14 + 2 + 1) = 11.8%, and the
Corrected Error Rate = IF / (C + INF + IF) = 1 / (14 + 2 +
1) = 5.9%. Thus, we have separate statistics for errors
corrected and not corrected, and these statistics combine in
an intuitive and meaningful way.
Note that these error rates correspond to the MSD error
rate, and KSPC statistic, respectively. Although different
in formulation, the not corrected error rate is what the MSD
error rate was intended to be – a measure of the errors
remaining in the transcribed text. Note though, that the not
corrected error rate is a function of IF, and hence it cannot
be found by analysing the transcribed text alone. In a
similar vein, the corrected error rate provides a direct
measure of the quantity that KSPC was intended to capture.
Since these three error rates are ratios of keystrokes; one
final beneficial property is that they are independent of the
characteristic KSPC of the text entry devices. Error rates
measured using these formulations are comparable between
different devices. This contrasts with the KSPC statistic,
which, as noted above, is device dependent.

PUTTING THE STATISTICS THROUGH THEIR PACES
We have proposed a new framework for analysing errors in
text entry tasks. It involves classifying keystrokes
according to a taxonomy, and then calculating statistics
from the size of each class. The approach is intuitive and
seems reasonable, but will it work in an experimental
setting? This question is addressed next.
An Experiment
One of the open questions in text entry research concerns
the presentation of text to participants. At issue is the
attention demand placed on participants [3]. Giving
participants reams of text to enter forces them to attend to
the presented text, the transcribed text, and possibly the
input device (if it cannot be operated “eyes-free”). Yet
when entering text into a mobile device in an office
environment, users typically do not attend to any source
text – usually they compose their own. So how is this
scenario best simulated in an experiment? The presented
text can be read aloud to the participants, but this approach
is problematic [8].
Another option is to present participants with short phrases
that are memorised. The participant studies each phrase
and, when ready, enters it. The question is, should
presented text remain on the screen while the participant
enters it? Or, should it be removed from the screen as soon
as entry begins? Leaving the phrase on the screen reduces
the memory demands on the participant, and makes it easier
for them to compare the transcribed text with the presented
text, likely reducing the error rate. However, hiding the
presented text better mimics the typical text entry task, as
previously noted. In any case, the effect of removing the
presented text is unknown.
Materials and methods
Participants
Twelve unpaid volunteers participated in this study (four
females, eight males). They ranged in age from 25 to 50,
with an average age of 32.3 years. Ten were right-handed;
two were left-handed (as reported by the participants).
Apparatus and Software
The input device was a Sharp EL-6053 pocket organiser
(Figure 3). The EL-6053 is a typical personal information
manager, employing a miniature Qwerty keyboard for text
entry. The device is 124 mm × 84 mm × 10 mm (ignoring
the protective cover). The alphabetic keys are 8 mm ×
5 mm with a 3.6 mm gap between keys horizontally, and a
3.33 mm gap vertically. The space key is in the centre
directly below the V key. The enter key is in the bottom
right. The space and enter keys measure 19.5 mm × 5 mm.

Figure 3 - The modified Sharp EL-6053, showing the

circuit board and protective cover underneath the keyboard

A PIC micro-controller (from Microchip Technology,
http://www.microchip.com/) was interfaced to the
keyboard hardware of the EL-6053, and programmed to
emit ASCII characters in real time as keys were typed on
the keyboard. The added circuitry increased the device
thickness to 39 mm. ASCII characters were transmitted
through a serial cable at 1200 baud to a host computer. A
Java program computer time-stamped and recorded the
ASCII characters. The Java program provided the look-
and-feel of a simple text editor, so participants typing on
the keyboard received visual feedback and confirmation of
keystrokes. See Figure 4. (Note that the LCD screen in
Figure 3 was not used.) Particular attention was paid to lag
to ensure the accuracy of the final time-stamps.

Figure 4 - A screen-print of the experimental software

A checkbox labelled “Show presented text during entry” is
visible in Figure 4. This checkbox affects the behaviour of
the presented text during the experiment. When checked,
the presented text remains visible (in the top text bar)
throughout each trial. When not checked, the presented
text disappears with the first keystroke.

As a participant types, the transcribed text appears in the
second-from-top text bar in Figure 4. Each trial ended
when the participant pressed the Enter key.
Procedure
Participants held the miniature Qwerty device in both
hands. They were not allowed to place the device on the
table in front of them, however they were allowed to rest
their arms in any comfortable manner they wished. (This
was done to mimic typical mobile device usage.)
Participants were instructed to use both thumbs to enter
text. They were allowed to rest or adjust themselves
throughout the experiment (between trials). The specific
instructions were to “enter the text as quickly and
accurately as possible – as if typing e-mail to a colleague”.
The left cursor key functioned as backspace, the other
cursor keys were disabled. The participants were instructed
to use the backspace key for error correction.
Design
This is a within-subjects single-factor experiment with test
conditions: presented text remains versus presented text
disappears. The conditions were administered in a
balanced manner, with participants randomly assigned to
one of two groups. They performed 30 minutes of text
entry for each condition.
Results
In total, the participants entered 857 phrases for the
presented text remains condition, and, 819 for the
disappears condition. The error statistics described earlier
in this paper were calculated for each trial individually.
Averages were then calculated for each participant. The
results appear in Tables 2 and 3 below. Note that both the
efficiency (Equation 6) and conscientiousness (Equation 7)
become undefined if their denominators are zero.
Efficiency is undefined if the participant performed no
corrections, and the conscientiousness is undefined if no
errors occurred. The values appearing in Tables 2 and 3 are
averages including only trials where these statistics were
defined.
The correlation between the conscientiousness values of
both conditions was 0.81, indicating that the participants
behaved relatively consistently under both conditions.
However, an ANOVA reveals that the difference between
the means of the two conditions (0.61 versus 0.78) was
statistically significant (F1,11 = 23.1, p < .005). So there
exists an interaction between the conditions and the
conscientiousness.
The Error Rates
It appears upon inspection of Tables 2 and 3 that
participants corrected more errors for the presented text
remained condition. However, the corrected error rate was
not significantly different between both conditions
(F1,11 = 2.0, p > .1). Similarly, the total error rate did not
significantly differ between the two conditions
(F1,11 = 0.79, p > .3) either. However, a significant
difference was measured for the not corrected error rate
(F1,11 = 14.9, p < .005).

Table 2 - Results for Disappearing Presented Text condition

Participant MSD
(chars)

KSPC
(chars)

Old MSD
Error Rate

(%)

New MSD
Error Rate

(%)

Corrected
Error Rate

(%)

Not
Corrected
Error Rate

(%)

Total Error
Rate (%)

Wasted
Bandwidth

(%)
Efficiency Conscient-

iousness

P1 1.36 1.08 3.38 3.31 3.37 3.30 6.67 9.43 1.000 0.56
P2 0.31 1.58 0.78 0.78 16.06 0.68 16.74 24.00 1.000 0.86
P3 0.89 1.07 2.17 2.16 2.78 2.10 4.88 6.92 1.000 0.54
P4 2.11 1.57 5.13 5.10 18.84 4.07 22.90 33.20 1.000 0.80
P5 2.51 1.09 6.20 6.10 2.88 6.03 8.91 10.95 1.000 0.25
P6 0.54 1.17 1.41 1.40 6.11 1.31 7.42 11.01 1.000 0.62
P7 0.99 1.18 2.30 2.30 7.15 2.13 9.28 14.40 1.000 0.74
P8 0.98 1.04 2.66 2.64 2.01 2.62 4.63 6.30 1.000 0.45
P9 0.24 1.16 0.56 0.55 5.26 0.55 5.81 8.77 1.000 0.76
P10 0.45 1.27 1.07 1.06 9.04 0.99 10.02 14.93 1.000 0.70
P11 1.15 1.03 2.58 2.57 1.31 2.53 3.84 5.00 1.000 0.34
P12 0.87 1.19 2.19 2.17 7.61 2.04 9.65 15.03 1.000 0.77

Mean: 1.03 1.20 2.54 2.51 6.87 2.36 9.23 13.33 1.000 0.61
SD: 0.69 0.19 1.69 1.67 5.52 1.56 5.52 8.10 0.000 0.19

Table 3 - Results for the Remaining Presented Text condition

Participant MSD
(chars)

KSPC
(chars)

Old MSD
Error Rate

(%)

New MSD
Error Rate

(%)

Corrected
Error Rate

(%)

Not
Corrected
Error Rate

(%)

Total Error
Rate (%)

Wasted
Bandwidth

(%)
Efficiency Conscient-

iousness

P1 0.34 1.04 0.81 0.81 1.88 0.80 2.68 4.30 1.000 0.63
P2 0.06 1.60 0.15 0.15 18.43 0.12 18.56 27.83 1.000 0.97
P3 0.31 1.06 0.75 0.75 2.71 0.73 3.44 5.69 1.000 0.70
P4 0.41 1.44 1.00 1.00 16.20 0.86 17.06 27.18 1.000 0.92
P5 0.50 1.09 1.20 1.19 3.87 1.17 5.04 8.05 1.000 0.65
P6 0.20 1.30 0.48 0.48 9.64 0.43 10.07 15.12 1.000 0.84
P7 0.20 1.17 0.50 0.50 7.09 0.47 7.56 12.75 1.000 0.88
P8 0.44 1.11 1.01 1.00 4.90 0.96 5.86 9.67 1.000 0.77
P9 0.08 1.11 0.19 0.19 4.34 0.17 4.51 7.45 1.000 0.95

P10 0.27 1.33 0.70 0.70 12.11 0.60 12.70 20.37 1.000 0.89
P11 1.11 1.02 2.73 2.71 0.75 2.73 3.48 4.16 1.000 0.27
P12 0.20 1.30 0.50 0.50 10.70 0.46 11.16 17.80 0.998 0.89

Mean: 0.34 1.21 0.84 0.83 7.72 0.79 8.51 13.37 1.000 0.78
SD: 0.28 0.18 0.68 0.67 5.73 0.68 5.41 8.39 0.000 0.20

Words per Minute
Participants were faster (27.1 wpm) with the disappears
condition than with the remains condition (25.3 wpm)
(F1,11 = 12.7, p < .005).
Discussion
General Observations
It is not surprising that nearly every participant performed
with a 1.000 efficiency. The only means available to the
participants to correct errors was the backspace key. So,
every keystroke of correction could affect only one
keystroke of errors. But how did participant 12 (“P12”)
achieve a less than 1.000 efficiency for the remaining
presented text condition? During two trials the participant
committed an error at the very beginning of the trial, and
used one too many backspace key presses to correct the
error. Backspace has no effect if the cursor is already at the
beginning, although it still counts as a fix keystroke.

The commonality of the efficiency values contrasts with the
variability of the conscientiousness values. P2 had a much
lower not corrected error rate than P11, for both conditions.
However, P2 also had the highest total error rate, while P11
had the lowest. These values seem to contradict, until one
notices that P2 was very conscientious, while P11 was not.
Participants were generally more conscientious when the
presented text remained visible, making it easier to observe
their mistakes. (Note also that because the presented text
was visibly aligned above the transcribed text, it was easy
for participants to identify errors, see Figure 4.) However,
participants each had a unique level of conscientiousness
that was observable under both conditions. We reason that
participants did correct more errors when the presented text
remained, but because most errors were corrected, the
effect on the corrected error rate was not pronounced
enough to be statistically significant. Clearly, though,
fewer errors went uncorrected under the presented text
remains condition.

Effects of the speed-accuracy trade-off are apparent in
these results. Text entry proceeded slightly faster when the
presented text was hidden during the trial. Presumably,
leaving the presented text visible to participants tempts
them to spend additional time searching for errors. This
sways their behaviour toward the accuracy end of the
speed-accuracy continuum. Conversely the disappearing
presented text condition removes the distraction of easy
error searching, and thus influences participants towards
speed.
The parallel between the MSD error rate and KSPC statistic
pair, and the corrected and not corrected error rates, is
apparent. The new statistics proposed in this paper seem to
perform similarly to their older counterparts. In particular,
the numerical values of the not corrected error rate, and
both new and old MSD error rates, are all very similar
across participants.
The values in the corrected error rate columns of Tables 2
and 3 represent errors that would have gone unaccounted
for, prior to the introduction of the new error measures.
Notice that there is no apparent relationship between the
total error rate and conscientiousness. Correlations
between total error rate and conscientiousness, for both
conditions, do not exceed 0.31. This suggests that there is
some factor that affects each participant’s error rate, that is
independent of their desire for correctness.
Participants performed similarly with respect to wasted
bandwidth in both conditions. The correlation of the
wasted bandwidth figures for both conditions was 0.89.
CONCLUSIONS AND FUTURE WORK
In this paper we have presented criticisms of the MSD error
rate and KSPC statistic. A framework has been developed
that provides a new perspective on error analysis. Several
new statistics have been proposed, including total error
rate, corrected error rate, and not corrected error rate. The
latter two are proposed as replacements for the MSD error
rate and KSPC. These new error rates have the following
useful properties:
1. The total error rate reflects all errors committed by a

participant (corrected and not).
2. Total error rate cleanly separates into two constituents,

corrected error rate, and not corrected error rate.
3. The error rates are device independent. They are

directly comparable and do not misstate the
performance of text entry methods with inherently
different KSPC characteristics.

We have also presented the results of a study to determine
the effect the persistence or absence of presented text has
on text entry. By hiding the presented text from
participants once the first keystroke of a trial begins,
experimenters can expect a higher text entry speed,
accompanied by a higher not corrected error rate. While
we are satisfied that we were able to detect the speed-

accuracy trade-off, further work is needed to determine the
relationship between these error rate metrics (i.e. accuracy),
and speed. A means to measure the bandwidth of the
interaction between humans and machines during text
entry, that encompasses both speed and accuracy, remains
to be found. Such a measure would be the ideal way to
compare text entry methods.
We would like to see this framework extended to account
for non-keyboard-based text entry methods. In typical
desktop text entry, the mouse may be used to move the
cursor, or select text. A means to include this rich form of
text interaction into these analyses is highly desirable.
ACKNOWLEDGMENTS
This work was supported by the NSERC, Canada, and the
Academy of Finland (project 53796).
REFERENCES
1. MacKenzie, I.S., Kober, H., Smith, D., Jones, T., and

Skepner, E. (2001) LetterWise: Prefix-based
disambiguation for mobile text entry, Proceedings of
the ACM Symposium on User Interface Software and
Technology – UIST 2001. New York: ACM.

2. MacKenzie, I.S. (2002) KSPC (keystrokes per
character) as a characteristic of text entry techniques,
Proceedings of the Fourth International Symposium on
Human–Computer Interaction with Mobile Devices.
Heidelberg, Germany: Springer-Verlag.

3. MacKenzie, I.S. and Soukoreff, R.W. (2002) Text
entry for mobile computing: Models and methods,
theory and practice. Human–Computer Interaction,
17 (2 & 3), 147-198.

4. MacKenzie, I.S. and Soukoreff, R.W. (2002) A
character-level error analysis technique for evaluating
text entry methods, Proceedings of the Second Nordic
Conference on Human–Computer Interaction -
NordiCHI 2002. New York: ACM.

5. Matias, E., MacKenzie, I.S., and Buxton, W. (1993)
Half-Qwerty: A one-handed keyboard facilitating skill
transfer from Qwerty, Proceedings of the ACM
Conference on Human Factors in Computing Systems –
INTERCHI '93. New York, ACM.

6. Shannon, C.E., (1951) Prediction and entropy of
printed English. Bell System Technical Journal,
30, 51-64.

7. Soukoreff, R.W. and MacKenzie, I.S. (2001)
Measuring errors in text entry tasks: An application of
the Levenshtein string distance statistic, Companion
Proceedings of the ACM Conference on Human Factors
in Computing Systems – CHI 2001. New York: ACM.

8. Ward, D.J., Blackwell, A.F., and MacKay, D.J.C.
(2000) Dasher: A data entry interface using continuous
gestures and language models, Proceedings of the ACM
Symposium on User Interface Software and Technology
– UIST 2000. New York: ACM.

	ABSTRACT
	INTRODUCTION
	ERROR RATE ANALYSIS IN TEXT ENTRY STUDIES
	Minimum String Distance Error Rate
	Key Strokes per Character (KSPC)

	DECONSTRUCTING THE TEXT INPUT PROCESS
	Constituents of the Input Stream
	An Example

	NEW METRICS ARISING FROM THE TAXONOMY
	Total Error Rate

	PUTTING THE STATISTICS THROUGH THEIR PACES
	An Experiment
	Materials and methods
	Participants
	Apparatus and Software
	Procedure
	Design

	Results
	The Error Rates
	Words per Minute

	Discussion
	General Observations

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

