
METRO: A Router Architecture for High-Performance, Short-Haul

Routing Networks

Andr4 DeHon

<andre@ai.mit .edu>

Frederic Chong Matthew Becker Eran Egozy

<ftchong@ai.mit .edu> <beefe@ai.mit .edu> <eran@media.mit. edu>

Henry Minsky Samuel Peretz Thomas F. Knight, Jr.

<hqm@ai.mit .edu> <sam@monitor .com> <tk@ai.mit .edu>

MIT Artificial Intelligence Laboratory

545 Technology Square

+ Cambridge, MA 02139

Abstract

The Multipath Enhanced Transit Router Organi-

zation (METRO) as a jlexib!e routing architecture for

high-performance, tightly-coupled, multiprocessors and

routing hubs. A METRO router is a dilated cross-

bar routing component supporting half-duplex bidirec-

tional, pipelined, circuit-switched connections. Each

METRO router is self-routing and supports dynamic

message trafic. The routers works in conjunction with

source-responsible network interfaces to achieve reli-

able end-to-end data transmission in the presence of

heavy network congestion and dynamic faults. METRO

separates the fundamental architectural characteristics

from implementation parameters. Simplicity of rout-

ing function coupled with freedom in the implemen-

tation parameters allows METRO ktpkmentUtiOnS to

fully exploit available technology to achieve low:latency

and high-bandwidth. We illustrate the effects of this

implementation freedom by summarizing the perfor-

mance which various METRO configurations can ex-

tract from some modern CMOS technologies. Included

in our illustrations is M13TROJR-OREllTf a minimai in-

stance of the METRO architecture we constructed in a

1.2p gut e-array technology.

Acknowledgments: This research is supported in part by the

Advanced Research Projects Agency under contracts Nooo14-

S7-K-0825 and NOO014-91-.J-1698. This material is based upon

work support ed under a National Science Foundation Graduate

Fellowship. Any opinions, findings, conclusions or reconunen-

dations expressed in this publication are those of the author

and do not necessarily reflect the views of the National Science

Foundation.

1 Introduction

The METRO architecture is optimized for low-

latency, fault-tolerant node-to-node communications

in tightly-coupled computing environments such as

high-performance multiprocessors and network rout-

ing hubs. The basic routing function employed is sim-

ple yet powerful. Simplicity is achieved by pushing

the responsibility for message buffering, congestion

handling and fault handling outside of the network.

The simplicity of function in METRO is analogous t,o

contemporary trends in processor design: Functional

complexity is reduced to speed primitive operation.

While each router’s behavior is simple, an assembled

network behaves in a sophisticated manner, requiring

little assistance from the source node to efficiently han-

dle most cases of congestion control and fault avoid-

ance. The METRO architecture is defined in a general

manner which separates the fundamental characteris-

tics of the architecture from implementation parame-

ters. Freedom in choosing implementation parameters

provides flexibility to customize particular METRO im-

plementations to suit target applications and available

technologies. Combining simple routing with freedom

to optimize to the target technology, METRO imple-

mentations can achieve very high-performance sup-

porting both low-latency and high-bandwidth commu-

nications.

Each METRO router is organized as a dilated

crossbar routing component supporting half-duplex

bidirectional, pipelined, circuit-switch connections.

METRO routers may serve as the principal building

blocks for a wide range of indirect, multistage rout-

ing net works. METRO rout ers feature:

1063-6S97/94 $03.00 G 1994 IEEE

266

● High-Bandwidth, Pipelined Circuit-Switched Op-

eration

● Self Routing

● Low-Latency Connection Establishment and Data

Transmission

● (Unlimited) Variable Length Message Support

● Stochastic, On-line Fault Avoidance Support

● Flexible Routing Configuration Options

● Fast Path Reclamation

● Cascade Support for Building Wide Routers from

Narrow Routers

● Multiple-TAP Scan Architecture

● Integrated Support for Fault-Localization and

Fault-Avoidance

Section 2 describes the communications domain

where METRO is most suitable. In Sections 3 through 5

we review the terminology used in describing METRO-

style routing components and describes the basic op-

eration and architecture of METRO routing compo-

nents. Section 6 describes sample implementations

of the METRO architecture. Section 7 reviews several

contemporary routing networks and switches for com-

parison with METRO. In Section 8, we review the key

benefits of the METRO architecture.

2 Application Domain

Low Latency Communications In many applica-

tions, including general-purpose MIMD multiprocess-

ing, cross network latency is the critical factor limit-

ing application performance. In applications where we

can only extract limited parallelism, cross network la-

tency acts to limit the speedup achievable using paral-

lel processing. In particular, an application with p op-

erations which may proceed in parallel on each cycle,

running on a machine with latency 1 can, on average,

execute & operations per cycle. Only in cases where

parallelism is much larger than the number of nodes

(n) employed to speedup the application (p > (n . 1)),

is application performance decoupled from network la-

tency. In cases where application parallelism is limited

compared to the number of available processors, the

achievable speedup due to parallel processing is di-

rectly limited by cross network latency.

Short-Haul Networking We refer to METRO as a

building block for short-haul networks to distinguish

it from the networking technologies in common use

for Local- and Wide-Area Networking (LAN/WAN).

LAN/WAN technologies allow the construction of

long-haul networks for interconnecting loosely coupled

nodes. Long-haul networks are generally used to link

together computers in distributed computing environ-

ments.

The interconnection distances between computers

or routing hubs in long-haul networks are necessarily

large due to the physical separation of machines. In

these cases, the latency between nodes is dominated

by the latency traversing the physical interconnect be-

tween nodes. This has two effects: (1) the relative

importance of low-latency switching is small since the

node-to-node travel time is dominated by thle latency

required to traverse the long, physical interconnection

media; (2) since the time required to inject an entire

message into the network can be small compared to

the time required to deliver it, interconnection band-

width is utilized most efficiently by packet switching

where an interconnection channel is alloci~ted to a

message for only long enough for the message to be

injected into the interconnect. Consequently, long-

haul networks employ packet switching and are not

significantly impacted by the delay through switching

elements.

In tightly-coupled networks, the interconnection

delays are much smaller and routing latency has a

much larger proportional impact on end-to-end mes-

sage latency. METRO is optimized for these configura-

tions and applications where low end-to-end message

latency is critical. In these tightly-coupled situations,

the time required to inject a message is often large

compared to the end-to-end interconnect latency. We

use the term short-haul networking to denote network

technologies optimized for the case where end-to-end

interconnection latency is comparable to or smaller

than the message injection time.

Since message injection time dominates intercon-

nect transit latency in short-haul networks, there is

little negative impact on usable network bandwidth if

we dedicate resources to a single message for the dura-

tion of its communication. Consequently, we can em-

ploy circuit switching interconnect techniques without

sacrificing significant performance. In these short-haul

network environments circuit switching offers several

advantages:

1 Simpler management which allows fast operation –

The lack of buffering in the network sim~plifies the

operation performed by each router allowing faster

implement ations.

2 Fast, deterministic acknowledgements – The dedi-

cated network connection allows low-overhead, fast

and efficient end-t~end verification of message de-

livery.

3 Stateless network - No messages ever exist solely

267

in the the network. Consequently, it is possible to

stop network operation at any point in time with-

out losing or duplicating messages. This feature

is useful in gang-scheduled, time-shared, multipro-

cessors, allowing context switches to occur without

incurring overhead to snapshot network state.

METRO employs circuit switching to simplify and

speed switching through the network and allow effi-

cient implementation of reliable message protocols.

Note that these two classes of networking tech-

nologies optimize for bandwidth utilization and la-

tency differently based on their domains of applica-

tion. There is clearly a region of operation between

the extremes of short- and long-haul networking. In

this region there is a tradeoff between usable band-

width and end-to-end latency. The choice of an op-

timization target in this region is often application

dependent.

Network Organization A collection of METRO

routers is typically used to construct a multipath, mul-

tist age network. Multiple stages allow the routers to

route data between a source and a destination through

a logarithmic number of routing components. In a

multibutterfly-st yle network, each stage in the rout-

ing network subdivides the set of possible destinations

into a number of distinct classes determined by the

radix of the routing components. Successive stages

recursively subdivide the destination class until each

output node from the network is uniquely identified.

Dilated routing components give rise to multiple in-

dependent paths through the network. The multiple

paths in the network increase available bandwidth, de-

crease congestion, and provide tolerance to link and

router faults. Figure 1 shows a small network of this

genre.

[16] and [23] present some of the basic theory on

multibutterflies, a well-understood example of multi-

path networks. Network construction, utilization, and

performance issues are further explored in [10] [15] [2]

[3]. Fat-Tree networks [17] [14] are another class of

multistage, multipath networks which can be built us-

ing METRO routing components. [7] details issues in-

volved in const rutting such networks.

3 Terminology and Overview

A METRO router is a dilated crossbar routing

component which supports half-duplex bidirectional,

pipelined, circuit-switched connections. Each METRO

router is self-routing and supports dynamic mes-

A multibutterfly style network constructed

from 4 x 2 (inputs x radix), dilation-2 METRO

routers and 4 x 4 dilation-1 routers. Each of

the 16 endpoints has two inputs and outputs

for fault tolerance. Similarly, the routers

each have two outputs in each of their two

logical output directions. As a result, there

are many paths between each pair of net-

work endpoints. Paths between endpoint 6

and endpoint 16 are shown in bold.

Figure 1: 16 x 16 Multipath Network

sage traffic. METRO works in conjunction with a

source-responsible network interface to achieve reli-

able end-to-end data transmission in the presence of

heavy network congestion and dynamic faults. Fault-

localization and reconfiguration capabilities provided

through the scan interface allow the router to perform

efficiently in the presence of static faults.

General Terminology A crossbar has a set of i

inputs and a set of o outputs and can connect any of

the inputs to any of the outputs with the restriction

that only one input can be connected to each output

at any point in time. A dilated crossbar has groups

of outputs which are considered equivalent. We refer

to the number of outputs which are equivalent in a

particular logical direction as the crossbar’s dilation,

d. We refer to the number of logically distinct outputs

which the crossbar can switch among as its radix, r.

A circuit-switched routing component establishes

connections between its input and output ports and

forwards the data between inputs and outputs in a

deterministic amount of time. Notably, there is no

268

storage of the transmitted data inside the routing com-

ponent. In a network of circuit-switched routing com-

ponents, a path from the source to the destination

is locked down during the connection: the resources

along the established path are not available for other

connections during the time the connection is estab-

lished. In a pipelined, circuit-switched routing com-

ponent, all the routing components in a network run

synchronously from a central clock and data takes a

small, constant number of clock cycles to pass through

each routing component.

A crossbar is said to be self routing if it can establish

connections through itself based on signaling on its

input channels. That is, rather than some external

entity setting the crosspoint configuration, the router

configures itself in response to requests which arrive

via the input channels. A router is said to handle

dynamic message trafic when it can open and close

connections as messages arrive independently from one

another at the input ports.

METRO Terminology When connections are re-

quested through a METRO router, there is no guar-

antee that the connections can be made, As long as

the dilation of the router is smaller than the number

of input channels into a router (i.e. d < i), it is pos-

sible that more connections will want to connect in a

given logical direction than there are logically equiva-

lent outputs. When this happens, some of the connec-

tions must be denied. A connection request rejected

for this reason is said to be blocked. The data from

a blocked connection is discarded and the source is

informed that the connection was not established.

Once a connection is established through a METRO

router, it can be turned. That is, the direction of

data transmission can be reversed so that data flows

from the original destination to the original source.

This capability is useful for providing rapid replies

between two nodes and is important in effecting re-

liable communications. METRO provides half-duplex,

bidirectional data transmission since it can send data

in both directions, but only in one direction at a time.

Since connections can be turned around and data

may flow in either direction through the crossbar

router, it can be confusing to distinguish input and

output ports since any port can serve as either an in-

put or an output. Instead, we will consider a set of

forward ports and a set of backward ports. A forward

port initiates a route and is initially an input port

while a backward port is initially an output port. The

basic topology for a crossbar router assumed through-

out this paper is shown in Figure 2.

1+
-...4 ————— .——

Fr)yfd

Ferwwward

●

●
Cros spoht Array

●

F;twnsrd

KL– .–– ––––– _.._l

The basic router has i forward ports and o = r . d

backward ports. Any forward port can be con-

nected through the crosspoint array to any back-

ward port. The arrows indicate the initial direction

of data flow.

Figure 2: Basic Router Configuraticm

4 Router Operation

Overview In operation, a network end]point will

feed a data stream of an arbitrary number of words

into the network at the rate of one word per clock

cycle. The first few data words are treated as a

routing specification and are used for path selection.

Subsequent words are pipelined through th[e connec-

tion, if any, opened in response to the leading words.

When the data stream ends, the endpoint may sig-

nal a request for the open connection to be reversed

or dropped. When each router receives a reversal re-

quest from the sender, the router returns status and

checksum information about the open connection to

the source node. Once all routers in the pa,th are re-

versed, data may flow back from the destination to

the source. The connection may be reversed as many

times as the source and destination desire before being

closed. End-to-end checksums and acknowledgments

ensure that data arrives intact at the destination end-

point. When a connection is blocked due to contention

or a data stream is corrupted, the source endpoint re-

tries the connection.

Stochastic Path Select ion When a connection is

opened through a router, there mayor may not be out-

puts available in the desired logical output direction.

269

If there is no available output, the router discards the

remaining bits associated with the data stream. When

the connection is later turned, the router STATUS word

returned by the routing node informs the source that

the message was blocked at the router. When exactly

one output in the desired direction is available, the

router switches the connection through that output.

When multiple paths are available, the router switches

the data to a logically appropriate backward port se-

lected randomly from those available.

This random path selection is the key to making the

protocol robust against dynamic faults while avoiding

the need for centralized information about the net-

work state and keeping the routing protocol simple.

When faults or congested regions develop in the net-

work, the source detects the occurrence of a failed or

damaged connection by monitoring the router status

and the acknowledgment, if any, from the destination.

The source then knows to resend the data. Since the

routing components select randomly among equivalent

outputs at each stage, it is highly likely that the retry

connection will take an alternate path through the net-

work, avoiding the newly exposed fault or hot spot.

Source-responsible retry coupled with randomization

in path selection guarantees that the source can even-

tually find an uncontested, fault-free path through the

network, provided one exists. The number of retries

required, in practice, is small. The random selection

also frees the source from knowing the actual details of

the redundant paths provided by dilated components

in the network. Random selection among equivalent

available outputs is an extremely simple selection cri-

terion to implement in silicon and can be implemented

wit h little area and considerable speed. Random se-

lection also requires no state information not already

contained on the individual routing component.

5 Architecture

The METRO architecture contains many features

which provide for flexible implementation and applica-

tion. This section describes many of the key features

including:

1 Pipelining options for achieving high bandwidth

2 Cascading options for building wide data paths

3 Configuration options for operational flexibility

4 Connection reversal for low-latency replies

5 Fsst block recovery for fast stochastic path search

6 Scan support for fault localization and masking

5.1 Feat ure Descriptions

Configurable Dilation In many dilated network

configurations, it is desirable to utilize routers with

differing dilations in some stages of the network. For

instance, in the network shown in Figure 1, the final

stage uses dilation-1 METRO routers while the earlier

stages use dilation-2 routers. The dilation- 1 routers

in the final stage allow the network shown to tolerate

the complete loss of any router in the final stage with-

out isolating any endpoints from the network. The

dilation-2 routers in the earlier network stages give the

network its multipath nature allowing the network to

tolerate congestion and faults in the earlier network

stages. To facilitate this kind of network const ruc-

tion from a single router implementation, the effective

dilation of a METRO router may be configured to any

power of two up to the implementation specified limit,

rnax.d.

Data Idle There are several cases in system use

or in basic router behavior where it is necessary to

keep a connection open while no data is available for

transmission. DATA-IDLE is a word passed through

the router just like data but which is outside of the

normal band of data word encodings. There are two

major uses of this designated token:

1. The protocols layered on top of a network of

METRO routing component may use DATA-IDLE

when it is not possible to deterministically specify

when data will be available to send with a mes-

sage. e.g. In a low-latency, distributed-memory

multiprocessor, the sending endpoint might turn

the connection around to get a fast reply to a read

request. The delay associated with preparing the

read data for the reply may depend on whether

the data item requested currently resides in the

remote node’s cache or in main memory. The re-

mote node can send DATA-IDLE words to fill the

variable delay associated with data retrieval.

2. The routing components themselves use DATA-

IDLE in cases where the number of cycles between

events can vary within a given implementation.

This feature is employed by the various forms

of pipelining in METRO (z. e. Variable Turn De-

lay and Data Pipelining) to make implementation

and application pipelining details transparent to

the source endpoint.

Connection Reversal After opening a connection

through a series of routers, the source will generally

270

want a reply back from the destination to verify that

the message was received. Often the source will also

want to get a response to the connection request. By

sending a designated control word, TURN, the estab-

lished path is reversed in a pipelined manner so that

data can return from the original destination back to

the original source. During the pipeline delays as-

sociated with reversing the connection, each routing

component has the opportunity to inject information

into the return data stream about the status of the

connection and the integrity of the data transmitted;

this information is useful to the source in identifying

and localizing errors. This path reversal allows METRO

to implement efficient, low-latency, request-reply op-

erations such as distributed-memory read operations.

Once the connection is established and the request is

transmitted, the reply data can stream back along the

path opened by the request without incurring any ad-

ditional latency to acquire a new connection through

the network.

To allow arbitrary protocols to be layered on top of

the basic METRO router protocol, connections may be

turned back to the forward direction. Any number of

data transmission reversals may occur during a single

connection. It is always the prerogative of the trans-

mitting end of the connection to signal a connection

reversal.

Pipelining Data Through Routers If we can

clock data between routing components faster than we

can route data through a routing component, we can

often achieve higher bandwidth by allowing the data

to take multiple clock cycles to traverse the routing

component. The only place where pipelining affects

the routing protocol is when connections are reversed.

Following a TURN the number of delay cycles before

return data is available will depend on the number of

pipeline stages through the routing switch since it is

necessary to flush the router’s pipeline in the forward

direction, then fill it in the reverse direction before re-

verse data can be forwarded. DATA-IDLE words serve

to hold the connection open during the pipeline delays.

Pipelined Connection Setup The longest latency

operation inside a routing component is often connec-

tion establishment when arbitration must occur for

a backward port. If we require that the connection

setup occur in the same amount of time, or the same

number of pipeline cycles, as the following data is

routed through the component, the latency associated

with connection setup will be passed along to become

the latency associated with data transfer through the

router. Alternately, we can allow more time, generally

more pipeline cycles, for connection setup than for

data transmission. When we allow this, each router

will consume a number of words equal to the differ-

ence between the setup pipeline latency and the trans-

mission pipeline latency from the head of each data

stream. When constructing the route header, we pad

the header to account for the words which eabch router

strips from the head of the data stream during con-

nection setup.

For example, consider a router which can route data

along an established path in a single cycle, but requires

three cycles to establish a new connection. The router

would consume the first two words from the head of

each routing stream before it was able to establish a

connection and forward the remainder of the data out,

the allocated backward port.

Variable Turn Delay For long interconnect,

METRO routers pipeline data across the wires inter-

connecting routers. In some network systems, it, is

generally not possible or desirable to make all the

connections between routers equally long. In particu-

lar, closer routers should be able to take advantage of

the fact that interchip signaling may occur fhster (i.e.

less pipeline delays between routers). Since each port

on a single router connects to a different router it may

be the case that the length of the wires connected to

each port differ. For this reason, METRO provides the

ability to define the number of pipeline stages asso-

ciated with each port connection separately. During

the time the router is waiting for a response from the

turn by the attached routing component, the waiting

router will send DATA-IDLE words to hold thle connec-

tion open until it has reverse data to forward.

One important assumption made here is that we

can model the wire between two components as a num-

ber of pipeline registers. How one assures that this

assumption is satisfied is implementation dependent.

With a properly series-terminated point-to-point con-

nection between routers, we do not have to worry

about reflections and settling time on the wire. The

wire will look, for the most part, like a time-delay. The

necessary trick is to make the time-delay approximate

an integral number of clock cycles so that it does look

like a number of pipeline registers. A brute force way

to achieve this is to carefully control the length and

electrical characteristics of the wires between compo-

nents. Alternately, we can use adjustable delay in the

pad drivers themselves to adjust the chip-tc-chip de-

lay sufficiently to meet the assumption. See Chapter 6

of [9] for further discussion.

271

Path Reclamation – Fast and Detailed When

a router is unable to route a connection due to the

lack of availability of an appropriate backward port,

the connection is blocked. There are two ways which

a METRO router can handle this situation. The router

could wait for a path reversal request and shut the

connection down after returning information to the

source about the blocked state of the connection. Al-

ternately, the router could immediately begin propa-

gation of a backward drop request back to the source

using a designated backward control. bit (BCB). The

earlier behavior provides the source with sufficient in-

formation to determine at exactly which router the

blocking occurred and whether or not any errors oc-

curred prior to that point. The latter behavior releases

the resources held by the blocked connection rapidly

while only informing the source of the routing stage

in which the blocking occurred.

METRO routers allows each forward port to indepen-

dently select between these two modes. The tradeoff

between fast path reclamation and detailed informa-

tion gathering can be handled dynamically while the

router is in use. Note that the mode of path reclama-

tion is solely determined by the configuration of the

forward port on the router at which the blocking oc-

curred. If we were to disable fast path reclamation on

a single router in the network, only those connections

which block at that particular router would hold the

connection for a detailed reply. Connections which

blocked before or after the router would recover us-

ing the fast path reclamation. This allows the system

to select portions of the network (e.g. a particular

stage in the routing network or a particular routing

component) for gathering detailed information while

blocking in the remainder of the network is signalled

via fast reclamation for efficiency.

Scan Support METRO integrates extensive scan

support using an IEEE 1149-1.1990 [4] compliant

Test Access Port (TAP) extended to support multi-

ple TAPs on each component (MultiTAP) [8]. The

multiTAP support allows METRO increased tolerance

to faults in the scan paths. The TAPs provide a con-

venient mechanism for setting METRO’s mostly static

configuration options.

In addition to the normal boundary-scan facilities

associated with an IEEE 1149 TAP, METRO provides

fine-grain facilities for on-line fault-diagnosis. In par-

ticular, many of the system in which an METRO router

might be used are large and it would be inconvenient

or impractical to bring the entire machine down to run

traditional boundary-scan style diagnostics. For this

reason, METRO routers allow each port to be treated

separately for purposes of testing and reconfiguration.

Each port can be disabled, removing it from the set

of resources in use by the system. The topology and

redundancy provided by typical METRO networks al-

low the network to continue functioning with some

resources disabled. Once a port is disabled, boundary

and internal scan tests can be applied exclusively to

the disabled port or ports while the rest of the router

functions normally. This allows a forward-backward

port pair, a routing component, or some region of

a network, to be isolated from normal operation for

testing. Once the fault region is identified, the faulty-

region can be left disabled and the rest of the system

returned to service. Disabled faults are masked, in

that their faulty behavior can no longer corrupt mes-

sage traffic.

Router Width Cascading To allow wide routers

to be built from routing components with narrow dat-

apaths, METRO provides features to facilitate cascad-

ing routers. A router with an effectively wider data

path can be achieved by using multiple METRO routers

in parallel. Routing components often tend to be pin-

limited. Width cascading reduces the competition for

pins between datapath width and the number of for-

ward and backward ports supported on a single IC.

For any fixed number of IC pins, this allows the IC

to support more forward and backward ports with-

out sacrificing network datapath width. For a target

logical router size, this allows logical routers to be con-

structed from primitive router ICS with less pins, and

hence less expense.

In width cascading, two or more routers need to

behave identically in terms of how they handle con-

nections. METRO provides two hooks to ensure iden-

tical connection handling: shared randomness and a

wired-AND pull-up.

For shared randomness, the routers receive their

random bits from off chip. These bits are used along

with the connection requests to decide the assignment,

of connection requests to backward ports. As long as

the connection requests and shared random bits are

identical for the set of cascaded routers, the cascaded

routers will allocate identically in the non-faulty case.

Only in faulty cases should the connection requests,

and hence allocations, ever differ.

To handle the faulty case where the routing header

is corrupted or a router behaves abnormally, METRO

enforces a simple consistency check on each backward

port. Each backward port has pull-up signal (IN-USE)

that indicates when the port is not in use. By con-

41,4

Variable Function

Sp Number of Scan Paths (sp ~ 1)

w Bit Width of Data Channel

(o= 2“, o ~ rnaz.d)

Number of Random Inputs (ri z 1)

;: Number of Header Words Consumed

Per Router (hw ~ O)

dp Number of Data Pipestages

Inside Router (dp > 1)

rnaz.vt d Maximum Number of Delay Slots

I II Available for Variable

Turn Delav (max-vtd > 0)

Table 1: METRO Architectural Parameters

netting this signal across the cascaded routers in a

wired-AND configuration, the backward ports can de-

tect when they disagree about an allocation. Since any

disagreement is necessarily an error, as soon as the dis-

agreement is noticed, the connection is shut down on

all attached routers so that the fault is contained.

There is still a need for end-to-end checking to as-

sure that messages arrive intact. Though highly im-

probable, there still exist some cases in which a faulty

allocation may go unnoticed by the shared pull-up.

The shared pull-up facility significantly limits the neg-

ative effects that can be caused by the faults which are

most likely to occur.

To avoid the need for additional resources to gener-

ate the random bits, the METRO architecture requires

each component to generate one random output bit

stream. Each METRO router typically hss multiple

random input bits to support the stochastic path se-

lection.

5.2 Architect ure Parameters

The METRO architecture encompasses a large fam-

ily of potential router implementations. All METRO

implementations share the same basic function and

protocol. Individual METRO routers may be special-

ized for application and implementation technology by

the appropriate selection of architectural parameters.

Many of these parameters were introduced in the pre-

vious section. Table 1 summarizes these parameters.

ODtion Instances :2El. , 1 I

Port On/Off I i+o l/pox-----l

=3=
Off Port’ i+o

Drive Output

Turn Delay i+o

Fast Reclaim i+o

Swallow i

Dilation (d) 1 3
l)port

[/og2(maz.vtd)l /port

I/port

l/forward port

10QZ(max-d!)/router

Swallow is only relevant on components

where hw = O.

Table 2: METRO Configuration Parameters

5.3 Configuration Options

Each METRO router has many options which can

be selected each time the component is used as well

as while the component is in use. All of these op-

tions are configurable under scan control from a TAP.

Table 2 summarizes the configurable options available

for any METRO router. Variable turn delay, dilation,

and swallow would typically remain constant through-

out operation. Port enables and fast reclamation may

be reconfigured during operation as discussed in Sec-

tion 5.1.

6 Implementations and Prospects

6.1 Single Router Performance

RN 1, a direct ancestor of the METRO architecture

implemented in a 1.2p CMOS process [20], ran with

an internal latency under 15 ns. RN 1 supported 8

forward and backward ports (i = o = 8), byte wide

datapaths (w = 8) and both dilation-1 and dilation-2

routing. RN 1 was designed so that each routing stage

WM only a single pipeline stage in the netwc}rk. Unlike

METRO it did not treat the interconnect as a separate

set of pipeline stages ‘from the internal logic. Conse-

quently, RN1 was limited to about 50 MHz operation

[19].

METROJR is a minimal implementation of the

METRO architecture with i = o = w = 4, hw = 0,

dp = 1, and max.d = 2. To date METROJR has been

described entirely in a high-level language and synthe-

sized to a standard ASIC library using the Synopsys

Design Compiler [22]. Without pipelining connection

setup, the critical path between input and clutput dat-

273

apath registers due to connection allocation contains

25 gate delays.

An initial implementation of METROJR was done

through Orbit Semiconductor under their Encore!

program. METROJR was implemented as a 15K gate

array in a 1.2p CMOS process. Orbit indicates

the components will run at 40-50 MHz. Running

at 40 MHz with interconnect accounting for only a

single pipeline stage, METROJR-ORBIT has a 50 ns

router-to-router latency and a 25 ns nibble (4-bit) la-

tency. Since METROJR supports width cascading, mul-

tiple METROJR-ORBIT components can be cascaded to

achieve higher data bandwidth.

Based on the Synopsys results, we are encour-

aged that a CMOS standard-cell implementation of

METROJR can easily achieve higher performance. Us-

ing a 0.8p effective gate-length CMOS process with

300 to 400 ps gates, we expect a 100 MHz implemen-

tation of METROJR can be realized relying primarily on

standard-cell synthesis and layout. Of course, to sup-

port these speeds, custom i/o pads and clocking will be

required to augment the standard-cell logic. Suitable

low-voltage swing, matched-impedance i/o pads have

been demonstrated in this process technology [11] and

exhibit sufficiently low latency and power consump-

tion to make such an implementation feasible. By

taking advantage of connection setup pipelining, even

lower data transfer latency can be achieved without

going to a full-custom design.

Simulation of full-custom METROJR implementa-

tions indicate that 200 MHz implementations in the

same 0.8p CMOS process are feasible without connec-

tion setup pipelining. By adding a single connection

setup pipeline stage (hw = 1), 400-500 MHz implemen-

tations also look promising.

Table 3 summarizes a few potential implementa-

tions of the METRO architecture.

6.2 Aggregate Performance

As an example of how loading affects METRO net-

works, Figure 3 shows the effective latency of a 3-stage,

multipath network under varying loads. Earlier work

based around the routing protocol which evolved to

become the METRO routing protocol shows that per-

formance degrades robustly in the face of faults [2] [3].

7 Comparisons

Table 5 shows the performance ,of several contem-

porary routing networks in use for multiprocessor

interconnect and network routing hubs. The DEC

1.1

t

,.. ~
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Input Bsndwidth Losding (fractionof theoreticalpeak)

Aggregste N&work Latencies

The graph shows latency versus network load-

ing for randomly distributed, 20-byte message

tratlic on a 3-stage network constructed from

8-bit wide, radix-4 METRO routers. This simu-

lation models a parallelism limited case where

processors stall waiting for message completion.

The first two network stages are configured in

dilation-2 mode, while the last stage is con-

figured in dilation-1 mode. Like the network

shown in Figure 1, each endpoint has two con-

nections entering and leaving the network. Each

endpoint was restricted to only use one of its

entering network ports at a time, but can han-

dle simultaneous traffic on both network output

ports. The unloaded message latency is 28 clock

cycles from message injection to acknowledg-

ment receipt.

Figure 3: Aggregate Latency Performance Example

GIGAswitch is an FDDI routing hub and is repre-

sentative of long-haul networking technologies. The

KSR-1 and CM-5 are general-purpose, commercial,

MIMD parallel processors. The MIT J-Machine is

an academic research machine. The Caltech MRC

is a full-custom, academic, mesh router employed by

many mesh-based multiprocessors. Mercury/RACE

is a commercial offering for real-time, parallel process-

ing. The INMOS C104 is commercial, packet-switched

crossbar switch intended for use in multiprocessors or

routing hubs. Table 5 includes an estimate (tzo,~z)

for the unloaded network latency required deliver a

20-byte message across the network in a 32-node con-

figuration for comparison with Table 3. As evidenced

by the application example, tzo,~z, even the minimal

gate-array implementation of METRO compares favor-

ably with the existing field of routing technologies.

274

—
Architecture

Instance

METROJR-ORBIT

2-cascade

4-caacade

METROJR W = 8

METROJR

2-cascade

4-cascade

METRO i=o=8

W=4

METROJR

METRO i=o=8

W=4

METROJR dp = 2

METRO.JR hw = 1

2-cascade

w = 8

Nn3TRoi=o=8

hw=2w=4

4-cascade

Technology

1.2P Gate Array

0.8,a Std. Cell

0.8p Full Custom

tc[k

25 ns

25 ns

25 ns

25 ns

10 ns

10 ns

10 ns

10 ns

5 ns

5 ns

2 ns

2 ns

2 ns

2 ns

2 ns

2 ns

tio

10 ns

10 ns

10 ns

10 ns

5 ns

5 ns

5 ns

5 ns

3 ns

3 ns

3 ns

3 ns

3 ns

3 ns

3 ns

3 ns

t.tg

50 ns

50 ns

50 ns

50 ns

20 ns

20 ns

20 ns

20 ns

15 ns

15 ns

10 ns

8 ns

8 ns

8 ns

8 ns

8 ns

i?bi:

25 ns/4 b

25 ns/8 b

25 ns/16 b

25 rw/8 b

10 ns/4 b

10 ns/8 b

10 ns/16 b

10 ns/4 b

5 ns/4 b

5 ns/4 b

2 ns/4 b

2 ns/4 b

2 ns/8 b

2 ns/8 b

2 ns/4 b

2 ns/16 b

Ex(

stages

4

4

4

4

4

4

4

2

4

2

4

4

4

4

2

2

lple

tz0,3z

1250 ns

750 ns

500 ns

725 ns

500 ns

300 ns

200 ns

460 ns

270 ns

240 ns

124 ns

120 ns

80 ns

80 ns

104 ns

44 ns

Shown here is a summary of METRO implementations and possible implementations. As an example of how

these parameters impact performance, the last column shows t20,32,the network latency required to deliver

a 5-word (20-byte) message (e.g. a 4-word cache-line including checksum) across a 32-node multibuti,erfly

network constructed like the one shown in Figure 1. Table 4 summarizes the assumptions and calculations

used to derive t20,32 for various METRO implementations.

Table 3: METRO Implementation Examples

1

This table summarizes the assumptions and relations used to calculate application latency for Table 3.

Table 4: Latency Equations for METRO

t~i~. 3 ns
.

assumed wire delay

vt d
V’o+’w”cltelk

interconnect delay in clock cycles

ton-chip tc~k . dps time data traverses chip

tstg ton-chip + Vtd “ tclk chip-to-chip latency in the nework

hbits hw>O hw . w . c . stages routing bits required

hw=O

P

XW stages ,~(’”g, ‘~)

w

‘1

.W. c c = number of cazcade routers

tzo,sz stages . t$tg + (20 .8 + hbits) . t~ii 32-node, 5-word delivery time
.

275

Router Latency tbst tzo,sz Reference

DEC/GIGAswitch <15 ps/22-port xbar 10 ns/1 b 16ps [5]

KSR/KSR-l 3ps/32-node ring 30 ns/8 b 3.5ps [12]

TMC/CM-5 Router 250 ns/4-ary switch 25 ns/4 b 1.5ps + 3.5ps [13]

INMos/clo4 < lps/32-port xbar 10 ns/1 b 2.5ps [:67

MIT/J-Machine 60 ns/ 3D router 30 ns/8 b 660 + 1020 ns

Caltech/MRC 50 +100 ns/ 2D router 11 ns/8 b 300 -+ 800 ns [:2?]

Mercury/Race 100 ns/6-port xbar 5 ns/8 b 500 ns

For sake of comparison, the last column estimates t20,32,the network latency required to deliver a 5-word

(20-byte) message (e.g. a 4-word cache-line including checksum) across an unloaded network supporting

32 processors.

Table 5: Contemporary Routing Technologies

8 Conclusions

The ensemble of features provided by the METRO

architecture make it suitable for a wide range of appli-

cations and allow high-performance implementations

both at the single chip level and at the network level.

METRO routers can be implemented to achieve

high performance for two key reasons: (1) proto-

col/function simplicity and (2) architectural flexibility.

The simple, deterministic routing protocol allow im-

plementations of METRO routers with few gate-delays

in the critical path. The latency required to setup

a connection is minimized by leaving functions like

buffering, packet manipulation, and adaptive routing

out of the router. The flexible pipelining opportunities

provided by the architecture allows a specific METRO

implementation to be optimized to take full advantage

of the implementation technology available. In tech-

nologies which allow high i/o bandwidth, the combi-

nation of variable turn delay and connection pipelin-

ing allows a METRO component to achieve very high

bandwidth while conforming to the basic architecture

and protocol. Connection setup pipelining allows data

to stream through the router at a minimum latency

once the connection is established in implementations

where the latency to establish a connection is much

larger than the data transfer latency.

Despite the fact that the METRO router is simple,

the minimal hooks it does provide allow networks built

from METRO routing components to achieve good ag-

gregate performance and fault tolerance. Stochastic

path selection allows the ensemble of routers to avoid

network congestion and to tolerate even dynamic net-

work faults. Fast path reclamation allows stochastic

search for non-faulty, uncontested paths to proceed

rapidly. With connection reversal, METRO routing

components efficiently support end-to-end protocols

which guarantee reliable message delivery.

The METRO architecture describes a large class of

routers which can be implemented to serve applica-

tions with widely varying requirements. Cleanly pa-

rametrized as it is, routers with varying datapath

size, input and out put ports, and dilations can eas-

ily be specialized from the base architecture. METRO

allows room for tradeoffs to be made between latency,

throughput, i/o pins, and cost on an implementation

and application basis.

A fully-synthesized, gate-array, ASIC implementa-

tion of the METRO architecture exhibits comparable

or superior performance to many, more expensive and

more custom implementations of other router archi-

tectures. Semi- or full-custom implementations of the

METRO architecture hold promise for even higher per-

formance at reasonable costs.

References

[1]

[2]

[3]

[4]

Warren Andrews. RACE architecture brings

flexibility to multiprocessing. Computer Design,

31(5):44-48, May 1993.

Frederic Chong, Eran Egozy, and Andr6 De-

Hon. Fault Tolerance and Performance of Mul-

tipath Multistage Interconnection Networks. In

Thomas F. Knight Jr. and John Savage, editors,

Advanced Research in VLSI and Parallel Systems

19’92, pages 227–242. MIT Press, March 1992.

Frederic T. Chong and Thomas F. Knight, Jr.

Design and Performance of Multipath MIN Ar-

chitectures. In Symposium on Parallel Architec-

tures and Algorithms, pages 286–295, San Diego,

California, June 1992. ACM.

IEEE Standards

Test Access Port

Committee. IEEE Standard

and Boundary-Scan Architec-

276

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

ture. IEEE, 345 East 47th Street, New York, NY

10017-2394, July 1990. IEEE Std 1149.1-1990.

Digital Equiment Corporation. GIGAswitch

FDDI Crossbar Switch. Online, Internet-

Accessible Product Information, April 1993.

William J. Dally et al. The Message-Driven Pro-

cessor: A Multicomputer Processing Node with

Efficient Mechanisms. IEEE Micro, pages 23-39,

April 1992.

Andr6 DeHon. Practical Schemes for Fat-Tree

Network Construction. In Carlo H. S&quin, ed-

itor, Advanced Research in VLSI: International

Conference 1991, pages 307–322. MIT Press,

March 1991.

Andr6 DeHon. Scan-Based Testability for Fault-

tolerant Architectures. In Duncan M. Walker

and Fabrizio Lombardi, editors, Proceedings of

the IEEE International Workshop on Defect and

Fault Tolerance in VLSI Systems, pages 90-99.

IEEE, IEEE Computer Society Press, 1992.

Andr6 DeHon. Robust, High-Speed Network De-

sign for Large-Scale Multiprocessing. AI Techni-

cal Report 1445, MIT Artificial Intelligence Lab-

oratory, 545 Technology Sq., Cambridge, MA

02139, February 1993.

Andr6 DeHon, Thomas F. Knight Jr., and Henry

Minsky. Fault-Tolerant Design for Multistage

Routing Networks. In International Symposium

on Shared Memory Multiprocessing, pages 60–71.

Information Processing Society of Japan, April

1991.

Andr6 DeHon, Thomas F. Knight Jr., and

Thomas Simon. Automatic Impedance Control.

In ISSCC Digest of Technical Papers, pages 164-

165. IEEE, February 1993.

Thomas H. Dunigan. Kendall Square Multi-

processor: Early Experiences and Performance.

ORNL/TM 12065, Oak Ridge National Labora-

tory, Oak Ridge, Tennessee 37831, March 1992.

Thorsten von Eicken et al. Active Messages: a

Mechanism for Integrated Communication and

Computation. In Proceedings of the 19th Annual

Symposium on Computer Architecture, Queens-

land, Australia, May 1992.

Ronald I. Greenberg and Charles E. Leiserson.

Randomized Routing on Fat-Trees. In IEEE 26th

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Annual Symposium on the Foundations of Com-

puter Science. IEEE, November 1985.

Tom Leighton, Derek Lisinski, and Bruce Maggs.

Empirical Evaluation of Randomly-Wired Multi-

stage Networks. In International Conference on

Computer Design: VLSI in Computers and Pro-

cessors. IEEE, 1990.

Tom Leighton and Bruce Maggs. Expanders

Might Be Practical: Fast Algorithms for Routing

Around Faults on Multibutterflies. In IEEE 90th

Annual Symposium on Foundations of Computer

Science, 1989.

Charles E. Leiserson. Fat-Trees: Universal Net-

works for Hardware Efficient Supercomputing.

IEEE Transactions on Computers, C-34(10):892-

901, October 1985.

M. D. May, P. W. Thompson, and P. H. Welch,

editors. Networks, Routers and Transputers. 10S

Press, 1993.

Henry Minsky, Andr6 DeHon, and Tlhomas F.

Knight Jr. RN1: Low-Latency, Dilated, Cross-

bar Router. In Hot Chips Symposium III, 1991.

Henry Q. Minsky. A Parallel Crossb,ar Rout,-

ing Chip for a Shared Memory Multiprocessor.

AI Technical Report 1284, MIT Artificial Intel-

ligence Laboratory, 545 Technology Sq., Cam-

bridge, MA 02139, 1991.

Ravi Soundararajan. MRC Specifications.

Alewife Systems Memo 25, MIT Artificial Intelli-

gence Laboratory, 545 Technology Squi~re, Cam-

bridge MA 02139, February 1992.

Synopsys. Design Compiler Reference Manual.

Synopsys, Inc., version 3.0 edition, IDecember

1992.

E. Upfal. An O(log N) deterministic packet rout-

ing scheme. In 21st Annual ACM Symposium on

Theory of Computing, pages 241-250. ACM, May

1989.

277

