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ABSTRACT 
We describe and identify shortcomings in two statistics 
recently introduced to measure accuracy in text entry 
evaluations: the minimum string distance (MSD) error rate 
and keystrokes per character (KSPC).  To overcome the 
weaknesses, a new framework for error analysis is 
developed and demonstrated.  It combines the analysis of 
the presented text, input stream (keystrokes), and 
transcribed text.  New statistics include a unified total error 
rate, combining two constituent error rates: the corrected 
error rate (errors committed but corrected) and the not 
corrected error rate (errors left in the transcribed text).  
The framework includes other measures including error 
correction efficiency, participant conscientiousness, 
utilised bandwidth, and wasted bandwidth.  A text entry 
study demonstrating the new methodology is described. 
INTRODUCTION 
The introduction of computers and word-processors has 
changed text entry forever.  In the past, using typewriters, 
speed was measured with a stopwatch and errors were 
tallied by hand.  Technology has changed this.  Today, 
document preparation is less about dictating text sent to the 
typing pool, and more about using a word-processor as an 
composition aid.  This change has left the term error rate 
ill-defined and difficult to measure. 
Facing the problem of calculating text entry error rates, we 
discovered an algorithm well-known in some areas of 
computer science, but, to our knowledge, without previous 
application in text entry [7].  The algorithm and 
accompanying analysis technique involve two statistics: the 
minimum string distance error rate (MSD error rate) and 
keystrokes per character (KSPC). 
The primary weakness of the analysis technique is the lack 
of a single error rate metric combining the desirable 
features of both statistics.  A combined metric is both 
psychologically and theoretically desirable, but a means to 

combine the existing metrics has so far been elusive.  In 
view of this, we devised a novel analysis framework that 
generates the two previous error metrics and that gives rise 
to a new combined error rate. 
We begin with an introduction to error rate analysis in text 
entry studies.  Next, the new framework and combined 
error rate metric are described.  Finally, the new 
methodology is used to analyse the results of a study. 
ERROR RATE ANALYSIS IN TEXT ENTRY STUDIES 
Ubiquitous computing and mobile text messaging are 
driving the search for efficient text entry technologies for 
mobile devices.  Novel methods are evaluated in controlled 
experiments where humans enter text while speed and 
accuracy are observed.  Measuring speed is relatively easy; 
however, this is not true of error rate.  Consider the 
following example: 

Presented text: the quick brown fox 
Transcribed text: the quixck brwn fox 

A character-wise comparison suggests that six errors were 
committed (indicated in boldface), although two errors 
seems more likely: an extra ‘x’ was typed, and an ‘o’ was 
omitted.  Although character-wise comparisons are easy to 
implement in software, the result is problematic, as just 
demonstrated.  Two pragmatic solutions used in previous 
research are to preclude errors (i.e., the user must correctly 
enter each character before proceeding, [1]) or to force 
users to maintain synchronicity with the presented text (so 
error analysis degenerates to a simple pair-wise comparison 
of characters, [5]).  Both of these procedures are unnatural, 
compromising the external validity of the experiment. 
Recently we proposed a methodology for measuring error 
rates using the minimum string distance (MSD) and 
keystrokes per character (KSPC) statistics [7].  There are 
two advantages of the technique: 
1. Participants are allowed to enter text naturally.  They 

may commit errors and make corrections, 
unencumbered by artificial experimental procedures. 

2. The identification of errors and generation of error rate 
statistics is easy to automate, without requiring tedious 
manual tabulation. 

The following section describes the MSD / KSPC error 
analysis methodology. 
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Minimum String Distance Error Rate 
Text entry experiments generate pairs of strings: presented 
text (what participants were asked to enter) paired with 
transcribed text (what was actually entered).  The minimum 
string distance (MSD) between the strings is the minimum 
number of primitives – insertions, deletions, or 
substitutions – to transform one string into the other.  
(Pseudo-code of an MSD algorithm is provided in [7].)  
The MSD statistic represents the number of errors 
committed by the user while entering the presented text.  
The MSD error rate is a simple extension of the MSD 
statistic: 

%100
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TPMSDRateErrorMSDOld  (1) 

where P and T are the presented and transcribed text 
strings, and the vertical bars, |⋅|, represent the length of the 
strings.  Using the maximum length of the two strings in 
the denominator ensures (a) the error rate upper limit is 
100%, (b) undue credit is not given if the user enters less 
text than presented, and (c) an appropriate penalty is 
exacted if the user enters more text than presented. 
Equation 1 is the original formulation of the MSD error rate 
[7].  In further work, we found that the MSD error rate (as 
given above) was occasionally wrong when analysing the 
specific errors committed [4].  In view of this, we 
introduced a slight correction to the MSD error rate 
formula.  The correction reconciles the disparity in lengths 
of the alignments (in essence, ASCII representations of the 
differences between the presented and transcribed text 
strings).  For a given presented-transcribed text pair, there 
may be multiple alignments, comprising a set of possible 
explanations of the erroneous behaviour.  This set of 
alignment strings was used to formulate a new MSD error 
rate: 

( ) %100, ×=
AS

TPMSDRateErrorMSDNew  (2) 

where AS  is the mean length of the alignment strings in 
the set.  Equation 2 is heretofore preferred because it 
always yields the same error rate as that obtained by a 
character-by-character analysis of errors.  In practice, 
Equation 2 yields a value similar to but less than 
Equation 1, because ( )TPS A ,max≥ . 

Key Strokes per Character (KSPC) 
The natural experimental procedure afforded by 
introducing the MSD error rate produces an interesting side 
effect.  Now, there are two classes of errors: those not 
corrected (the MSD error rate measures these), and those 
that are corrected.  The latter do not appear in the 
transcribed text.  Previously we noted that the KSPC 
statistic captures this second class of errors [7]. 1 
                                                           
1 As well as the KSPC statistic, corrected errors also affect the 
speed of text entry.  We will return to this point later. 

Consider this example: 
Presented Text: the quick brown 
Input Stream: the quix←←←←ck brown 
Transcribed Text: the quick brown 

The user entered an incorrect character (‘x’) that was 
deleted with a backspace (‘←’).  These keystrokes do not 
appear in the transcribed text, hence the transcribed text is 
error free and the MSD error rate is 0%.  Cleary, the  MSD 
error rate is not telling the whole story. 
KSPC is defined as 

dTextTranscribe

mInputStrea
KSPC = . (3) 

Assuming a regular keyboard was used for the-quick-brown 
example above, the input stream contains 17 keystrokes 
(including ‘x’ and ‘←’), and the transcribed text contains 
15 characters.  So there were 17 / 15 = 1.13 keystrokes per 
character.  If the text was entered without errors, KSPC 
would be 1.00.  In general, the more errors and corrections 
made, the higher the resulting KSPC. 
KSPC is a useful characteristic of text input methods.  For 
example, error-free typing on a Qwerty keyboard averages 
around 1.0 KSPC because each keystroke generates one 
character, whereas entering text using multi-tap2 on a 
mobile phone requires 2.03 KSPC on average [2].  
However, as we now demonstrate, the utility of KSPC to 
capture the overhead of correcting errors is less than ideal. 
There are three shortcomings of KSPC that limit its utility 
as an error metric: 
1. KSPC measures a combination of two interesting 

quantities, without providing a means to separate them.  
KSPC is interpreted as the cost of committing errors 
and fixing them.  A large KSPC value indicates that 
many errors were committed and correction was easy 
(took few keystrokes) or that few errors were 
committed but correcting them was arduous (requiring 
many keystrokes).  However, KSPC does not 
distinguish between these two opposing conditions. 

2. KSPC depends on the text input method under study.  
As noted, error-free typing results in a different KSPC 
for a Qwerty keyboard than for multi-tap on a mobile 
phone.  So a study comparing the error rates or 
efficiency of error correction of these two text input 
methods cannot meaningfully compare their KSPC 
values.  For example, a user committing few errors 
with multi-tap would still have about twice the KSPC 
value as an error-prone user using a Qwerty keyboard. 
 

                                                           
2 Multi-tap is a common text input method for mobile phones.  
With this approach, the user presses each key one or more times 
to specify the input character.  For example, the 2 key is pressed 
once for the character A, twice for B, three times for C. 



3. Although there is an inverse relationship between the 
KSPC and MSD, there is no obvious way to combine 
them in an over-all error rate.  The-quick-brown 
example above yielded a 0% MSD error rate and 1.13 
KSPC.  However, if the user did not notice the mistake 
and made no correction, the input stream would 
contain 16 keystrokes (i.e., no ‘←’) and the transcribed 
text would contain 16 characters (the erroneous ‘x’ 
remains).  Hence, by not correcting the error, the MSD 
error rate rises to 6.25%, while KSPC falls to 1.0.  
Clearly an inverse relationship exists: participants can 
shift errors back-and-forth between the MSD error rate 
and KSPC by investing more or less effort in error 
correction.  It is desirable to have a single error rate 
metric combining both error rates. 

DECONSTRUCTING THE TEXT INPUT PROCESS 
The example above illustrates that there is more 
information in the input stream than in the transcribed text.  
It is by analysing the classes of keystrokes in the input 
stream that a new perspective of error rate arises. 
Constituents of the Input Stream 
Our earlier observation that users produce transcribed text 
while entering presented text is an over-simplification.  In 
reality, users produce an input stream that when processed 
by a text-box widget, command line, or word processor, is 
converted into the transcribed text.  Within the input stream 
are keystrokes (some correct, some erroneous) and editing 
commands (backspace, delete, cursor movements, etc.).  
Figure 1 divides the keystrokes of the input stream into four 
classes, depending upon how they affect the error rate. 

Incorrect 
Not Fixed 

(INF)

Fixes (F)

Incorrect
Fixed (IF)

Correct 
(C)

 
Figure 1  -  Constituents of the input stream 

Correct keystrokes correspond to the Correct (C) sector of 
Figure 1.  Errors unnoticed by the typist and hence 
remaining in the transcribed text, correspond to the 
Incorrect and Not Fixed (INF)3 sector.  Together, these two 
classes of keystrokes (not shaded in Figure 1) comprise all 
of the characters in the transcribed text. 

                                                           
3 Note that the INF class also includes characters mistakenly 
omitted from the transcribed text.  So INF contains any errors that 
are not rectified by the subject – extra characters (insertions), 
incorrect characters (substitutions), and omitted characters 
(deletions). 

Figure 1 has two shaded sectors.  These represent 
keystrokes in the input stream that are not present in the 
transcribed text.  Errors corrected correspond to the 
Incorrect but Fixed (IF) sector, and keystrokes performing 
the corrections comprise the Fixes (F) area.  F keystrokes 
annihilate IF keystrokes, and hence neither are present in 
the transcribed text. 
Given the presented text, input stream, and transcribed text, 
it is straightforward to classify keystrokes with the 
preceding taxonomy. 
C & INF - All characters in the transcribed text belong to 

the C or INF classes.  The INF keystrokes are 
identifiable with the MSD function.  The C 
keystrokes are the correct characters in the 
transcribed text. 

      F - Keystrokes belonging to the F class are easy 
to identify because they are editing functions.  
Examples include backspace, delete, cursor 
movement, as well as modifier keys (shift, alt, 
and control) when used in conjunction with 
these editing functions. 

    IF - The IF keystrokes are those in the input 
stream, but not in the transcribed text, that are 
not editing keys. 

Given this taxonomy, it is clear that classifying keystrokes 
is not difficult, and can be relegated to software.  Finding 
the particular characters in each class affords a more 
detailed analysis of errors on a character-by-character basis 
[4].  However, in computing error rates, the particular 
characters do not interest us.  Instead it is the size of the 
classes that is important.  Therefore, as a notational 
convenience let C, INF, IF, and F, denote the number of 
keystrokes in each of their respective classes.4  It is now 
possible to define analogues of the MSD error rate and 
KSPC statistic in terms of the keystroke taxonomy, 

%100×
+

=
INFC

INFRateErrorMSD ,   and (4) 

INFC
FIFINFCKSPC

+
+++≈ . (5) 

An Example 
Consider how the keystrokes of the following example map 
into the classes above. 

Presented text: the quick brown 
Input stream: th quix←←←←ck brpown 
Transcribed text: th quick brpown 

In this example there are three errors: an ‘e’ is omitted, 
there is an extra ‘x’ that is corrected with a backspace, and 

                                                           
4 As only the size of the sets is required, we introduce a 
simplification: INF = MSD(P, T), and C = max(|P|, |T|) – 
MSD(P, T).  The sizes of the IF and F sets are found by scanning 
the input stream. 



there is an extra ‘p’ that remains uncorrected.  These 
keystrokes are mapped into the keystroke taxonomy in 
Figure 2. 

 

Input Stream: th quix←←←←ck brpown 

C 

C IF 

F INF 

C 
 

Figure 2  -  Classifying the keystrokes in an example 

One detail missing in Figure 2 is that the INF class also 
includes the missing ‘e’ keystroke.  In this example, 
C = 14, INF = 2 (counting the extra ‘p’, and the missing 
‘e’), IF = 1, and F = 1. 
Table 1 compares the formulations for MSD error rate and 
KSPC discussed so far.  As noted, the old and new 
formulations of MSD do not always yield identical results, 
but they are comparable in value.  Note also that the 
formulation of KSPC based on the keystroke taxonomy 
does not yield an identical value to the usual definition of 
KSPC, although it is very close in value.  This difference 
arises because the INF class includes characters that were 
omitted from the transcribed text (like ‘e’ in the example);  
if there were no omitted characters, then the two KSPC 
values are identical. 

Table 1  -  Comparison of Error Statistics 

Statistic Eq. Value 

Old MSD error rate 1 13.3 % 

New MSD error rate 2 12.5 % 

%100MSD ×
+

≈
INFC

INF  4 12.5 % 

KSPC 3 1.13 

INFC
FIFINFC

+
+++≈KSPC  5 1.125 

The keystroke taxonomy yields expressions that, while not 
necessarily identical to the MSD error rate and KSPC 
statistic, are essentially equivalent.  Next we consider what 
new statistics and insights are possible with the taxonomy. 
NEW METRICS ARISING FROM THE TAXONOMY 
The first shortcoming of KSPC listed earlier is the inability 
to separate corrected errors from fixes.  With the taxonomy, 
this is trivial.  The taxonomy tells us the number of errors 
made and corrected (IF), the number of errors made but not 
corrected (INF), the total number of errors (INF + IF), and 
the number of keystrokes invested in error correction (F).  
The keystroke taxonomy will, as described in the next 
section, allow us to formulate the combined (total) error 
rate.  First, however, we present a few other interesting 
statistics now available. 

Error correction efficiency refers to the ease with which the 
participant performed error corrections.  It is defined as 

F
IFEfficiencyCorrection = . (6) 

Using the IF and F values from the previous example, 
IF / F = 1 / 1 = 1.  In other words, fixing the error took 
about the same effort as creating the error in the first place.  
This result arises only because the error was noticed and 
fixed immediately by the typist, and because the keyboard 
provides an efficient means to correct the error (the 
backspace key).  Typical behaviour, however, is not always 
so efficient.  Consider the input stream when an error is 
noticed two or three words behind the cursor position.  We 
may see repeated cursor-left keystrokes, some correction 
key-strokes, and perhaps a cursor-end keystroke to 
reposition the cursor to where it began.  In this case the 
error correction efficiency will be less than one.  On the 
other hand, if whole words, lines, or paragraphs must be 
deleted, one could hold down the shift and control keys 
while pressing the cursor keys, to select large blocks of 
text.  It is possible to perform a large correction with only a 
few keystrokes resulting in an efficiency greater than one.  
Correction efficiency is most useful when taken as an 
average over many trials. 
Another statistic of interest is participant conscientious-
ness, expressed 

INFIF
IFousnessConscientitParticipan
+

= . (7) 

Participant conscientiousness represents the ratio of 
corrected errors to the total number of errors.  In the 
example, IF / (IF + INF) = 1 / (1 + 2) = 1/3, indicating that 
the participant caught and fixed one third of their errors.  
This statistic provides a means to distinguish perfectionists 
from apathetic participants. 
If text entry is viewed as information transfer, then C 
represents the amount of useful information transferred, 
and INF, IF, and F represent wasted bandwidth.5  The 
proportion of bandwidth representing useful information 
transfer is 

FIFINFC
CBandwidthUtilised

+++
= , (8) 

and the proportion of wasted bandwidth is 

FIFINFC
FIFINFBandwidthWasted
+++

++= . (9) 

                                                           
5 Purists will rightfully disagree.  The units of C, INF, IF, and F, 
are characters, not bits.  Yet Shannon [6] argues that it is possible 
to measure the information content of a character.  A future 
direction for this work is to cast these formulae in terms of 
information content, instead of characters.  Then these relations 
would also apply to non-character-based text input methods. 
Equations 8 and 9 represent a first step toward this goal. 



The above statistics provide a convenient over-all picture of 
the efficiency of the strategies and behaviours of a 
participant.  Calculating means of these statistics provides a 
characterisation of the over-all efficiency of a text entry 
method. 
Total Error Rate 
In the preceding section we demonstrated how the 
taxonomy provides many useful statistics for the text entry 
investigator.  The taxonomy also provides an intuitive 
definition of total error rate: 

%100×
++

+=
IFINFC

IFINFRateErrorTotal . (10) 

If no errors are made, then INF and IF are both zero, 
resulting in a zero total error rate.  If errors are made, they 
result in the same error rate regardless of whether they were 
corrected or not.  Putting effort into correcting errors, 
transfers keystrokes from INF to IF, but does not affect the 
total error rate.  In the previous example the total error rate 
would be (INF + IF) / (C + INF + IF) = 3 / 17 = 17.6%. 
Conveniently, the formulation above naturally splits into 
corrected and not corrected error rates: 

%100×
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with the property that Not Corrected Error Rate + 
Corrected Error Rate = Total Error Rate.  Using values 
from the previous example, the Not Corrected Error Rate = 
INF / (C + INF + IF) = 2 / (14 + 2 + 1) = 11.8%, and the 
Corrected Error Rate = IF / (C + INF + IF) = 1 / (14 + 2 + 
1) = 5.9%.  Thus, we have separate statistics for errors 
corrected and not corrected, and these statistics combine in 
an intuitive and meaningful way. 
Note that these error rates correspond to the MSD error 
rate, and KSPC statistic, respectively.  Although different 
in formulation, the not corrected error rate is what the MSD 
error rate was intended to be – a measure of the errors 
remaining in the transcribed text.  Note though, that the not 
corrected error rate is a function of IF, and hence it cannot 
be found by analysing the transcribed text alone.  In a 
similar vein, the corrected error rate provides a direct 
measure of the quantity that KSPC was intended to capture. 
Since these three error rates are ratios of keystrokes; one 
final beneficial property is that they are independent of the 
characteristic KSPC of the text entry devices.  Error rates 
measured using these formulations are comparable between 
different devices.  This contrasts with the KSPC statistic, 
which, as noted above, is device dependent. 

PUTTING THE STATISTICS THROUGH THEIR PACES 
We have proposed a new framework for analysing errors in 
text entry tasks.  It involves classifying keystrokes 
according to a taxonomy, and then calculating statistics 
from the size of each class.  The approach is intuitive and 
seems reasonable, but will it work in an experimental 
setting?  This question is addressed next. 
An Experiment 
One of the open questions in text entry research concerns 
the presentation of text to participants.  At issue is the 
attention demand placed on participants [3].  Giving 
participants reams of text to enter forces them to attend to 
the presented text, the transcribed text, and possibly the 
input device (if it cannot be operated “eyes-free”).  Yet 
when entering text into a mobile device in an office 
environment, users typically do not attend to any source 
text – usually they compose their own.  So how is this 
scenario best simulated in an experiment?  The presented 
text can be read aloud to the participants, but this approach 
is problematic [8]. 
Another option is to present participants with short phrases 
that are memorised.  The participant studies each phrase 
and, when ready, enters it.  The question is, should 
presented text remain on the screen while the participant 
enters it?  Or, should it be removed from the screen as soon 
as entry begins?  Leaving the phrase on the screen reduces 
the memory demands on the participant, and makes it easier 
for them to compare the transcribed text with the presented 
text, likely reducing the error rate.  However, hiding the 
presented text better mimics the typical text entry task, as 
previously noted.  In any case, the effect of removing the 
presented text is unknown. 
Materials and methods 
Participants 
Twelve unpaid volunteers participated in this study (four 
females, eight males).  They ranged in age from 25 to 50, 
with an average age of 32.3 years.  Ten were right-handed;  
two were left-handed (as reported by the participants). 
Apparatus and Software 
The input device was a Sharp EL-6053 pocket organiser 
(Figure 3).  The EL-6053 is a typical personal information 
manager, employing a miniature Qwerty keyboard for text 
entry.  The device is 124 mm × 84 mm × 10 mm (ignoring 
the protective cover).  The alphabetic keys are 8 mm × 
5 mm with a 3.6 mm gap between keys horizontally, and a 
3.33 mm gap vertically.  The space key is in the centre 
directly below the V key.  The enter key is in the bottom 
right.  The space and enter keys measure 19.5 mm × 5 mm. 



 
Figure 3  -  The modified Sharp EL-6053, showing the 

circuit board and protective cover underneath the keyboard 
 

A PIC micro-controller (from Microchip Technology, 
http://www.microchip.com/) was interfaced to the 
keyboard hardware of the EL-6053, and programmed to 
emit ASCII characters in real time as keys were typed on 
the keyboard.  The added circuitry increased the device 
thickness to 39 mm.  ASCII characters were transmitted 
through a serial cable at 1200 baud to a host computer.  A 
Java program computer time-stamped and recorded the 
ASCII characters.  The Java program provided the look-
and-feel of a simple text editor, so participants typing on 
the keyboard received visual feedback and confirmation of 
keystrokes.  See Figure 4.  (Note that the LCD screen in 
Figure 3 was not used.)  Particular attention was paid to lag 
to ensure the accuracy of the final time-stamps. 
 

 
Figure 4  -  A screen-print of the experimental software 

 

A checkbox labelled “Show presented text during entry” is 
visible in Figure 4.  This checkbox affects the behaviour of 
the presented text during the experiment.  When checked, 
the presented text remains visible (in the top text bar) 
throughout each trial.  When not checked, the presented 
text disappears with the first keystroke. 

As a participant types, the transcribed text appears in the 
second-from-top text bar in Figure 4.  Each trial ended 
when the participant pressed the Enter key. 
Procedure 
Participants held the miniature Qwerty device in both 
hands.  They were not allowed to place the device on the 
table in front of them, however they were allowed to rest 
their arms in any comfortable manner they wished.  (This 
was done to mimic typical mobile device usage.) 
Participants were instructed to use both thumbs to enter 
text.  They were allowed to rest or adjust themselves 
throughout the experiment (between trials).  The specific 
instructions were to “enter the text as quickly and 
accurately as possible – as if typing e-mail to a colleague”.  
The left cursor key functioned as backspace, the other 
cursor keys were disabled.  The participants were instructed 
to use the backspace key for error correction. 
Design 
This is a within-subjects single-factor experiment with test 
conditions: presented text remains versus presented text 
disappears.  The conditions were administered in a 
balanced manner, with participants randomly assigned to 
one of two groups.  They performed 30 minutes of text 
entry for each condition. 
Results 
In total, the participants entered 857 phrases for the 
presented text remains condition, and, 819 for the 
disappears condition.  The error statistics described earlier 
in this paper were calculated for each trial individually.  
Averages were then calculated for each participant.  The 
results appear in Tables 2 and 3 below.  Note that both the 
efficiency (Equation 6) and conscientiousness (Equation 7) 
become undefined if their denominators are zero.  
Efficiency is undefined if the participant performed no 
corrections, and the conscientiousness is undefined if no 
errors occurred.  The values appearing in Tables 2 and 3 are 
averages including only trials where these statistics were 
defined. 
The correlation between the conscientiousness values of 
both conditions was 0.81, indicating that the participants 
behaved relatively consistently under both conditions.  
However, an ANOVA reveals that the difference between 
the means of the two conditions (0.61 versus 0.78) was 
statistically significant (F1,11 = 23.1, p < .005).  So there 
exists an interaction between the conditions and the 
conscientiousness. 
The Error Rates 
It appears upon inspection of Tables 2 and 3 that 
participants corrected more errors for the presented text 
remained condition.  However, the corrected error rate was 
not significantly different between both conditions 
(F1,11 = 2.0, p > .1).  Similarly, the total error rate did not 
significantly differ between the two conditions 
(F1,11 = 0.79, p > .3) either.  However, a significant 
difference was measured for the not corrected error rate 
(F1,11 = 14.9, p < .005). 



Table 2  -  Results for Disappearing Presented Text condition 

Participant MSD 
(chars) 

KSPC 
(chars) 

Old MSD 
Error Rate 

(%) 

New MSD 
Error Rate 

(%) 

Corrected 
Error Rate 

(%) 

Not 
Corrected 
Error Rate 

(%) 

Total Error 
Rate (%) 

Wasted 
Bandwidth 

(%) 
Efficiency Conscient-

iousness 

P1 1.36 1.08 3.38 3.31 3.37 3.30 6.67 9.43 1.000 0.56 
P2 0.31 1.58 0.78 0.78 16.06 0.68 16.74 24.00 1.000 0.86 
P3 0.89 1.07 2.17 2.16 2.78 2.10 4.88 6.92 1.000 0.54 
P4 2.11 1.57 5.13 5.10 18.84 4.07 22.90 33.20 1.000 0.80 
P5 2.51 1.09 6.20 6.10 2.88 6.03 8.91 10.95 1.000 0.25 
P6 0.54 1.17 1.41 1.40 6.11 1.31 7.42 11.01 1.000 0.62 
P7 0.99 1.18 2.30 2.30 7.15 2.13 9.28 14.40 1.000 0.74 
P8 0.98 1.04 2.66 2.64 2.01 2.62 4.63 6.30 1.000 0.45 
P9 0.24 1.16 0.56 0.55 5.26 0.55 5.81 8.77 1.000 0.76 
P10 0.45 1.27 1.07 1.06 9.04 0.99 10.02 14.93 1.000 0.70 
P11 1.15 1.03 2.58 2.57 1.31 2.53 3.84 5.00 1.000 0.34 
P12 0.87 1.19 2.19 2.17 7.61 2.04 9.65 15.03 1.000 0.77 

Mean: 1.03 1.20 2.54 2.51 6.87 2.36 9.23 13.33 1.000 0.61 
SD: 0.69 0.19 1.69 1.67 5.52 1.56 5.52 8.10 0.000 0.19 

 
 

Table 3  -  Results for the Remaining Presented Text condition 

Participant MSD 
(chars) 

KSPC 
(chars) 

Old MSD 
Error Rate 

(%) 

New MSD 
Error Rate 

(%) 

Corrected 
Error Rate 

(%) 

Not 
Corrected 
Error Rate 

(%) 

Total Error 
Rate (%) 

Wasted 
Bandwidth 

(%) 
Efficiency Conscient-

iousness 

P1 0.34 1.04 0.81 0.81 1.88 0.80 2.68 4.30 1.000 0.63 
P2 0.06 1.60 0.15 0.15 18.43 0.12 18.56 27.83 1.000 0.97 
P3 0.31 1.06 0.75 0.75 2.71 0.73 3.44 5.69 1.000 0.70 
P4 0.41 1.44 1.00 1.00 16.20 0.86 17.06 27.18 1.000 0.92 
P5 0.50 1.09 1.20 1.19 3.87 1.17 5.04 8.05 1.000 0.65 
P6 0.20 1.30 0.48 0.48 9.64 0.43 10.07 15.12 1.000 0.84 
P7 0.20 1.17 0.50 0.50 7.09 0.47 7.56 12.75 1.000 0.88 
P8 0.44 1.11 1.01 1.00 4.90 0.96 5.86 9.67 1.000 0.77 
P9 0.08 1.11 0.19 0.19 4.34 0.17 4.51 7.45 1.000 0.95 

P10 0.27 1.33 0.70 0.70 12.11 0.60 12.70 20.37 1.000 0.89 
P11 1.11 1.02 2.73 2.71 0.75 2.73 3.48 4.16 1.000 0.27 
P12 0.20 1.30 0.50 0.50 10.70 0.46 11.16 17.80 0.998 0.89 

Mean: 0.34 1.21 0.84 0.83 7.72 0.79 8.51 13.37 1.000 0.78 
SD: 0.28 0.18 0.68 0.67 5.73 0.68 5.41 8.39 0.000 0.20 

 
 
Words per Minute 
Participants were faster (27.1 wpm) with the disappears 
condition than with the remains condition (25.3 wpm) 
(F1,11 = 12.7, p < .005). 
Discussion 
General Observations 
It is not surprising that nearly every participant performed 
with a 1.000 efficiency.  The only means available to the 
participants to correct errors was the backspace key.  So, 
every keystroke of correction could affect only one 
keystroke of errors.  But how did participant 12 (“P12”) 
achieve a less than 1.000 efficiency for the remaining 
presented text condition?  During two trials the participant 
committed an error at the very beginning of the trial, and 
used one too many backspace key presses to correct the 
error.  Backspace has no effect if the cursor is already at the 
beginning, although it still counts as a fix keystroke. 

The commonality of the efficiency values contrasts with the 
variability of the conscientiousness values.  P2 had a much 
lower not corrected error rate than P11, for both conditions.  
However, P2 also had the highest total error rate, while P11 
had the lowest.  These values seem to contradict, until one 
notices that P2 was very conscientious, while P11 was not. 
Participants were generally more conscientious when the 
presented text remained visible, making it easier to observe 
their mistakes.  (Note also that because the presented text 
was visibly aligned above the transcribed text, it was easy 
for participants to identify errors, see Figure 4.)  However, 
participants each had a unique level of conscientiousness 
that was observable under both conditions.  We reason that 
participants did correct more errors when the presented text 
remained, but because most errors were corrected, the 
effect on the corrected error rate was not pronounced 
enough to be statistically significant.  Clearly, though, 
fewer errors went uncorrected under the presented text 
remains condition. 



Effects of the speed-accuracy trade-off are apparent in 
these results.  Text entry proceeded slightly faster when the 
presented text was hidden during the trial.  Presumably, 
leaving the presented text visible to participants tempts 
them to spend additional time searching for errors.  This 
sways their behaviour toward the accuracy end of the 
speed-accuracy continuum.  Conversely the disappearing 
presented text condition removes the distraction of easy 
error searching, and thus influences participants towards 
speed. 
The parallel between the MSD error rate and KSPC statistic 
pair, and the corrected and not corrected error rates, is 
apparent.  The new statistics proposed in this paper seem to 
perform similarly to their older counterparts.  In particular, 
the numerical values of the not corrected error rate, and 
both new and old MSD error rates, are all very similar 
across participants. 
The values in the corrected error rate columns of Tables 2 
and 3 represent errors that would have gone unaccounted 
for, prior to the introduction of the new error measures. 
Notice that there is no apparent relationship between the 
total error rate and conscientiousness.  Correlations 
between total error rate and conscientiousness, for both 
conditions, do not exceed 0.31.  This suggests that there is 
some factor that affects each participant’s error rate, that is 
independent of their desire for correctness. 
Participants performed similarly with respect to wasted 
bandwidth in both conditions.  The correlation of the 
wasted bandwidth figures for both conditions was 0.89. 
CONCLUSIONS AND FUTURE WORK 
In this paper we have presented criticisms of the MSD error 
rate and KSPC statistic.  A framework has been developed 
that provides a new perspective on error analysis.  Several 
new statistics have been proposed, including total error 
rate, corrected error rate, and not corrected error rate.  The 
latter two are proposed as replacements for the MSD error 
rate and KSPC.  These new error rates have the following 
useful properties: 
1. The total error rate reflects all errors committed by a 

participant (corrected and not). 
2. Total error rate cleanly separates into two constituents, 

corrected error rate, and not corrected error rate. 
3. The error rates are device independent.  They are 

directly comparable and do not misstate the 
performance of text entry methods with inherently 
different KSPC characteristics. 

We have also presented the results of a study to determine 
the effect the persistence or absence of presented text has 
on text entry.  By hiding the presented text from 
participants once the first keystroke of a trial begins, 
experimenters can expect a higher text entry speed, 
accompanied by a higher not corrected error rate.  While 
we are satisfied that we were able to detect the speed-

accuracy trade-off, further work is needed to determine the 
relationship between these error rate metrics (i.e. accuracy), 
and speed.  A means to measure the bandwidth of the 
interaction between humans and machines during text 
entry, that encompasses both speed and accuracy, remains 
to be found.  Such a measure would be the ideal way to 
compare text entry methods. 
We would like to see this framework extended to account 
for non-keyboard-based text entry methods.  In typical 
desktop text entry, the mouse may be used to move the 
cursor, or select text.  A means to include this rich form of 
text interaction into these analyses is highly desirable. 
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