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METRIZATION OF SPACES WITH COUNTABLE
LARGE BASIS DIMENSION

GARY GRUENHAGE AND PHILLIP ZENOR

With the following results, we generalize known metriza-
tion theorems for spaces with large basis dimension 0 i.e.,
non-archimedian spaces) to the higher dimensions: Theorem.
If X is a normal X-space with countable large basis dimen-
sion, then X is metrizable. Theorem. If X is a normal
wd-space with countable large basis dimension, then X is
metrizable.

I. Introduction. A collection I" of subsets of a set X is said
to have rank 1 if whenever ¢, and ¢, are in I' with g, Ng, * @
then g, C g, or g,Cg,. According to P. J. Nyikos [13], a topological
space X has large basis dimension < n (denoted Bad X < n) if X
has a basis which is the union of n + 1 rank 1 collections of open
sets. X has countable large basis dimension (Bad X < W) if X
has a basis which is the union of a countable number of rank
1 collections such that each point of X has a basis belonging to one
of the collections (a property which is automatically true in the finite
case). Bad X coincides with Ind X and dim X for metric spaces.

Spaces having large basis dimension 0 are usually called non-
archimedian spaces. Theorems of Nyikos [11] and A. V. Archangelskii
[3] show that a non-archimedian space is metrizable if and only if
it is a X-space or a wd-space. In this paper we show that these
results are valid, under mild assumptions, for the higher dimensions.
Our results also improve a result of G. Gruenhage [6], who showed
that compact spaces having finite large basis dimension are metrizable.

II. Main results. According to Nyikos [11], a tree of open sets
is a collection I" of open sets such that if ge I", then the set {g9'€
I'lg’ © g} is well-ordered by reverse inclusion; that is, g < ¢’ if and
only if g > g¢’. Nyikos shows that the rank 1 collections for spaces
with Bad X < ¥, can be considered as rank 1 trees of open sets.
The following fact will be used in our proofs:

LEMMA 1. Let T be a rank 1 tree of open subsets of a regular
space X which contains a basis at each point of a subset X' of X.
Then if ZZ is a cover of X' by open subsets of X, there exists a
subset T' of T such that

(i) T s a cover of X';

(ii) the elements of T' are pairwise disjoint;
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(iii) te T implies that either t is degemerate or t is a proper
subset of some member of Z.

Proof. Put ¢t in T’ if and only if (a) either t is degenerate or
there is a member U of % such that ? is a proper subset of U and
(b) there is no predecessor of ¢ in T whose closure is a proper subset
of some element of %/. Since T contains a basis at each point of
X’ and since the predecessors of a given te T are well-ordered, it
is easy to see that 7" covers X’. Further, since T is a tree, the
members of 7’ are mutually exclusive.

Nyikos calls a space basically screenable if it has a basis which
is the union of countably many rank 1 trees of open sets. Every
space X with Bad X < W, is basically screenable. Basically screenable
spaces are, of course, screenable; that is, every open cover has a
o-pairwise disjoint open refinement. While the following result is
known, for the sake of completeness, we include its easy proof:

LEMMA 2. A screenable countably compact space X s compact
[2].

Proof. Let ZZ be an open cover of X and let 7= U{Z,|n =
1,2, ...} be an open refinement of U covering X such that, for each
7, the members of 7; are mutually exclusive. Theset{V,=U 7,|n =
1,2, ...} is a countable open cover of X; hence, there exists a finite
subcover {V,, ,V,,,--+,V,,}. Then 7, U 7;,U---U 7,, is a point-finite
refinement of %. Thus, X is metacompact and it is well-known

that a metacompact countably compact space is compact.

According to C. R. Borges [4], a space X is a wd-space if there is
a sequence &, &,, --- of open covers of X such that whenever xre X
and z,€ St(z, &,) for each n, then {x, 2., ---} has a cluster point.

THEOREM 1. If X is a regular wd-space with countable large
basis dimension, then X has a point countable basis.

Proof. Let &, &, --- be a sequence of open covers of X satis-
fying the properties given in the definition of a wd-space. Let <Z,
“, --+ and X,, X,, --- be sequences such that X =U{X;|t=1,2, --.}
and, for each 7, & is a rank 1 tree of open sets containing a basis
at each point of X,.

For each © < w, and a < w,, we construct a collection <Z (i, @)
as follows: let <# (¢, 1) be a collection of mutually exclusive members
of <%, that refines &, and covers X,.

Suppose <Z (%, B8) has been defined for B8 < a. If « is not a limit
ordinal, applying Lemma 1, let <& (4, @) be a collection of mutually
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exclusive members of <% such that

(i) if j < w,, then £Z(1, j) refines &;;

(ii) Z(@, a) covers (U.Z G, a — 1) N X;
and (iii) ge “Z (1, @) implies § is a proper subset of some member
of & (1, « — 1), or g is degenerate. If « is a limit ordinal, for each
re X, let Bla, 2) = Int (Nea {9€ 71, B)|xecg}). Note thatif x and
y are in X, then either B(w, x) = Bz, y) or B, 2) N Ble, y) = @.
Let .Z(i, ) = {B(a, z)|x e X,}.

Let . Z* = Usco, Z (3, ). We will show that 2Z* is a point
countable collection forming a basis for X, in X.

We will say that ¢ is a chain in Z* if ¢ is a function from
an initial segment of ®, into <Z* so that (1) g(e)e (3, @) and (2)
if 8 < a, then g(B) Dg{ea). Note that by our construction, if g < «,
then ¢(8) D g(a). Furthermore, if ze X,, then there is exactly one
maximal chain, say ¢, such that g(a) contains x for every « in the
domain of g¢.

Claim 1. The domain of each maximal chain in .<Z* is countable
(and so, <Z* is point countable in X).

Proof of Claim 1. Suppose the contrary; i.e., there is a chain,
say g, of length @,.

Note that g{w, + 1} — Nu<w, g() is compact. To prove this, we
will only show that g(®, + 1) — Ne<s, 9(a) is countably compact; that
9(@ + 1) — Nu<o, (@) is compact will then follow from Lemma 2.
To this end, let N denote 2 countable subset of g{w, + 1) — Vo<, ().
There is an « so that g(a) does not meet N. In particular then, no
point of g(e + 1) is a limit point of N. Because of property (i), it
must be the case that N has a limit point in g(@, + 1) — Necw, 9(2);
and 50, g(@, + 1) — Mu<w, 9{a) is compact. But, {g(w, + 1) — gla)[a<w,}
is an open cover of g(w, + 1) — ﬂmiﬁ) with no finite subcover,
which is a contradiction from which Claim 1 follows.

Clatm 2: <Z* is a basis for X, in X; in particular, if ze X
and ¢ is the maximal chain in <Z;* centered at x, then {g(a)]|e is in
the domain of g} is a local basis for x in X.

Proof of Claim 2. Suppose otherwise. Then there is a point x
of X, so that the maximal chain, g, centered at x does not yield a
basis at = in X; i.e., {g(a)|a e domain of g} is not a local basis for «
in X. Since the domain of g is countable, there is a first a, < w, not
in the domain g. There is a member B of <% so that if a < a,
then g(e) is not a subset of B but this means that B is a subset of
each g(a). Then x is in the interior of (.., 9(®). Thus, by our
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construction of <% (1, «,), there is a member of <Z (i, a,) that contains
2. This contradicts the maximality of g and it follows that {g(a)|«
is in the domain of ¢} is a local basis for x in X.

We now have that U<, &.* is a point countable basis for X.

If 57 is a cover of the space X and if ze¢ X, then C(x, H) will
denote the set N{He 5#|xec H}. According to K. Nagami [9], the
space X is a X-space if there is a sequence &, %, --- of locally
finite closed covers of such that if x, x, x,, , --- is a sequence with
z; € C(x,, #;) for each 0 < 7 < w,, then {r,} has a cluster point. The
sequence .#,, %, --- is called a spectral 3-sequence for X.

We will, without loss of generality, assume that each &, is
closed under intersections and, for each i, &#,,, refines #,.

LEmMMA 3. If X is a space with countable large basis dimension
such that each wumcountable subset of X has a limit point, then X
is Lindelof.

Proof. Since X has countable large basis dimension, X is scre-
enable. G. Aquaro [1] has proved that every meta-Lindelof (and
thus every screenable) space in which every uncountable set has a
limit point is Lindelof.

THEOREM 2. If X s a regular X-space with countable large
basis dimension then X has a point countable basis.

Proof. Let #,, %, --- be a sequence of locally finite closed
coverings of X given in the definition of a Y-space. For each =, let
<, be an open cover of X such that each member of &, intersects
only finitely many members of #,. Let <&, <%, --- and X, X,, - -
be sequences such that X = UJ,.,, X, and <, is a rank 1 tree of
open sets which contains a basis for each point of X,.

Define Z (1, a), 1 < w,, @ < w,, exactly as in the proof of Theorem
1. Let Z* = Uucw, Z (i, a) and define chain in <Z;* as in the proof
to Theorem 1.

Claim 1. Every chain in <Z* is countable.

Proof of Claim 1. Suppose otherwise; i.e., suppose that g is
a chain in <Z* with length ,. Let K = ., 9(¢). Every uncoun-
table of g(w,) — K has a limit point in g(w,) — K for suppose otherwise;
that is, suppose that H is an uncountable subset of g(w,) — K with no
limit point in g(w,)) — K.

Suppose that there is a point, 4, of H such that, for each m,
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C(h, &,) intersects infinitely many points of H. Then there is a
countable subset N of H with a limit point. Since N is countable,
there is an @ < @, so that g(a) does not intersect N. It follows
that no point of K is a limit point of N. Hence, no point of K is
a limit point of N; and so, H has a limit point in g(w,) — K. This
is a contradiction from which it follows that, for each % in H,
there is an integer n(h) such that C(h, n(k)) intersects only finitely
many members of H. Thus, there is an N and an uncountable
subset H* of H so that if he H*, then n(h) = N and {C(h, Fy)|he
H*} is an infinite subcollection of .5, each member of which intersects
g(N). But, g(N) is in <& (4, N) which contradicts the fact that
(1, N) refines Z,. It follows that each uncountable subset of
9(®,) — K has a limit point in g(w,) — K; and so, by Lemma 3, g(w,) —
K is Lindelof. But {g(w,) — g(@)|a < ®,} is an open cover of g(w,) —
K with no countable subcover which is a contradiction from which
Claim 1 follows.

That <Z,* contains a basis at each point of X, follows exactly
as in the proof of Theorem 1. Thus Theorem 2 is proved.

THEOREM 3. If X is a mormal 3-space with countable large
basis dimension, then X is metrizable.

Proof. R. E. Hodel has proved that every 3-space is a S-space
[8], and that every B-space is countably metacompact [7]. A scre-
enable countably metacompact space is metacompact. Nagami [10]
has shown that a normal screenable metacompact space is para-
compact. But a paracompact Y-space with a point-countable base is
metrizable [9].

THEOREM 4. If X is a nmormal wd-space with countable large
basis dimension, then X is metrizable.

Proof. As above, X is normal, screenable, and metacompact
(since every wd-space is a [B-space), hence paracompact. But a
papacompact wd-space is an M-space, hence a JX-space. Thus X is
metrizable.
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