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(Communicated by Richard A. Wentworth)

Abstract. We consider the conformal class of the Riemannian product g0+g,
where g0 is the constant curvature metric on Sm and g is a metric of constant
scalar curvature on some closed manifold. We show that the number of metrics

of constant scalar curvature in the conformal class grows at least linearly with
respect to the square root of the scalar curvature of g. This is obtained by
studying radial solutions of the equation Δu − λu + λup = 0 on Sm and the
number of solutions in terms of λ.

1. Introduction

Any closed manifold admits metrics of constant scalar curvature. Given any
Riemannian metric g on Mn we consider its conformal class [g] and define the
Yamabe constant of [g] as the minimum of the (normalized) total scalar curvature
functional restricted to [g]:

Y (M, [g]) = inf
h∈[g]

∫
M

sh dvolh

V ol(M,h)
n−2
n

,

where sh and dvolh are the scalar curvature and volume element of h.
It is elementary that the functional restricted to [g] is bounded below, and the

fact that the infimum is actually achieved is a fundamental result, obtained in a
series of steps by Hidehiko Yamabe [17], Thierry Aubin [2], Neil Trudinger [16] and
Richard Schoen [14]. Since the critical points of the functional (restricted to [g]) are
the metrics of constant scalar curvature in [g], it follows that minimizers are metrics
of constant scalar curvature. These are called Yamabe metrics. So in any conformal
class of metrics in any closed manifold there is at least one unit volume metric of
constant scalar curvature. If the Yamabe constant of [g] is non-positive, there is
actually only one, the Yamabe metric of the conformal class. But when the Yamabe
constant is positive there might be more. For instance, Daniel Pollack proved in [13]
that every conformal class with positive Yamabe constant can be C0 approximated
by a conformal class with an arbitrarily large number of (non-isometric) metrics of
constant scalar curvature. Uniqueness still holds for the conformal class of positive
Einstein metrics different from the round metric on Sn by a result of Morio Obata
[12]. For the conformal class of the round metric, all constant scalar curvature
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metrics in the conformal class are obtained by conformal diffeomorphisms of the
sphere (a non-compact family) and are all isometric. Examples of multiplicity of
metrics of constant scalar curvature in a conformal class (which is a Riemannian
covering of a number of manifolds) are also obtained by Emmanuel Hebey and
Michel Vaugon in [7]. Recently, Simon Brendle gave examples of smooth conformal
classes of (not round) Riemannian metrics on high dimensional spheres for which
the space of unit volume constant scalar curvature metrics in the conformal class
is non-compact [3].

But to determine all the metrics of constant scalar curvature in a given conformal
class of positive Yamabe constant is a very difficult problem. The case we are
particularly interested in is the Riemannian product of constant curvature metrics
on S2. When the curvature of the 2 factors is the same, the product metric is
Einstein and it is the only constant scalar curvature metric in the conformal class.
But as we mention in the next paragraph (see also Theorem 1.2 below), when we
let the quotient of the curvature of the factors move away from 1, the product
metric stops being a Yamabe minimizer, and we know there must be other metrics
of constant scalar curvature in the conformal class. The question motivating this
article is, how many of them are there and how do they look?

For any closed Riemannian manifold (Mn, g) the Yamabe constant of its con-
formal class is bounded above by Y (Sn, [g0]), where g0 is the round metric on the
sphere [2]; so if g is a Yamabe metric we must have sgV ol(M, g)2/n ≤ Y (Sn, [g0]).
Therefore if (M1, g1), (M2, g2) are Riemannian manifolds of constant scalar curva-
ture and sg1 is positive, then for δ positive and small the conformal class of the
Riemannian product δg1 + g2 has at least two constant scalar curvature metrics:
the Riemannian product and a Yamabe metric. The simplest case to consider is the
Riemannian product g0+dt2 on Sn×S1. In this case (see the articles by R. Schoen
[15] and Osamu Kobayashi [9, 10]) all conformal factors producing metrics of con-
stant scalar curvature are functions of S1, and there is a sequence of values δi → 0
such that for δ ∈ (δi, δi+1) the number of constant scalar curvature metrics in the
conformal class of δg0 + dt2 is i.

In this article we will draw a similar picture in the case Sk × Sm, k,m > 1. As

usual we will call p = pN = 2N
N−2 and a = aN = 4(N−1)

N−2 . We will consider the

Riemannian product δgk0 + gm0 which has scalar curvature sδ = (1/δ)(k(k − 1)) +
m(m − 1). For a positive, radial function f : Sm → R, let u : [0, π] → R be the
corresponding function (so f(x) = u(d(x, P )), where P is a fixed point in Sm). The

conformal metric f
4

k+m−2 (δgm0 + gk0 ) has constant scalar curvature K if and only
if f satisfies the Yamabe equation

−am+kΔgm
0

f + sδf = Kfpm+k−1 .

Then the function u must satisfy the equation

u′′ + (m− 1)
cos(t)

sin(t)
u′ +

K

a
up−1 − sδ

a
u = 0.

We normalize by taking K = sδ, and we set λ = K/a. Then we are looking for
positive solutions of the equation

u′′ + (m− 1)
cos(t)

sin(t)
u′ + λ(up−1 − u) = 0

with initial conditions u(0) = α, u′(0) = 0 and such that u′(π) = 0.
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The corresponding equation in Rm has been well studied. First one has to note
that in this case the equations for different values of λ are all equivalent. So one
only has to consider the equation Δf −f +fq = 0. Then from the classical work of
Basilis Gidas, Wei-Ming Ni and Louis Nirenberg [5, 6] it follows that all solutions
which are positive and vanish at ∞ (ground states) must be radially symmetric.
Then one is looking for solutions of the ordinary differential equation

u′′ +
m− 1

t
u′ + uq − u = 0,

with initial conditions u(0) = α, u′(0) = 0 which are positive and u(∞) = 0. This
equation has been completely analyzed by Man Kam Kwong in [11], proving in
particular that there exists exactly one such solution.

In our case we will see that the number of solutions grows at least linearly in√
λ. We will build solutions which verify that u′(π/2) = 0 so the corresponding

metric is invariant under the antipodal map, producing a metric in the projective
space. More precisely, we will prove:

Theorem 1.1. Let (Mk, g) be a Riemannian manifold of constant scalar curvature
s. The number of unit volume non-isometric metrics of constant scalar curvature
in the conformal class [g0+g] on Sm×M grows at least linearly with

√
s. The same

is true if we replace Sm with the projective space Pm, with the metric of constant
curvature. More explicitly, we will show that if n ≥ 1 and

(s+m(m− 1))

(
p− 2

a

)
∈ (2n(2n+m− 1), (2n+ 2)(2n+ 2 +m− 1)],

then [g0+ g] contains at least 2n+2 unit volume non-isometric metrics of constant
scalar curvature.

In order to construct the solutions in the previous theorem we will need to prove
that there exists one radial solution which is strictly decreasing in [0, π]. To do so
we will need the following elementary result, which we will prove in Section 4:

Theorem 1.2. Let (Mk, g) be a closed Riemannian manifold of constant scalar
curvature s. If

s+m(m− 1) >
a m

pk+m − 2
,

then the Riemannian product g+ gm0 is not a Yamabe metric. Actually, the product
metric is not a local minimum of the total scalar curvature functional restricted to
the space {f(g + gm0 ) : f : Sm → R>0}.

Let us consider the case m = k = 2. Then p = p4 = 4 and a = a4 = 6. We study
the equation u′′ + (cos(t)/ sin(t))u′ + λ(u3 − u) = 0 and λ relates to the (constant)
scalar curvature of (M, g) as λ = (1/6)(s + 2). Let An = (1/2)n(n + 1). We will
show that for λ ∈ (A1, A2] there are at least two solutions; one of them is the
constant solution which is not a Yamabe minimizer and the other one is a strictly
decreasing function. For λ ∈ (A2, A3] there are at least 4 solutions, and in general
for λ ∈ (A2n, A2n+2] there are at least 2n+2 solutions. Except for one of them, all
of these solutions verify that u′(π/2) = 0 and so produce constant scalar curvature
metrics on P2 ×M .

The most interesting particular case for us is the conformal classes of the Rie-
mannian product of metrics of constant curvature on S2 × S2, which we will write
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g0 + δg0. Moving δ in (0,∞) we obtain the values of λ in the range (1/3,∞). The
previous comments translate into the following:

Theorem 1.3. The metric g0 + δg0 is not a Yamabe metric for δ < 1/2. Let
δn = 2 (3n(n + 1) − 2)−1. For δ ∈ [δ2(n+1), δ2n) the number of constant scalar
curvature metrics in the conformal class of g0 + δg0 is at least 2n+ 2.

Remark. For δ = 1/2 the conformal class of g0 + (1/2)g0 attains the same value of

the Yamabe functional, 12
√
2π, as the conformal class of the Fubini-Study metric

on CP2.

Remark. The results of Gidas, Ni and Nirenberg on the symmetry of solutions in
Rn do not seem to apply to the case of Sn, and there is no adaptation of them
in the literature which works in this case, at least to the author’s knowledge. But
there are techniques which apply to solutions on Sn with singularities. In particular
the work of Caffarelli, Gidas and Spruck [4] implies that solutions to the Yamabe
equation on Sn × S1 depend only on the S1 variable that we mentioned before. It
seems reasonable to expect that there must be some variation of their arguments
proving that solutions on Sn are all radially symmetric. All but one of the solutions
we are going to prove that exist have a local maximum at both 0 and π or a local
minimum at both 0 and π. It is clear that in between any two of these solutions
there exists one solution which has a minimum at 0 and a maximum at π (or vice
versa). These should all be the radially symmetric solutions, but to prove this
one should adapt many subtle ideas appearing in the work of M. K. Kwong [11].
This would describe all solutions which depend on only one of the factors. All
in all it seems reasonable to conjecture that for δ ≥ 1/2 the metric g0 + δg0 is a
Yamabe metric and the only unit volume metric of constant scalar curvature in
its conformal class (Obata’s Theorem [12] says that this is true for δ = 1). For
δ < 1/2 the previous comments describe all the constant scalar curvature metrics
in the conformal class for which the conformal factor depends on only one of the
spheres. It is tempting to guess that these are actually all the solutions, but there
is no real evidence to support that.

2. Sturm comparison

To study the differential equation we will need to apply some Sturm comparison
techniques. For the convenience of the reader we state an appropriate version of
the Sturm Theorem which appears in Ince’s book [8]. It can also be found in [11,
Lemma 1].

Theorem 2.1. Let U and V be solutions of the equations

U ′′(t) + f(t)U ′(t) + g(t)U(t) = 0, t ∈ (a, b),

V ′′(t) + f(t)V ′(t) +G(t)V (t) = 0, t ∈ (a, b).

Let (α, β) be a subinterval where V (t) �= 0 and U(t) �= 0 and such that G(t) ≥ g(t)
for all t ∈ (α, β).

If
V ′(α)

V (α)
≤ U ′(α)

U(α)
,

then
V ′(t)

V (t)
≤ U ′(t)

U(t)
∀t ∈ (α, β).
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If equality holds at any x ∈ (α, β), then U ≡ V in [α, x].

3. Solutions near u = 1; the linear ODE

We want to study the differential equation

u′′ + (m− 1)
cos(t)

sin(t)
u′ + λ(up−1 − u) = 0,

where λ is positive, p > 2 and m − 1 is a positive integer. We set the initial
conditions to be u(0) = α and u′(0) = 0. The interval of definition is [0, π], and
we are interested in positive solutions such that u′(π) = 0 (which give solutions in
Sm). We consider u = u(t, α, λ).

There is a canonical solution, u(t, 1, λ) = 1. Our goal in this section is to
understand the behavior of solutions near this canonical one, solutions u(t, α, λ)
with α close to 1.

Consider the function

w(t) =
∂u

∂α
(t, 1, λ).

Then w is the solution of the linear equation

w′′ + (m− 1)
cos(t)

sin(t)
w′ + λ(p− 2)w = 0,

with the initial conditions w(0) = 1, w′(0) = 0.
We let A = (p− 2)λ and call w = wA the corresponding solution. The solutions

for A = n(n+m− 1), n ≥ 0, can be given explicitly. For instance

w0 = 1, wm(t) = cos(t), w2(m+1)(t) =
m+ 1

m

(
cos2(t)− 1

m+ 1

)
.

The formulas for wn(n+m−1), n ≥ 3, can then be found recursively. If we call

HA(f) = f ′′ + (m− 1)
cos(t)

sin(t)
f ′ +Af,

then we have

HA(cos
n(t)) = (A− n(n+m− 1)) cosn(t) + n(n− 1) cosn−2(t).

It easily follows that

Lemma 3.1. wn(n+m−1) is a linear combination (with rational coefficients) of

powers of cosn−2k(t), where 0 ≤ 2k ≤ n.

Therefore it follows that if n is odd, then wn(n+m−1)(π) = −1, and if n is
even, then wn(n+m−1)(π) = 1. Moreover, if n is even, wn(n+m−1) is symmetric
with respect to t = π/2 (and therefore wn(n+m−1)(π/2) �= 0, since in that case by
the uniqueness of solutions it would have to vanish everywhere); and if n is odd,
wn(n+m−1) is antisymmetric with respect to t = π/2 (and wn(n+m−1)(π/2) = 0).

Lemma 3.2. The solution wn(n+m−1) has exactly n zeros in the interval (0, π).
The number of zeros in the interval (0, π/2) is equal to the number of zeros in the
interval (π/2, π).
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Proof. We use induction on n. We know it is true for the first values of n by explicit
computation. By Sturm comparison (Theorem 2.1) we know that if A < B, then
the solution wB has at least one 0 in between any two zeros of wA. Therefore
wB has at least the same number of zeros as wA, and if it has exactly the same,
then both must have the same sign after the last 0. Since when moving from n
to n + 1 the corresponding solutions change sign at the final value π it follows
that w(n+1)(m+n) must have at least one more 0 than wn(n+m−1). By induction
this means that w(n+1)(m+n) must have at least n + 1 zeros. But w(n+1)(m+n) is
a polynomial of degree n + 1 in cos(t) and cos(t) is injective in (0, π). Therefore
w(n+1)(m+n) could have at most n+ 1 zeros.

The last statement follows directly from the previous comments. �

The information we will use to prove the existence of constant scalar curvature
metrics is about the number of local extrema of wA in the interval (0, π/2). We
can give a complete analysis of this. For n even, w′

n(n+m−1)(π/2) = 0, and the
number of local extrema in (0, π/2) is n/2−1 (from the previous lemma). By Sturm
comparison (Theorem 2.1) the number of local extrema of wA is a non-decreasing
function of A. This function jumps by one every time we cross a value A = 2n(2n+
m− 1). Therefore if we call Cn = (2n(2n+m− 1), (2n+ 2)(2n+ 2 +m− 1)], we
have proved

Theorem 3.3. For A ∈ Cn the solution wA has exactly n local extrema in (0, π/2).

4. Proof of Theorem 1.2

and the existence of a strictly decreasing solution

First recall that if we have two conformal metrics, H and G, on anN -dimensional

manifold and we express the conformal relation as H = f
4

N−2G, then the expression
for the total scalar curvature functional of H, S(H), in terms of G and f is

S(H) = YG(f) =
4a

∫
|∇f |2dvolG +

∫
sGf

2dvolG(∫
fpdvolG

)2/p =
EG(f)

‖f‖2p
.

Recall also that

(d/dt)|t=0(YG(f + tu)) =
2

‖f‖2p

∫
[−aΔf + sf − ‖f‖−p

p EG(f)f
p−1]u dvolG.

Given a Riemannian product of constant scalar curvature metrics g1 + g2 on
M1×M2, one can consider conformal factors depending on only one of the variables
and define, for instance, [g1 + g2]1 = {f.(g1+ g2) : f : M1 → R>0}. Then we define
[1]

Y1(M1 ×M2, g1 + g2) = inf
h∈[g1+g2]1

∫
M1×M2

sh dvolh

V ol(M1 ×M2, h)
N−2
N

,

where N = dim(M1 × M2). It is easy to see that the infimum is realized [1,
Proposition 2.2]. In the case (M1, g1) = (Sm, g0) given any positive function f
on Sm, one can consider the spherical symmetrization f∗, which is the radial non-
increasing function on Sm which verifies V ol{f∗ > t} = V ol{f > t} for all t > 0.
Then it is well-known that the total scalar curvature functional is non-increasing
by this symmetrization, namely S(f∗(g1 + g2)) ≤ S(f(g1 + g2)). This proves:
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Lemma 4.1. If (Mk, g) has constant scalar curvature there exists a radially sym-
metric non-increasing funcion on Sm which gives a minimizer for Y1(S

m ×M, g+
g0).

Proof of Theorem 1.2. As we mentioned in the previous section, the function u(x) =
cos(d(x,N)) is an eigenfunction of the (negative) Laplacian operator of (Sm, g0)
(and hence of (M × Sm, g0 + g)) with eigenvalue −m. Moreover,∫

Sm

u dvolg0 = 0.

Let Y (t) = Yg0+g(1 + tu). Then Y ′(0) = 0 and for some positive constant K,

Y ′′(0)=K

(∫
Sm

−aΔu u+(sg+m(m− 1))u2 − (p− 1)(sg+m(m− 1))u2 dvolg0

)

= K(am+ (2− p)(sg +m(m− 1)))

∫
Sm

u2 dvolg0 .

The hypothesis says precisely that the previous expression is negative, and this
proves the theorem. �

Theorem 1.2 and Lemma 4.1 imply:

Corollary 4.2. If λ > m
pm+k−2

, then there is α > 1 such that the solution of the

equation

u′′ + (m− 1)
cos(t)

sin(t)
u′ + λ(up−1 − u) = 0

with initial condition u(0) = α, u′(0) = 0, is positive, strictly decreasing in [0, π],
and u′(π) = 0.

5. The number of solutions: Proof of Theorem 1.1

Now we fix λ > 0 and study the dependence of the solution u(t, α, λ) of the
equation

u′′ + (m− 1)
cos(t)

sin(t)
u′ + λ(up−1 − u) = 0

on α. It follows from Section 1 that if α is close to 1, then u intersects the canonical
solution about

√
λ times.

Let P be the subset {α ∈ (0,∞) : uα > 0 on [0, π/2]}. Clearly P is an open
subset of (0,∞) and 1 ∈ P . Suppose [1, A) is a maximal (to the right) interval
included in P . Then uA must be non-negative in [0, π/2]. Then uA must be strictly
positive in [0, π/2) and uA(π/2) = 0 (otherwise the interval would not be maximal,
of course).

Now consider the energy function associated with uA,

EA(t) =
(u′

A(t))
2

2
+ λ

(
up
A(t)

p
− u2

A(t)

2

)
.

We have

E′
A(t) = −(m− 1)

cos(t)

sin(t)
(u′

A(t))
2.

And so EA is decreasing in the interval [0, π/2]. Since EA(π/2) > 0 we must have
positive energy on [0, π/2]. Consider the following simple lemma:

Lemma 5.1. If uα has a local minimum at t0, then uα(t0) < 1 and so Eα(t0) < 0.
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Then it follows:

Lemma 5.2. If for some A, [1, A) is a maximal (to the right) interval contained
in P , then uA has no local extrema in (0, π/2).

The following lemma will allow us to construct solutions without having to an-
alyze the equation in the whole interval [0, π].

Lemma 5.3. Suppose that for some positive α the solution uα verifies u′
α(π/2) = 0.

Then u′
α(π) = 0 (and actually uα is symmetric with respect to t = π/2).

Proof. The function v(t) = uα(π − t) for t ∈ [π/2, π) is also a solution of the
equation. Moreover v(π/2) = uα(π/2) and v′(π/2) = 0 = u′

α(π/2). Therefore
v = uα and the lemma follows. �
Lemma 5.4. Suppose that for some positive α0 ( �= 1) the solution uα0

has exactly
k extrema in the open interval (0, π/2) and u′

α0
(π/2) = 0. Then there exists ε > 0

such that for α ∈ (α0 − ε, α0 + ε) the number of local extrema of uα in (0, π/2] is
k or k + 1.

Proof. If u0 = uα0
(π/2) = 1 we would have α0 = 1, and we have assumed this is

not the case. Therefore u0 > 1 or u0 > 1. If u0 < 1(> 1) there exists δ > 0 such
that for α ∈ (α0−δ, α0+δ) and t ∈ (π/2−δ, π/2+δ), we have uα(t) < 1(> 1). This
implies that such uα cannot have any local maxima (minima) in (π/2− δ, π/2+ δ).
Therefore it has at most 1 local extrema in that interval.

We can also assume the δ small enough so that uα0
does not have any other

extrema besides π/2 in [π/2−δ, π/2+δ]. Therefore uα0
has k local extrema in that

interval, and for ε > 0 small enough, ε < δ, and α ∈ (α0 − ε, α0 + ε), uα also has k
local extrema in (0, π/2− δ) (and hence k or k + 1 in (0, π/2]). �
Lemma 5.5. If α is close enough to zero, the solution uα has no local extrema in
(0, π/2). If λ(p− 2) > m there exists α > 1 such that the solution uα has no local
extrema in (0, π).

Proof. For α close to 0 the solution uα stays close to 0 and so stays less than 1
until π/2. Consequently, it does not have any local maxima and is increasing. This
proves the first statement. The second statement is just Corollary 4.2. �

We are finally ready to prove Theorem 1.1.

Proof. If λ(p − 2) ∈ (2n(2n +m − 1), (2n + 2)(2n + 2 +m − 1)], for α close to 1,
it follows from Theorem 3.3 that the solution uα has at least n local extrema in
(0, π/2). Increasing α from 1 to ∞ we bump into solutions for which u′

α(π/2) = 0.
Each one of these gives a constant scalar curvature metric. If for some value of α the
solution uα has at least one local minimum in (0, π), then u′

α is positive somewhere
in the interval. Let S be the set of values α ∈ (1,∞) for which the solution uα

is positive in [0, π/2] and has at least one local minimum in (0, π/2). It follows
from Lemma 5.5 that S is not the whole interval (1,∞). Let (1, A) be a maximal
subinterval contained in S. From the previous comments it follows that u′

α must
be non-negative somewhere in (0, π/2]. But we can deduce from Lemma 5.2 that
it cannot be the case that uA(π/2) = 0. It follows that uA is positive in [0, π/2]
and u′

α(π/2) = 0. Now we restrict to the interval (1, A) where all the solutions
remain positive in (0, π/2). Let U ⊂ (1, A) be the open subset of values α such
that u′

α(π/2) �= 0. On a fixed subinterval of U all solutions have the same number

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



METRICS OF CONSTANT SCALAR CURVATURE 2905

of local extrema in (0, π/2). As we cross a value of α for which u′
α(π/2) = 0, the

number of local extrema before π/2 decreases at most by 1, from Lemma 5.3. We
can make the same argument when α decreases from 1 to 0. Therefore the number
of initial values α for which u′

α(π) = 0 is at least 2n. Note that for these solutions
0 and π are both local minima or maxima. Besides these, we have the constant
solution and one strictly decreasing (or increasing) solution. �
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