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Abstract

We consider a new approach towards stochastic dominance rules.
It allows measuring the degree of domination or violation of a given
stochastic order and represents a way of describing stochastic orders
in general. Examples are provided for the n-th order stochastic domi-

nance and stochastic orders based on a popular risk measure.



1 Introduction

From a historical perspective, stochastic dominance (SD) rules were first
introduced in relation to the normative expected utility theory describing
choice under uncertainty. The notions of first-order stochastic dominance
(FSD) and second-order stochastic dominance (SSD) were used to prescribe
the behavior of unsatiable investors and unsatiable, risk-averse investors,
respectively. Since its introduction, the significance of SD analysis has in-
creased enormously. In portfolio theory, for example, new families of risk
measures have been introduced but consistency with FSD and SSD is always
sought for. In areas other than finance, it finds application in diverse fields
such as economics, insurance, agriculture, and medicine. For additional
information, see Levy (2006).

In this paper, we propose a new concept describing SD relations which
is based on the notion of a quasi-semidistance. It allows measuring by how
much a given prospect X dominates another prospect Y or, in case they are
incomparable, a quasi-semidistance allows measuring the degree of violation
of the SD rule. There is a close connection between this concept and the
concept of almost stochastic dominance discussed in Leshno and Levy (2002)
and Bali et al. (2009).

The new concept distinguishes between a few types of stochastic orders
nested in each other such that a stochastic order from a given category
cannot imply a stochastic order from categories in which it is nested. Here
is an example. The smallest category includes stochastic orders based on
certain characteristics of the underlying prospects. For example, the mean-
variance order belongs to this category as it is based on inequalities between
the means and the variances of the corresponding prospects. The second
smallest category includes stochastic orders based on inequalities between
certain transformations of the cumulative distribution functions (cdfs). Both
FSD and SSD belong to this category. As a consequence, the mean-variance
order can imply neither FSD nor SSD. The same holds for any mean-risk
order, where risk is measured by an arbitrary risk measure.

Comparing the mean-variance, or more generally the mean-risk, ap-
proach and the SD approach, we can conclude that the former leads to
optimization problems that are practical. Even though the SD approach is

more general, it does not provide a method for construction of a portfolio



from several individual securities, see, for example, Levy (2006). We believe
that the current framework is a step towards resolving this shortcoming.
In this paper, we consider a class of stochastic dominance rules which we
call metrizable. It includes the stochastic dominance rules commonly used in
theory and practice. Our goal is to describe the metrizable stochastic orders
by means of the universal Hausdorff construction which is well-known in the
field of probability metrics. We provide examples for n-th order stochastic
dominance, stochastic orders based on average value-at-risk (AVaR), and

stochastic orders arising from classes of investors.

2 Metrization of preference relations

In this section, we introduce notation and discuss some basic terms. Let S
denote the space of all combinations of goods, services and assets, which we
also call baskets. A preference relation on S, denoted by =, is introduced by
a binary relation such that = <y, if y is at least as preferable as x. There

are a few assumptions that are usually made:

1. The binary relation is assumed reflexive, i.e. © < x, for all x € S.
2. The binary relation is assumed transitive, i.e. if x <y and y < z,

then x < z for any z,y,z € S.

If # < y and y = x, then we say that x and y are indistinguishable or
equivalent from the standpoint of the preference order.

In this paper, we do not discuss the adequacy of the reflexivity and the
transitivity assumptions. We assume that they characterize every preference
relation' and, as a consequence, the preference relation < represents a pre-
order defined on S.

The most direct way to describe a preference relation defined in this way
is through the corresponding binary relation. However, this is not practical
because we have to make a list of all pairs (z,y) such that z < y. A generic
and more practical approach to describe a preference relation is by means
of a quasi-semidistance. Quasi-semidistances are introduced axiomatically.
A quasi-semidistance is a function d(z,y) : S x S — [0, 00] satisfying the

properties:

'For a detailed discussion of these axioms, see Anand (1995).



i. The identity property: if z =y, then d(z,y) = 0.
ii.  The triangle inequality: d(z,y) < K(d(z,z) + d(z,y)) for any
x,Y,z €S in which K > 1.

If K =1, then the quasi-semidistance turns into a quasi-semimetric.

Every quasi-semidistance defines a pre-order and, therefore, a preference
relation in the following way. The basket y is at least as preferable as
another basket x, x <y v, if d(x,y) = 0. It is straightforward to verify that
the transitivity property of <4 is a consequence of the triangle inequality
for d(x,y) and reflexivity follows from the identity property.

Since every quasi-semidistance defines a preference relation, we can ask
the converse question. The answer, however, is in the negative. Therefore,
the set of all preference relations can be divided into two parts — those that
arise from quasi-semidistances and those that do not arise in this fashion.
The preference relations that do arise from quasi-semidistances we call quasi-

metrizable or simply metrizable.

3 Quasi-semidistances and preference relations

In this section, we discuss in more detail the connection between quasi-
semidistances and preference relations. The discussion is generic with no
assumptions about the nature of the space S.

We noted that the preference order <; defined through a quasi-semidistance
is a pre-order and, therefore, a preference relation. Every preference relation
induces a dual one by considering the converse relation. The dual of =<,
denoted by =<;-1, is introduced in the following way: x <;-1 y if and only
if y <4 x. It turns out that if a given preference relation is generated by a

quasi-semidistance, then its dual is also generated by a quasi-semidistance.

Theorem 1. Suppose that =<4 is generated by the quasi-semidistance
d(z,y). Then, the dual preference relation <,4-1 is generated by d~(x,y) =

d(y,x) which is also a quasi-semidistance.

Proof. According to the definition of the dual relation, for any x,y € S, if
d(y,x) = 0, then  <;-1 y. As a next step, it is straightforward to verify
that the function d~!(z,y) := d(y, x) is a quasi-semidistance. O



The quasi-semidistance generating the dual order is monotonic with re-

spect to primary order =<; in the following sense.

Theorem 2. Suppose that x <45 y =4 z, where x,y,z € S. Then,
d~Y(z,y) < dYx,2) and also d~'(y,z) < d~'(x,2) in which d~'(z,y) =
d(y, ).

Proof. Consider the triangle inequality d(z,y) < d(z,z)+d(z,y). According
to the assumed relationship, d(z,y) = 0 and, therefore, d(z,y) < d(z,z)
which proves the second inequality. Starting from d(y, z) < d(y, z) + d(z, z)
and using that d(y, z) = 0, we obtain the first inequality. O

This result shows how the quasi-semidistances concept can be used to
construct monotonic functionals relative to a given metrizable preference
relation, which can be exploited in approximation problems.

Another advantage of the theoretical framework is that it provides a way
of comparing preference relations if there exists an inequality between the

corresponding quasi-semidistances.

Theorem 3. Suppose that dy(z,y) and da(x,y) are two quasi-semidistances

and that di(z,y) < da(z,y). Under these assumptions, if © =4, y, then
x jd1 Y.

Proof. The proof is a simple consequence of the definition. If = <4, v,
then dy(z,y) = 0. Because of the assumed inequality, this implies that
di(z,y) = 0 and, therefore, z <4, y. O

Note that this result does not imply the converse, i.e. if x <4, y = = <4, ¥y
for all x,y € S, then there exists an inequality between the corresponding
quasi-semidistances.

Finally, note that from a given quasi-semidistance, we can always con-
struct a semidistance using the dual. One approach to do that is to calculate

the maximum between the quasi-semidistance and its dual,

pla,y) = max(d(z,y),d(y, x)). (1)

It is straightforward to verify that in addition to the identity property
and the triangle inequality, p satisfies the symmetry property p(x,y) =
u(y, ). The representation in (1) implies that the quasi-semidistance d(z, y)



is consistent with any convergence in p(x,y). That is, if x1,z9,... is a se-
quence converging to x in p(z,y), lim,— e p(n,z) — 0, then necessarily
lim,, o d(zp, ) — 0. We exploit this property in the classification of sto-
chastic orders which we link to the corresponding classification of the metric

p(z,y) which is obtained through the symmetrization transform in (1).

4 The Hausdorff metric structure

In the discussion so far, we have not specified the nature of the points in the
space S. Suppose that S is the space of one-dimensional random variables
defined on a probability space (2,2, Pr) taking values in (R, B;), where B
is the o-field of all Borel subsets of R.? In this setting, a quasi-metrizable
preference order on S turns into a stochastic order with a quasi-semidistance
d(X,Y) defined on the space of all joint distributions S? generated by the
pairs of random variables (X,Y’) which we denote with capital letters. We
proceed with the definition of the universal Hausdorff representation of
quasi-semidistances on S? which we also call probability quasi-semidistances
as they metrize preference relations between random quantities. Our discus-
sion is based on the universal Hausdorff structure of probability distances,
see Rachev (1991).

Consider the Hausdorff metric (A, B) defined on the space of all subsets
of R. Let B C B; and define a function ¢ : S? x B2 — [0, oc] satisfying the

following relations:

I. IfPX=Y)=1,then ¢(X,Y;A,B)=0forall A= B cB.
II.  There exists a constant Ky > 1 such that for all A, B,C € B and

random variables X,Y, Z

Let d(X,Y) be a probability quasi-semidistance. The representation of
d(X,Y) in the following form

2The discussion will not change in a fundamental way if we consider general random
elements taking values in a general functional space. We consider one-dimensional random
variables for the sake of simplicity.



d(X,Y) = hypm(X,Y) = sup inf max{lr(A, B), 6(X, Y;A,B)} (2)
Acs BeB A
is called the Hausdorff structure of d(X,Y). In this representation, r(A, B)
is the Hausdorff metric in the set 8, A is a positive number, and the function
¢ satisfies properties I. and II.
It can be demonstrated that the function hy 4 5(X,Y) defined above is

indeed a quasi-semidistance.

Theorem 4. The function hy ¢ s(X,Y) defined in equation (2) is a

quasi-semidistance.

Proof. The identity property and the triangle inequlity are essentially metric
properties. The proof follows from the arguments in Rachev (1991) proving

that the Hausdorff representation is a probability metric. O

Applying the symmetrization in equation (1) to the representation in
(2), we obtain the Hausdorff representation of probability metrics. For more
information, see Chapter 4 in Rachev (1991).

The following example illustrates the significance of the Hausdorff repre-
sentation. It turns out that every probability quasi-semidistance is rep-
resentable in the form in (2). Consider an arbitrary probability quasi-
semidistance (X, Y). It has the trivial form hy ¢ 3(X,Y) = p(X,Y) where
the set B is a singleton, for example B = {Ap}, and ¢(X,Y; Ag, 4g) =
u(X,Y).

In the limit cases A — 0 and A — oo, the Hausdorff structure turns into

a structure of a uniform type. The following limit relations hold

Theorem 5. Let d(X,Y) have the representation in (2). Then, as X —
0, d(X,Y) has a limit equal to

hO,(b,%(Xa Y) = Ssup ¢<X7 Y; Av A) (3)
Ae®B

As X — o0, the limit imy_oo Ay ¢ 8(X,Y) = hoo ¢ 8(X,Y) exists and

equals

hooos(X,Y) = inf A B 4
6.3( ) 3161%36%7¢()1(1}Y;A73):0T( ) (4)



Proof. The arguments for the proof of (4) are the same as in Lemma 4.1.3.
in Rachev (1991). In order to prove (3), note that

0, B#A

A—0 ?(X,Y;A,A), B=A

lim max {ir(A, B),¢(X,Y; A,B)} = {

Therefore, the infimum in (2) is attained at B = A and, as a result,
ho,¢,9(X,Y) is calculated by computing the supremum of ¢(X,Y; A, A) with
respect to A. O

The main building block of the Hausdorff representation, the function
#(X,Y; A, B), can be interpreted in the following way. It calculates the
performance of X relative to Y over two events A and B. If ¢(X,Y; A, B) =
0 for some A and B, then, according to the preference order definition, Y
performs at least as X with respect to the two events. As we demonstrate
in the next section, in some cases there is a straightforward interpretation in
the sense that ¢ calculates the deviation of the probability of X belonging
to A relative to the probability of Y belonging to B. In other cases, the
relationship of X to A and Y to B is not so direct.

Besides the function ¢, the definition in (2) includes also the Hausdorff
metric (A, B) in order take into account the degree of dissimilarity between
the events A and B. If we want to calculate the degree of deviation between
X and Y on one an the same events, i.e. A = B, then we can use the limit
case given in (3). In this case, if Y outperforms X with respect to all events
A= B,ie. ¢(X,Y;A,A) =0 for all A, then Y is at least as preferable as
X.

The Hausdorff representation of a quasi-semidistance in (2) can be trans-

lated into a different form which is more open to interpretation.

Theorem 6. Suppose that a probability quasi-semidistance admits the
Hausdorff representation hy 49 given in (2). Then, the probability quasi-

semidistance enjoys also the following representation

hyen(X,Y) =inf{e > 0: v(X,Y;Xe) < €} (5)

where



v(X,Y;t) = sup inf X, Y;A B 6
(X.Yit) = sup it oo ) ()

in which A(t) is the collection of all elements B of B such that the Hausdorff

metric (A, B) is not greater than t.

Proof. The proof is constructed in the same way as the proof of Theorem
4.2.1 in Rachev (1991). O

We can interpret equation (6) in the following way. Fix an event A and
a tolerance level ¢ > (0. Using the Hausdorff metric, take all events that do
not deviate from A more than as implied by the tolerance level, i.e. build
the set A(t) = {B € B :r(A, B) < t}. With A fixed, compute the minimum
performance deviation between X and Y running through all events for Y,
which are within the tolerance level. As a next step, compute the maximum
of those minimal deviations by varying A.

By varying the tolerance level ¢, we control the size of the admissible sets
relative to A. The larger ¢ is, the more the admissible events may deviate
from the event A and, therefore, the larger potential there is for deviation
in the performance of Y relative to X. At the other extreme, when ¢t = 0,
the deviation in performance is estimated over one and the same event.

Finally, in equation (5) we calculate the smallest tolerance level such
that the largest of those minimal performance deviations is smaller than it.
Note that, depending on the nature of the random variables X and Y and
the choice of ¢, this smallest tolerance level may actually be infinite, i.e. the
quasi-semidistance may be unbounded.

The parameter A in both (2) and (5) allows calculating limit quasi-
semidistances arising naturally from the general case. This is demonstrated
in Theorem 5. If we view hy 4 3(X,Y) defined in (2) as a function of the

parameter ), it appears that it is a monotonic, non-increasing function.

Theorem 7. The quasi-semidistance hy 4 05(X,Y) defined in (2) is a

non-increasing function of A > 0.

Proof. For any fixed A € B and 0 < A1 < Ag,

max {jrm, B).6(X,Y: A, B)} < max {jr(A, B),6(X,Y: 4, B)}
2 1

10



for all B € 9. Therefore, the same inequality is preserved after computing
sequentially the infimum with respect to B and the then the supremum with
respect to A. In effect, hy, ¢53(X,Y) < hy, 6.5(X,Y). dJ

This result implies that the limit computed in (3) is an upper bound of
h/\,(b,SB(X, Y), ie.

hygs(X,Y) < hogs(X,Y).

Thus, if hog0(X,Y) is finite, it means that hy ¢ 93(X,Y") is finite as well.

5 Examples

In this section, we provide examples of quasi-semidistances with a Haus-
dorff structure. We also provide examples of quasi-semidistances metrizing
different stochastic dominance orders.

The structure of the quasi-semidistance determines whether the induced
stochastic order is based essentially on inequalities between certain charac-
teristics such as mean, volatility, etc., inequalities based on the cumulative
distribution function (cdf), or inequalities directly between functions of the
corresponding random variables. In line with the theory of probability met-
rics, the first order type we call primary, the second — simple, and the third

— compound. The formal definition is as follows.

Definition 1. A metrizable stochastic order =g is called primary, sim-
ple, or compound if the probability semidistance arising from a symmetriza-
tion transform, such as the one given in (1), is primary, simple, or com-

pound, respectively.

From the point of view of finance, the stochastic order behind the mean-
variance framework is primary. In contrast, FSD and SSD are simple orders,
as we demonstrate below. A theoretical advantage of this categorization is

the inclusion

primary orders C simple orders C compound orders

which implies that a primary order cannot induce a simple order which,

in turn, cannot induce a compound order. This is a consequence of the

11



corresponding relations between primary, simple, and compound probability

metrics.

5.1 The Lévy quasi-semidistance and first-order stochastic

dominance

Consider the choice ¢(X,Y; (—o0,z],(—00,y]) = (Fx(x) — Fy(y))+, where
(z)+ = max(z,0). In this case, the sets A and B are of the form (—o0,al,a €

R. The representation in (2) becomes

LX) =sup inf max { Fo = ol (Pe(o) = e} (D)

The quasi-semidistance defined above also equals

Li(X,Y) =inf{e > 0: (Fx(z) — Fy(z + X¢))+ < ¢,Vz € R}

which can be demonstrated by applying the result in Theorem 6. Applying
the symmetrization transform in (1) leads to the parametric version of the

celebrated Lévy metric

Ly(X,Y)=inf{e >0: Fx(z — Xe) —e < Fy(x) < Fx(x + Xe) + ¢, Vo € R}.

and for this reason we call L} (X,Y") the Lévy quasi-semidistance. The two

limit cases in Theorem 5 can be calculated explicitly and they equal

Ly(X,Y) = i‘ég(FX(‘”) = Fy(2))+

Li(X,Y) = sup (Fy'(t) — Fx'()+
te(0,1]

where Fy!(t) = sup{xz : Fx(x) < t} is the inverse cdf of X.

The Lévy quasi-semidistance is an important example because it can be
used to metrize FSD. In fact, the definition in (7) induces the dual order and
is, therefore, monotonic with respect to FSD in the sense of Theorem 2. Re-

call that FSD can be introduced by an inequality between the corresponding

12



cdfs,

X =<pspY <— Fy(x) < FX(x),Vac € R. (8)

The dual order, Xpgp-1, can be expressed in a similar way

X 2psp1 Y = Fx(z) < Fy(z),Voz e R (9)
Theorem 8. The functional LY(X,Y') defined in (7) metrizes <pgp-1.

Proof. We demonstrate that X <pgp-1 Y if and only if L3(X,Y) = 0.
First, notice that L}(X,Y) = 0 if and only if

1
inf max {|x -y, (Fx(x) — Fy(y))+} =0, Vz e R.
yeR A

This, in turn, holds if and only if (Fx(z) — Fy(y))+ = 0 for x = y since
otherwise |z — y| # 0. As a result, L}(X,Y) = 0 if and only if Fx(z) <
Fy(z),Vz € R and, therefore, we can conclude that

Xij\Y <~ FX(.T)SFy(x),VIER.
Comparing to (9), we can conclude that L3(X,Y’) metrizes <pgp-1. O

As a corollary from this result, it follows that the dual quasi-semidistance
L3 (Y, X) metrizes FSD. Also, note that the reasoning does not depend on
the choice of A and, therefore, the result is valid for any A > 0. In effect,
there are many metrics inducing FSD.

Since symmetrization of L} leads to the Lévy metric which is a simple

probability metric, it follows that FSD is a simple order.

5.2 Higher order stochastic dominance

The reasoning in Section 5.1 can be applied to the more general case of
higher order stochastic dominance. Stochastic dominance of order n, <,,
can be introduced by means of an inequality involving the corresponding
cdfs,

X =,V = F"@) <F"),vzeR, (10)

13



where F' )((n) () stands for the n-th integral of the cdf of X which can be

defined recursively as

F{(z) = / ’ FU Y (t)at. (11)

Repeating the arguments in Theorem 9, it can be demonstrated that the

quasi-semidistance

L. Y) = supinf max { o = o (FP0) - F00) | 02
metrizes the dual of the n-th order stochastic dominance and, as result,
L3(Y, X) metrizes <,. In this more general case, however, it is not clear
a priori if L3(X,Y) < oco. For the Lévy quasi-semidistance this question
is redundant because the limit L§(X,Y’) is always finite and Theorem 7
guarantees boundedness of the Lévy quasi-semidistance. The limit of (12)

as A — 0 equals

Ly(x,Y) = sup (F{ (@) - F{"(2))

zeR +

and by Theorem 7 we can conclude that L} (X,Y) < oo if L§{(X,Y) < oo.
We develop a set of sufficient conditions involving another probability

quasi-semidistance.

Theorem 9. The following inequality holds true, provided that E|X|F =
ElY[F, k=1,2,...,n =2, E|X[""" < o0 and E|Y|""" < o0,

x T — n—2
Ly < [ ([T i —Fy<t>>)+dx <o (13)

Proof. Integrating by parts ffoo(F)((nfl)(t) - Fi(,nfl)(t))dt and using the

equality of all moments up to order n — 2, we obtain

/ ' (F)(("_l)(t) - Fff‘”(t)) dt = / ' Md(FX(t) — Fy(1)).

—00 — oo (n—l)'

Therefore,

14



sup (/I (F)(("_l)(t) - Fy‘l)( ) ) < sup/ (F(” Dt F)(/”_l)(t))ert

zeR

/ < / FU Fﬁ”‘”(t)dt) dx
o0 +

a@@iﬁmgimwwdﬂmkm

in which the first equality follows since due to the positivity of the integrand,
the corresponding integral is a non-decreasing function of the upper bound.
The boundedness in (13) follows from the assumed finite absolute moments
of order n — 1.

O

The inequality in (13) is an inequality between two quasi-semidistances.

The upper bound is the Zolotarev quasi-semidistance

qlwﬂv—é(/x@_”w%WAw—wmQ &z

—00 (H—Q)' +

which can also be represented as

G (X,Y) = /R (B(z—X)7 ' — Bz — Y);H)+ dx

The Zolotarev quasi-semidistance itself can be used to metrize the n-
order stochastic dominance under the assumed moment conditions. How-
ever, L) (X,Y) is strictly weaker as there is no lower bound of it that can be
expressed in terms of (¥_;(X,Y). Therefore, this can be viewed as an illus-
tration how one and the same stochastic order can arise from two different
quasi-semidistances.

The conclusion that FSD is a simple order can be extended to the n-th
order stochastic dominance by noticing that symmetrizing ¢}_; leads to a
simple probability semidistance.

The approach discussed in this section can be applied without modifi-
cation to the fractional and the inverse orders discussed in Ortobelli et al.
(2009). From a theoretical viewpoint, they belong to the class of simple
stochastic orders as the probability semidistances arising from applying the

symmetrization transform are simple.

15



5.3 AVaR generated stochastic orders

Rockafellar et al. (2006) provide an axiomatic description of convex dis-
persion measures called deviation measures. Any functional defined on the
space of random variables which is non-negative, positively homogeneous,
sub-additive and translation invariant is called a deviation measure. Stoy-
anov et al. (2008) demonstrate that there is a close relationship between
deviation measures and probability metrics. In fact, it is possible to show
that all deviation measures can be generated from probability metrics.

Deviation measures are closely related to the concept of coherent risk
measures introduced in Artzner et al. (1998). Expectation bounded coherent
risk measures can generate deviation measures and, therefore, probability
quasi-metrics. The converse is also possible, see Rockafellar et al. (2006)
and Stoyanov et al. (2008).

In this section, we provide an example of a probability quasi-metric gen-
erated from a coherent risk measure that admits the representation given
in (3). The coherent risk measure is the average value-at-risk (AVaR), also

known as conditional value-at-risk, which is defined as

1

AVaR(X) = — /0 P (14)

where 0 < € < 1 is called tail probability and X is a random variable
describing the return distribution of an investment. AVaR is interpreted as
the average loss provided that the loss is larger than the e-quantile. For
additional interpretations, see Rachev et al. (2008).

Another representation of (14), which is essentially a consequence of
the general representation of coherent risk measures given in Artzner et al.
(1998), equals

AVaR.(X) = sup —/1 Fx'(t)ydva = — inf /1 Fil(t)dva (15)
AeAe Jo A€ Jo

where A, = {4 C [0,1] : A\(A) = €} in which A(A) is the Lebesgue measure

of A and v4 is a uniform probability measure on the set A. The family of

sets A, can be interpreted as the collection of all sets A such that Fi*(A) is

an e-probability event, P(X € Fy'(A)) = e. The interval [0, €] € 2, yields

the AVaR at tail probability e.

16



Consider the following choice for the building block ¢ of the Hausdorff

representation in (2)

#(X,Y;A,B) = </F dyB—/F duA) (16)

in which A, B € B where B = [0,¢] UB; C A, because the interval [0, ¢]
needs to be in B. It is easy to verify that the axiomatic properties hold and
this is a valid choice for ¢ in the Hausdorff representation. The resulting

quasi-semidistance

AV n(X,Y) = sup mf%max{/l\r(A,B), (Angl(t)duB—/ol gOLY >+}

Aep Be
(17)

is an AVaR generated quasi-semidistance. In the special case when B =

{]0, €]}, then

AV}\7€7{[07€]}(X, Y) = (AV(LR€<Y) - AVCLR€<X))+

The stochastic order <y, induced by the quasi-semidistance AV} . g
can be interpreted in the following way. Suppose that X and Y are two
random variables describing the returns of two stocks. If X =<y, Y, then
the average loss of X in events occurring with probability € is always not
smaller than the corresponding average loss of Y. The events that we con-
sider in this comparison depend on the choice of 26 but the most extreme
ones, F.*([0,¢]) and Fy ([0, €]), are always included.

A couple of properties are collected in the next theorem.

Theorem 10. The following relations hold true.

1. If X 2pvy Y, then AVaR(Y) < AVaR.(X) for any admissible choice
of B.

2. The limit of AV (3(X,Y) as A — 0 equals

1
AVj . 5(X,Y) = sup (/ Fy dz/A—/ Fy—l(t)duA> (18)
AeB +

3. If X = EY is a constant, then AV  3(EY,Y) = AVaR.(Y — EY)
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and, thus, equals the deviation measure behind the AVaR risk measure.

4. Suppose that B1 C By. Then, the stochastic order = AV, implies the

stochastic order < AV, -

5. If X Zpsp Y, then X Spvy Y for any admissible choice of B. The

converse s not true.
Proof. We prove one by one the claims in the theorem.

1. Repeating the arguments in Theorem 8, we find out that AV, . 5(X,Y) =
0 if and only if the function in (16) equals zero for each A € B and
B = A which, in turn, implies that

1 1
/F)gl(t)duAg/ Fyl(tdva, YAE€D
0 0

Since [0, €] € B,

1 1
_/0 F);l(t)dl/[()d > —/0 F;l(t)dy[07€] =
which proves that AVaR:(Y) < AVaR(X).
2. The proof is a simple application of the reasoning in Theorem 5.

3. First, notice that fol F]E)l,(t)dVA = EY irrespective of A. As a result,

1
AV n(EY,Y) = sup —/ Fyl(t)dva + BY
aes Jo

= AVaR.(Y) + EY
= AVaR.(Y — EY)

4. If we can demonstrate that there is an inequality between two quasi-
semidistances metrizing = AV, and < N the rest is a consequence
of Theorem 3. Consider AV, (X,Y) and AV(,,(X,Y). The
inequality AVy 93, (X,Y) <AV, (X,Y) follows from (18) and the

assumed inclusion B C Bo.

18



5. If X <FSD Y, then F’l() < Fyl(t), vt € [0,1]. As a result,
fo (t)dva < fo )dVA, VA € B, where B is any admissible
famlly of sets. Therefore, X Savy Y.

The fact that the converse does not hold follows essentially from the
granularity of the sets in the family 8. We can always construct an
example in Which F*I( t) > Fﬁl( t),Vt € [to — 6,t0 + &], where § < ¢,
and yet [§ Fy (t)dt < [5 Fy " (t)dt.

O]

An expected corollary from the results above is that AVaR is consistent
with FSD. Assuming that the random variables X and Y describe stock
returns, it is the structure of the admissible family %8 which determines
whether only events including losses are considered in <av,, , i.e. negative

returns, or both profits and losses, i.e. positive and negative returns.

5.4 Compound quasi-semidistances

The examples in the previous sections share a common feature. If X and
Y are two random variables such that Fx(x) = Fy(z),Vx € R, then the
corresponding quasi-semidistances equal zero. In this section, we consider
compound quasi-semidistances in the form in (5) which are essentially char-
acterized by the following feature: if X =Y in almost sure sense, then they
turn into zero.

Consider a function d(z, y) defined on RxR, which is a quasi-semidistance.

Define the function v in the representation in (5) to be

v(X,Y;t) = P(A(X,Y) > t).

Then, the functional

pA(X,Y) =inf{e > 0: P(d(X,Y) > Xe) < ¢}

is a compound quasi-semidistance.

The stochastic order generated from py(X,Y) is of a compound type.
Suppose that d(X,Y) = (X —Y);. Under this assumption, py(X,Y) =0
if and only if P((X —Y);+ > €) = 0,Ve > 0 which means that X <Y in

almost sure sense.
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There are also other ways to construct compound quasi-semidistances
which do not enjoy a non-trivial Hausdorff representation. For additional

information, see Stoyanov et al. (2008).

6 Utility-type representations

From the point of view of the economic theories describing choice under un-
certainty, some stochastic orders arise from the preferences of a given class of
economic agents. For example, according to classical expected utility theory,
FSD arises from the class of non-satiable investors who have non-decreasing
utility functions. Thus, if all non-satiable investors do not prefer Y to X,
then X <pgp Y. Likewise, second-order stochastic dominance arises from
the non-satiable, risk-averse investors who have non-decreasing, concave util-
ity functions. In the same manner, n-th order stochastic dominance can be
introduced through the preference relations of a class of investors the utility
functions of whom are characterized by certain properties involving deriva-
tives of higher order.

Consider the preference relation of an investor with a utility function
u(z),x € R. The preference relation is characterized by the expected utility,
ie. X <, Y if and only if Fu(X) < Eu(Y). As a result, one natural

quasi-semidistance metrizing the preference relation is

G(X.Y) = (Bu(X) — Bu(Y));.

Indeed, it can be directly verified that X 2 Ye X, Y.

This approach can be generalized to a given class of investors . The
arising stochastic order =<, is introduced in the following way: X =<y Y
if and only if X <, Y,Vu € U. In this case, one natural quasi-semimetric

metrizing <;; has the form

Gix.¥) =sup ([ ul)i(Px(o) - Fr(e)) (19)

ueld "
which equals (;(X,Y) = sup, ey (Eu(X) — Eu(Y))4 if the corresponding
expected utilities are finite. Thus, the condition (}(X,Y’) = 0 guarantees
that X <, Y,Vu € U, and therefore the stochastic order generated by the
quasi-semidistance in (19) coincides with the stochastic order of the class U.

Since the representation in (19) is directly liked to the class U, we call it a
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utility-type representation.

Some properties of (19) are collected in the following theorem.

Theorem 11. Suppose that the functional defined in (19) is finite. Un-
der this assumption, it is a probability quasi-semidistance which metrizes the

stochastic order <y.

Proof. The identity property is obvious, if Fx(x) = Fy(z),Vz € R, then
Gy(X,Y) = 0. The triangle inequality follows from the properties of the
(y)+ function.

From the definition in (19), it follows that if ((X,Y) = 0, then X =,
Y, Yu € U. Therefore, =¢; = =u. The converse relationship follows by
construction, if Eu(X) < Fu(Y'),Vu € U, then sup, ¢y (Eu(X)—Eu(Y))4 =
0. As a result, <¢» < =<y. The assumption of boundedness of (;(X,Y) is
technical and is required to make sure the order =¢ well-defined over all
pairs (X,Y). O

Additional properties for the functions in ¢ have to be specified in order
to guarantee that (;(X,Y) is finite. Usually this is done by imposing certain
growth conditions. For additional details, see Rachev (1991).

Stoyanov et al. (2009) consider a functional similar to (19) which is
constructed to be consistent with cumulative prospect theory. They demon-
strate that the class of investors with balanced views, introduced in Stoy-
anov et al. (2009), is sufficient to metrize FSD. In order to be consis-
tent with the definition in (19), we illustrate this with a sub-class. Con-
sider all investors with bounded, non-decreasing Lipschitz utility functions,
u(z) : |Ju(z) —u(y)| < K|z —y|,Vz,y € R, where 0 < K < 1. Denote
this class of utility functions with r. Under these assumptions, the quasi-
semidistance ¢y, (X,Y) is bounded,

G (XY) < /R (Fy(z) - Fy(x))+dr,

and metrizes FSD.

Note that both ¢ from this example and the Lévy quasi-semidistance
in (7) metrize FSD. This does not necessarily mean that there is a certain
relationship between ¢;; and L}. The topologies generated by the two quasi-
semimetrics may be completely different and yet their specialization orders

can be the same.
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The quasi-semidistance in (19) is not a universal representation as the
Hausdorff construction in (2). Therefore, even though any metrizable sto-
chastic order is generated by a quasi-semidistance, there may not exist a
quasi-semidistance with a utility-type representation metrizing it. An ex-
ample of a stochastic order which implies second-order stochastic dominance
but for which no representation in terms of a class of investors is known can
be found in Rachev et al. (2008).

Finally, whether a utility-type order is primary or simple depends on
how rich the family ¢ is. This is illustrated in Stoyanov et al. (2009) in a
discussion concerning how rich ¢ can be in order for (;; to metrize FSD.
As an extreme example, if U contains only one utility function, i.e. there is

only one investor, (;; generates a primary order.

7 Almost stochastic orders and degree of violation

A way to address some of the paradoxes arising from expected utility theory
is discussed in Leshno and Levy (2002) and Bali et al. (2009). They suggest
considering a sub-set of the corresponding investors set because, as they
argue, paradoxes arise from non-realistic choices of utility functions. The
stochastic order arising from this smaller set of investors is called almost
stochastic order.

The general idea is to develop conditions that the utility functions in
a given set need to satisfy which depend on the degree of violation of the
stochastic order arising from the larger investors set. For instance, consider
s1 ={z: Fx(z) — Fy(z) < 0} and sy = {z : Fy(z) — Fx(z) < 0}. The
degree of violation of X <pgp Y is defined as the ratio

C f81 (Fy(z) — Fx(z))dx
Jz |Fx(z) — Fy(z)|dx
and the corresponding condition on the non-decreasing utility functions is
derived to be v/(z) < inf, u/(x)(1/e — 1).

The degree of violation of FSD can be expressed in terms of a quasi-

semidistance metrizing FSD. Consider the Kantorovich quasi-semidistance

K (X,Y) = /]R (Fy (z) — Fx(x))4dz.

It can be demonstrated that it metrizes FSD by repeating the arguments
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in Theorem 8. For additional information, see also Stoyanov et al. (2009).

The degree of violation € can be related to £*(X,Y) in the following way

/(1 - €) = K (X,Y) /K" (Y, X).
As a result, the corresponding condition becomes

E*(Y, X)
/ < . f / 9 .
u'(z) < infu (:c)ik* (X.7)
This example is interesting as it illustrates a generic property. If X and
Y are two prospects such that their cdfs do not coincide completely, then
the ratio
_ MXY)

r= ——:

p(Y; X)
in which p(X,Y) is some quasi-semidistance measures the degree of violation

of the stochastic order X =<, Y metrized by u.

8 Conclusion

In this paper, we considered a general systematic approach towards de-
scribing stochastic dominance rules by means of quasi-semidistances. We
provided a universal representation of quasi-semidistances, which we call
the Hausdorff representation in line with a similar universal representation
in the theory of probability metrics. The theoretical framework allows for a
categorization of stochastic orders to a primary, simple, and compound type.
A number of examples supporting the theoretical construct were discussed
pertaining to FSD and the n-th order stochastic dominance in general. We
introduced a stochastic order based on average value-at-risk which illus-
trates how the quasi-semidistances approach can be used to generate new
stochastic orders. We also considered stochastic orders arising from classes
of investors and a utility-type quasi-semidistance metrizing them. An ex-
pected outcome from the theoretical framework is that not all metrizable
stochastic orders have a utility type representation. Finally, we discussed a
way to measure the degree of violation of a stochastic order and how it is

related to the notion of almost stochastic dominance.
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