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1. Introduction 

In [2] and [9] an ingenious procedure is given to construct a Riemannian metric of 
positive scalar curvature on a manifold obtained by surgery from one which 
already has such a metric. With some improvements of [1] this may be 
summarized as follows. 

1.1. Theorem. Let (M, g) be a compact n-dimensional Riemannian manifold with 
positive scalar curvature and let W be a cobordism from M to M' such that W admits 
a handle decomposition on M with no handles of index greater than n -  2 (i.e. there 
exists a Morse function on W which is minimal on M and critical points have indices 
<-_ n -  2). Then there exists a metric of positive scalar curvature on W which extends 
g and is product on a collar of MUM' .  

This construction applied to the cobordism with one handle of index 1 
between the disjoint sum M u N  and the connected sum M4#N shows imme- 
diately that the connected sum is well defined for manifolds of positive scalar 
curvature. Furthermore, this operation gives an abelian group structure in the set 
n~ of concordance classes of positive scalar curvature metrics on S n, with the zero 
class represented by the standard metric gcan [1]. We say that two metrics go, gl of 
positive scalar curvature on M are concordant if there exists a metric g of positive 
scalar curvature on M x [0,1] such that glM x {i} =gi, i=0,  1, and g is product 
near M x d[0,1]. Our aim is to show how this group, or its subgroup ~ of classes of 
those metrics which are boundary restrictions of metrics of positive scalar 
curvature on compact spin manifolds, is related to some questions concerning 
positive scalar curvature. 

IfX n is a 2-connected dosed manifold, B a smooth n-baU in X, then by Morse- 
Srnale theory and Theorem 1.1 there is a metric of positive scalar curvature on 
X -  Int B which is product near S n- i = O(X - Int B). This metric induces a metric of 
positive scalar curvatures on S "- 1. Our basic observation is that the concordance 
class 6(X) of the induced metric depends only on the spin cobordism class of X and 
6(X)--. 0 if and only if any l-connected manifold spin cobordant to X admits a 
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metric of positive scalar curvature. The resulting map ~" ,~pin o. s~ --*n, fits into a long 
exact sequence relating t2s, vln with cobordism groups ...o vsc of Riemannian spin 
manifolds with positive scalar curvature: 

�9 , , ,  I, ~ n - -  1 'P ~ n - -  1 . . . .  

The homomorphism i sends any metric on S" to its cobordism class, so keri = ;~, 
and we see that the geometric part ~r ,~psc ~ ~~ t,~ ~ ,  is identified with n~/rc,. 

In Sect. 3 we study the action of the group Diff§ S ~ of orientation preserving 
diffeomorphisms of S" on n~ given by f i g ]  = If*g] ,  where f*g  denotes the metric 
induced by f from g. This is in fact an action of no Diff+ S" and we show that it 
factorizes through an action of the group ~2 which is free for n=8k or 8k+l ,  
k = 1,2 ..... and trivial in all other dimensions. 

Finally, we discuss the Gromov-Lawson conjecture about existence of positive 
scalar curvature metrics on 1-connected spin manifolds. It states that a 1-connect- 
ed spin manifold M admits a positive scalar curvature metric if and only if the 
generalized ~-genus (with values in gdi , )  of M vanishes. This is proved in I-2] mod 
torsion. The torsion part of the conjecture reduces to the following. 

Conjecture. I f  x is an element of order 2 in ~ ,  then x contains a representative 
isometric to the standard metric on S". 

We show that metrics isometric to the standard one are characterized by 
having a symmetric representative in the concordance class, where symmetry 
means that the metric is invariant under an involution fixing a sphere of 
codimension 1. 

2. The Obstruction to Positive Scalar Curvature 

We start with some notation and definitions. Any compact manifold with non- 
empty boundary admits a metric of positive sectional curvature, so working with 
such manifolds usually requires the condition that metrics are product on a collar 
of the boundary to be kept. Thus when we say that a metric on a manifold with 
boundary has positive scalar curvature we shall understand that the metric is 
product near the boundary. We denote by PSC(M) the set of such metrics on M. 

We say that two closed n-dimensional spin manifolds with metrics of positive 
scalar curvature (Mr, g1), (M2, g2) are cobordant if there exist a compact spin 
manifold (W, g) of positive scalar curvature and a diffeomorphism f :  M1 u ( -M2)  
~ a W  such that both spin structure and the metric given on M 1 u ( -  M2) are equal 
to the spin structure and the metric induced by f from W (hence the same for 
orientation; - M  denotes M with the reversed orientation). The set of cobordisrn 
classes f ~ c  has an abelian group structure given by disjoint sum (or, equivalently, 
by connected sum). 

We have the forgetful homomorphism _c , r~psc ~, JL,---~,~, and the subgroup re, of rc~ is 
defined as its kernel. Moreover, the natural action of ~t o Diff+ S" on ~ defined by 
I f ]  I'g] = [ f*g] ,  preserves the cobordism class of (S", g). 

Let N be a closed spin manifold of dimension n > 4. There exists a 2-connected 
manifold M* spin cobordant to N. Let M be the manifold obtained from M* by 
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deleting the interior of a smoothly embedded disc D"CM*. Since M* was 
2-connected, Theorem 1.1 gives a metric g of positive scalar curvature on M. 
Denote by 6(N)~n~,_l the concordance class of the metric gl0D", or, more 
precisely, the concordance class of the metric f*(g[OM), where f :  S"- 1 _~ OM is the 
diffeomorphism resulting from the embedding D"~M*.  

2.1. Proposition. 6(N) depends only on the spin cobordism class of  N. 

Proof If M*, M* are 2-connected spin manifolds which are spin cobordant to N, 
then there exists a 2-connected cobordism between them. Equivalently, 
M* ~: ( -  M~) is cobordant to S" by a cobordisrn with no handles of index greater 
then n - 2 .  When we remove in this cobordism two copies of Int(D") x I such that 
one interval {0} • I joins a point of S" with a point in M* and the other interval 
joins another point of S" with a point in M*, we get a relative cobordism of 
(MI #(--  M2), OMlwOM2) with (S"- 1 x I, S"- 1 x OI). Applying 1.1 to this cobord- 
ism and the metric gl # g2 on M1 # ( -  M2) [where g 1, g2 are as in the definition of 
6(N)] we get a concordance between gllS"-1 and g2]S n- 1. 

If r(N) = 0 and N is itself 2-connected, then the metric constructed on N - Int D" 
extends to a positive scalar curvature metric on N. In fact, the following shows that 
for 1-connected N, 6(N) is the obstruction to find a metric of positive scalar 

~c is the obstruction group. curvature on N and n, 

2.2. Theorem. I f  x ~ f2 spi", n > 4, then 6(x) = 0 if and only if any 1 -connected manifold 
in the class x admits a metric of positive scalar curvature. 

Proof. Any 1-connected representative of x is obtained from a 2-connected 
manifold by a sequence of surgeries of index n - 2  (because one can kill 7r 2 by 
surgeries of index 3). Since on any 2-connected manifold in x we have a positive 
scalar curvature metric when 6(x)= 0, we have such a metric on any 1-connected 
manifold representing x. 

For the reverse consider a 2-connected manifold M* in the class x, 
gl ~ PSC(M) as in the definition ofr ,  and g* e PSC(M*). Then g* may be deformed 
to a metric which is standard "torpedo" metric in a disc in M, resulting in a metric 
g2 ~ PSC (M) which is standard on the boundary. Now one uses the same argument 
as in 2.1 with M 1 = M 2 = M to get a concordance from 6(x) to g2]S"-1 =gcan. 

The resulting map f2~Pin~n~_ 1 is a homomorphism of groups and fits to the 
following exact sequence. 

2.3. Corollary. The sequence of group homomorphisms 

6 6 
�9 . .  ' p i~  

is exact (where unlabeled maps are forgetful homomorphisms). 

Remarks. 1. Since Im6 = r~_ 1, we have for n > 4 a short exact sequence 

0  .sc 

Thus rS./~ is the geometric part oft2, vsc. In particular,/2, vsc is countable, since n~ is 
[every class in 1r~ is an open set in the separable space of metrics PSC(S")]. Note 
that geometric cobordism groups may be very large, as for example the continuous 
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variation of characteristic classes of t-structures [5, 10] produces uncountably 
many cobordism classes of complete manifolds of finite volume and bounded 
curvature. 

2. Results of this section can be carried over to the case of manifolds (and 
cobordisms) with fixed fundamental group re. To do this we have to replace the disc 
in the above constructions by a "thickening" D(n) of rc (i.e. a manifold with the 
fundamental group isomorphic to n and of homotopy type of a 2-complex), the 
sphere by dD(n) and define appropriately the juxtaposition in PSC(D(n)). For 
instance, if re=Z, as D(n) we may take D *-~ x S ~ and the juxtaposition in 
PSC(S n-2 x S 1) is given by "round" connected sum along {point} x S t C dD(n). 

3. The Action of Diff+ S" on n~ 

Let a: ~PI*-*/~0(S n) denote the generalized ,~-genus [6]. Then ker6 C ker~, thus 
the map a = at o 6 - I : ~ , ~ K O ,  + l(pt) is a well defined homomorphism. 

Remark. There is a natural ring structure in ~,  such that a is a ring homomor- 
phism. The Gromov-Lawson conjecture says that a is a monomorphism, 
in particular a|  is an isomorphism I-2]. 

Consider also the natural homomorphism 

t: rc o Diff+ S " ~ ,  : I f ]  ~ [f*gr 

(note that f*g~an bounds). These homomorphisms yield the following commuta- 
tive diagram 

3.1. 

t 
rr 0Diff+S n , _ ~  

o ,gO(s ) 

where O k is the group of (concordance classes of) homotopy k-spheres and the left 
vertical arrow is the isomorphism given by f ~ Z r  = D "+ 1 weD . + 1, n > 4. 

3.2. Lemma. For any x ~ 7r~ and f ~ no Diff+ S ~ we have 

f x  = x + t(f).  

Proof. Let Do, D~ be smoothly embedded n-discs in S ~, D~ ClntD o. In any class x 
there is a metric of positive scalar curvature such that gJD o is the standard torpedo 
metric, and any f can be represented by a diffeomorphism which is the identity on 
the complement of D~. This gives the required decomposition of f * g  as the 
connected sum of g and t(f)=f*gc,n. 

3.3. Lemma. t ( f )= 0 if and only if )2: admits a metric of  positive scalar curvature. 

Proof. The condition t ( f ) = 0  means that f*gcan is concordant to goan" Such a 
concordance ($n x I, h) gives a metric of positive scalar curvature on Z s, since we 
may give the lower disc the standard metric, extend it by h on a collar in the upper 
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disc and finish with the standard metric on the remaining part of the upper disc. If 
~I has a metric of positive scalar curvature, then t ( f )=  6 ~ i = 0  because the 
composition O vs+c---~,+" oSpin~ --. rc~ is zero. 

Let Ix C 7to Diff+ S" be the isotropy subgroup of x ~ n~, I 0 the isotropy subgroup 
of [gc,,]. 

3.4. Lemma. Ix=lo=ker t .  The action of rcoDiff+S" factorizes through a free 
action of rto Diff+ S"/I o. 

Proof It follows from Lemma 3.2 and the definition of t. 
To describe properties of the action, we shall need the following character- 

ization of homotopy spheres which admit metrics of positive scalar curvature. 

3.5. Proposition. Let n > 4. For a homotopy n-sphere ~, the following conditions are 
equivalent: 

(i) Z is the boundary of a spin manifold, 
(ii) 2? admits a metric of positive scalar curvature, 
(iii) ~(Z) =0. 

Proof From (i) we know that Z is the boundary of a manifold X such that nl(X, Z) 
= 7t2(X, S) =0  and by 1.1 we can find on Z a metric with positive scalar curvature. 
To see that (ii) implies (iii) apply the Lichnerowicz-Hitchin theorem [4]. The 
implication (iii) ~ (i) follows from the fact that the image of the framed cobordism in 
f2s, p~n is detected by the torsion part of ~ (cf. [8, Chap. XI]). In particular, for any 
homotopy sphere Z, ~t(Z)= 0 if and only if S is a spin boundary. 

3.6. Theorem. The action of ~o Diff+ S" on ~ factorizes through a free action of 
% Diff§ S"/Io, which is isomorphic to Z 2 if n = 8k or 8k + 1, k = 1, 2 .. . .  , and is trivial 
in all other dimensions. 

Proof It is known ([6], see also [4, 4.3]) that for n = 8k and 8k+ 1, k__> 1, the 
homomorphism ~: O" + 1 ~gO(S" + 1) = Z2 is onto. In the remaining dimensions 
is trivial on O" + 1. If n < 3, then r~ 0 Diff+ S" = 0. For n >_- 4 we have Io = ker (ct IO" + 1) 
by 3.5, thus no Diff+ S"/Io ~-0 "+ 1/ker~ gives the required isomorphism. 

4. Symmetric Metrics on S ~ and the Gromov-Lawson Conjecture 

In [2] Gromov and Lawson proved that if M is a 1-connected spin manifold and 
~(M) = 0, then for some k, k-fold connected sum kM = M ~ M ~ . . .  4~ M (k times) 
admits a metric of positive scalar curvature. They conjectured that k = 1 is good 
enough (cf. [3] for a general form and discussion of the conjecture). Later Miyazaki 
[7] has shown that one may take k = 4. Suppose that we know that the following is 
true. 

4.1. For any 1-connected spin manifold M, M ~ M admits a metric of positive scalar 
curvature if and only if M ~ ~ admits such metric, where S, is a homotopy sphere. 

Consider a 1-connected manifold with ~(M)= 0. Then 4M admits a metric of 
positive scalar curvature and 4.1 implies that 2M ~ Z  does. Since ~t(Z)= 2~(M) 
+ r 0t(2M ~: 2~)= 0, we see by 3.5 that Z has a positive scalar curvature metric. 
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So the homotopy sphere inverse to 2:, and therefore 2M admit positive scalar 
curvature metrics. Repeating the argument we get a metric of positive scalar 
curvature on M. When we pass by 6 to ~ one sees immediately that the following 
implies the torsion part of the Gromov-Lawson conjecture for 1-connected 
manifolds. 

4.2. Conjecture. Any element of order 2 in ~ has a representative isometric to the 
standard metric of S". 

In other words, if [g] e n~ and g ~ g is concordant to the standard metric gCan, 
then g should be concordant to f*gcan for some f eDi f fS  ~. The following 
proposition says that up to concordance the property "isometric to the standard 
one" is equivalent to symmetry, thus it shows that Z2-symmetries of positive scalar 
curvature metrics on S ~ are reflected as the torsion of ~ .  

Let sk={xeRk+I'Hx[[ ~-i}, Dk={x~Sk: +Xk+l--0 }. We say that a metric 
g e PSC(S") is symmetric if g = f*g  for an orientation reversing smooth involution 
f of S" such that f l S" - l= id .  

4.3. Proposition. A metric g e PSC(Sn) is concordant to a symmetric metric if and 
only if g is concordant to q~*g~,n for some q9 e Diff+ S ". 

Proof. Consider first the example g = q~*g~,~. Deform ~b to a diffeomorphism r 
equal to Id on D ~_ and on a collar of S ~- 1 and define f as T~ 1 on D~_ and ~b ~- 1T on 
DL, where T is the linear involution (xt ..... x~+ 1)~(xl ..... x~, - x , +  1). The metric 
gl = ~b~gcan is symmetric under f. 

Suppose now g =f*g. At the expence of changing g in its concordance class we 
may replace f by another diffeomorphism which is equal to T in a neighbourhood 
of S"- 1. This is done by conjugating f with a diffeomorphism ~b isotopic to the 
identity. Namely, let ~x : ( - e ,  e)~S" be the geodesic through x e S"- ~ such that 
f~ ( t )  = ct~(-t). By uniqueness of collars there is a smooth isotopy of ids n which is 
the identity on S ~- 1, to a diffeomorphism tk such that r t)= ~(t) on S *- 
x( -~ ,e) .  Then in S ~-1 x ( - e , e )  we have r162162  
= ( x ,  - 0 .  

Let ./'1 = ~ - l f ~ .  Obviously f2  =id  and for gl = ~b*g we have fl*gl = g r  Now 
rotate D~ with the metric g~lD~ around S ~-~ in DL +~ in the following way. 
Decompose DL § ~ as the family of discs D(xo) with the common boundary S *- ~, 
parametrized by the angle x0 between D(xo) and D(0) = D~, xo e [0, re]. Let h: R--.R 
be a smooth function with the following properties: (i) h(t) = sin(t) for ]tl < 1 and h(t) 
= t/[tl for Itl>2; (ii) h'(t)>__O, t. h"(t)<=O, and h ( - t ) =  -h( t )  for any t; (iii)It" h(t)[ 
-< C- Ih"(t)l for some constant C. Define the rotated metric as 

= = - I r(x))}  dxg + g l,  

where x e D~., r(x) is the distance from x to S ~- ~ and e is a small positive number. 
Each hyperplane D(xo) is totally geodesic in DL + 1, in particular the mean curvature 
of the boundary is zero. To see that the scalar curvature of ~ is positive we can use 
the formula (of. [3, Proposition 7.33-1): 

k@=k(gl)-2f-l f 
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with f =  eh(e-lr(x)). This formula implies that:  
(i) if r(x) > 2e then k(~) = k(gO > 0; 

(ii) if r(x) < 2e and A r(x) < 0 then 

k(~,) - k(g l) = 1/2 { - h"( t )e -  21D A r ( x )  ll 2 _ ~ -  l h,( t)A r(x) } /h(  t) >__ 0 

[here t = e -  lr(x)];  
(iii) if r(x) < 2e and  A r(x) >= 0 then 

k ( ~ ) -  k(gl) = 1/2{ - h' (  t ) e -  2 _ t . h ' ( t )Ar(x) / r (x)  } /h(  t) 

> - h"(t) { e -  2 _ C A r ( x ) / r ( x ) } / h ( t ) ,  

which is positive for small e since Ar(x)/r(x) is bounded. 
We have a metric of positive scalar curvature on D~_ + 1 with zero mean 

curvature and positive scalar curvature on S n= dDL + 1. Any such metric yields a 
metric of positive scalar curvature which near S n is the product of the given metric 
of S ~ by an interval. This is done by a construction due to Gromov and Lawson 
extended to this case by Almeida (Theorem 4.1 in his thesis). On the boundary 
sphere we have got the metric equal to gl on D~_ and to T*g I on D~_, hence it is of 
the form q~*gl, if ~b is defined as the identity on D~ and f t  T on DL. The required 
concordance is given by the trick of making a positive scalar curvature metric 
standard along a small n-sphere in IntD n§ 1, cf. [-2]. 
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