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Cyber-Physical Systems are integrations of computation and physical processes and as such, will be in-
creasingly relevant to industry and people. The complexity of designing CPS resides in their heterogeneity.
Heterogeneity manifest itself in modeling their functionality as well as in the implementation platforms
that include a multiplicity of components such as microprocessors, signal processors, peripherals, memories,
sensors and actuators often integrated on a single chip or on a small package such as a multi-chip module. We
need a methodology, tools and environments where heterogeneity can be dealt with at all levels of abstraction
and where different tools can be integrated. We present here Platform-Based Design as the CPS methodology
of choice and METROII, a design environment that supports it. We present the metamodeling approach fol-
lowed in METROII, how to couple the functionality and implementation platforms of CPS, and the simulation
technology that supports the analysis of CPS and of their implementation. We also present examples of use
and the integration of METROII with another popular design environment developed at Verimag, BIP.
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1. INTRODUCTION

Cyber-physical systems (CPSs) are integrations of computation and physical processes.
Embedded computers and networks monitor and control the physical processes, usually
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with feedback loops where physical processes affect computations and vice versa. When
studying CPS, certain key problems emerge that are rare in so-called general-purpose
computing. For example, in general-purpose software, the time it takes to perform a
task is an issue of performance, not correctness. In CPS, the time it takes to perform
a task may be critical to correct functioning of the system. Moreover, many of the
technical challenges in designing and analyzing embedded software stem from the
need to bridge an inherently sequential semantics with an intrinsically concurrent
physical world.

In the CPS world, it is important to model both functional and architectural aspects
of the design that impact timing and other physical properties of the design such as
power consumption, cost, and weight. And it is essential to model the environment as
it determines the correctness and the robustness of the design. Given the increasing
demands on the functionality of the design, its safety, cost and security, the choice of
the implementation must be done by comparing different solutions with an efficient
design-space exploration process. The space of available solutions has mutated in recent
years to include heterogeneous components where multiple copies of programmable
components of different kinds (FPGAs, Digital Signal Processors, microprocessors, ad
hoc processing elements) are paired with memories, application specific components
and peripherals, yielding implementation platforms called Multi-Processor Systems
on Chip (MPSOC). Hence, to design Cyber-Physical Systems effectively, we need a
design methodology, a design environment, a set of tools and algorithms that deal
with heterogeneity both at the functional level and at the implementation level where
different mathematical formalisms and multiple tools possibly with different semantics
must be coordinated and effective design space exploration must be carried out.

Obtaining a full view of the design and its environment is a major challenge since it
involves the interaction and coexistence of multiple heterogeneous formalisms. One so-
lution is to work at a low abstraction level, close to the final implementation, where an
expressive model can be used to describe the complex interactions in detail. By giving
up on abstraction, however, this approach sacrifices the ability to apply domains-pecific
techniques. Another solution is hybrid modeling, which has been used especially for do-
mains where safety and formal analysis are of primary importance [Carloni et al. 2006;
Passerone et al. 2007]. Hybrid techniques have evolved into metamodeling frameworks,
which are quickly becoming the backbone of modern system level design methodolo-
gies [Passerone et al. 2009; Sangiovanni-Vincentelli et al. 2009; Balarin et al. 2005;
Basu et al. 2006; Karsai et al. 2003; Brooks et al. 2005; Alexander 2006]. In a meta-
modeling framework, the distinction between the individual heterogeneous models is
retained throughout the design flow. Designers can then focus on the distinguishing
aspects of the subsystems and apply techniques that rely on specific assumptions about
the models in use. A typical metamodeling approach constructs a model of computation
(MoC) that is general and highly expressive. The MoC is then tailored to the specific
needs of each particular domain of interest by specializing its operators or by ignoring
those portions of the formalism that are not needed at the level of abstraction under
consideration. These specialized MoCs are seen simply as different customizations of a
common underlying semantic structure. As the design is refined, the different domains
are brought together through relations that arise from the way each of the specialized
MoCs is mapped onto the common structure, thus relieving the designer from explicitly
formulating the interactions.

On top of metamodeling techniques, the Platform-Based Design (PBD) [Pinto et al.
2006; Sangiovanni-Vincentelli 2002; Carloni et al. 2002] methodology was introduced to
address integration and design reuse challenges with a refinement/abstraction-based
approach. PBD is based on the identification and selection of different layers which rep-
resent different levels of the design abstraction called platforms. Each platform is a well

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1, Article 49, Publication date: March 2013.



METROII: A Design Environment for Cyber-Physical Systems 49:3

separated library of computational and communication components. The platforms at
higher level of abstraction hide unnecessary details with respect to platforms at lower
levels of abstraction. The design process in PBD is a sequence of refinement steps, from
specification to implementation, where the functional representation at each level is
mapped onto the architectural representation at the lower level. Performance metrics
are evaluated and compared to the design requirements at each step. The abstraction
levels must be carefully chosen to strike a balance between the desired level of analysis
and implementation efficiency. Different design domains and application areas require
distinct libraries of components and a different range of abstraction levels. Therefore,
each domain requires the development of specific architectural, performance and func-
tional models.

In this article, we describe the Metropolis II (METROII) [Davare et al. 2007] frame-
work, which has been designed to support the PBD methodology that was developed
with the intent of addressing the challenges posed by Cyber-Physical systems and
among others, MPSoC implementation platforms. METROII builds on the experience of
the METROPOLIS [Balarin et al. 2002] design tool-flow, and focuses on model integration
at both functional and non-functional levels. METROII introduces new techniques for
defining component interaction, representing non-functional quantities, and coordi-
nating different models for performance evaluation. The article is organized as follows.
Section 2 covers related system-level design frameworks, especially those that focus
on metamodeling and heterogeneous MoCs and architectures. Section 3 introduces
METROII, while Sections 4 and 5 describe the building blocks of the environment and
semantics respectively. The basics of modeling with METROII is introduced in Section 6,
while the results of modeling and analyzing a complex MPSoC system are presented in
Section 7. Finally, to demonstrate the capability of the environment of integrating dif-
ferent tools with different semantics, we present the integration with another popular
metamodeling framework developed at Verimag, BIP, in Section 8 before concluding in
Section 9.

2. RELATED WORK

We have previously presented a broad survey of system level design tools and method-
ologies in the context of PBD [Densmore et al. 2006b]. There, several general aspects
are identified, which are important for comparing tools and flows. In this section, we
will focus primarily on metamodeling frameworks that are most related to METROII. In
particular, we are interested in their modeling capabilities and especially in their han-
dling of different interaction paradigms to support heterogeneity. We will also compare
the tools in terms of their ability to effectively decouple functionality and architecture,
and on the mechanisms available for their mapping.

A host of industrial tools have their roots in Model Driven Architecture (MDA) de-
veloped by OMG [MDA 2003]. At its basis is the separation between system behavior
vs. usage of platform capabilities. Development starts with a computation independent
model (CIM), which captures detailed requirements but no functionality. This model
is refined into a platform independent model (PIM), used to specify the functionality
of the system without committing to any particular platform. A PIM is transformed
into a platform specific model (PSM) through a mapping that consists of model trans-
formations, i.e., rules or algorithms that take objects in the PIM model language and
generate (one or more) objects in the PSM model language. Annotations and attributes
can be used to enrich the PSM model with non-functional properties [Cancila et al.
2010]. There are many similarities betweeen MDA and our methodology, starting with
the shared goals of achieving model portability, interoperability and reusability. The
main difference relates to our focus on architecture exploration. We therefore employ
a mapping that is more generic, and intended to provide performance metrics rather
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than a detailed implementation. Our notion of mapping makes it easier to adapt to
different platforms which facilitates the exploration of a large design space.

An approach similar to MDA is Model Integrated Computing (MIC) [Karsai et al.
2003]. MIC also uses models for the design representation and generators to synthe-
size and integrate the system. Unlike MDA, which uses UML for all levels, MIC uses
domain-specific modeling languages. Thus, different modeling languages are used to
express the functionality, the architecture and their relation (the mapping). The MIC
methodology is supported by a set of tools that can create and manage such languages.
For instance, the Generic Modeling Environment (GME) has been designed to facili-
tate the construction and the manipulation of a domain-specific modeling language,
by providing a way to specify an abstract as well as a concrete syntax (textual or
graphical), including well-formedness constraints and static semantics. The language
design activity is again based on UML and on OCL constraints [OCL 2006], which are
used as meta-languages. The resulting language need not be related to UML at all.
MILAN [Bakshi et al. 2001; Ledeczi et al. 2003] is a verification tool which supports
simulator integration using model interpreters, and integrates the design space ex-
ploration tool DESERT [Neema et al. 2003]. DESERT allows the designer to express
platform flexibility by specifying structural constraints in OCL. Symbolic pruning of
the design space based on these constraints can greatly reduce the number of points
to be evaluated with lower level simulators. Unlike GME, our work is not concerned
with the design of the modeling language. Instead, we construct adaptors to coordinate
components from different MoCs. Accordingly, we are mainly focused on the combined
semantics of different models, instead of the relationships between their syntactic el-
ements. Our objective is to determine semantic relationships using refinements into
a common semantic domain, and then abstract the results into a mixed domain that
supports the development of adaptors. In this sense, our approach is closer to that used
by MILAN, where model interpreters can be seen as adaptors. However, MILAN is
focused on simulator integration, not a formalism for MoC integration. In addition, our
exploration paradigm differs substantially from DESERT’s. In particular, we employ
functional and scheduling constraints, instead of structural constraints, and thus are
able to relate functionality and architecture without resorting to low level simulators.
However, the combined use of structural and scheduling constraints for fast generation
and exploration of architectures is a promising avenue of future research.

Ptolemy II is a design environment for heterogeneous systems that consists of several
executable domains of computation that can be mixed in a hierarchy controlled by a
global scheduler [Brooks et al. 2005]. Each MoC is described operationally in terms of
a common executable interface. For each model, a “director” determines the activation
order of the components (or actors). Similarly, a “receiver” implements communication
in terms of a common interface. A MoC, or domain, in Ptolemy II is a pair composed of a
director and a receiver. Heterogeneity in Ptolemy II is strictly hierarchical. This implies
that each node of the hierarchy contains exactly one domain, and that each component
interacts with the rest of the system using the specific communication mechanism
of the hierarchy node it belongs to. Domains only interact at the boundary between
two different levels of the hierarchy. SystemC-H [Patel et al. 2007] is a heterogeneous
extension to SystemC [Grötker et al. 2002]. While SystemC is based on a discrete
event simulation kernel, SystemC-H extends it to provide additional MoCs such as
dataflow and hierarchical FSMs, using similar techniques as Ptolemy II. The authors
demonstrate an increase in simulation efficiency over SystemC with MoC-specific anal-
ysis such as static scheduling for dataflow. The hierarchical approach to heterogeneity
of Ptolemy II and SystemC-H is nicely structured and is excellent for experimentation.
The structure, however, also imposes limitations on the heterogeneity that can be
achieved. More importantly, the relationship between different models is implicit in the
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way the execution protocol schedules the activation of the directors and the transfer
of information through the receivers. This makes it hard to predict the outcome of
a hierarchical heterogeneous composition or to study its properties. In addition, the
execution protocol is hard-wired in the framework, and therefore it cannot be changed
without altering the core of the tools. As a result, the relationship between different
models (i.e., abstraction and refinement) is fixed, unless boundary components are
used to explicitly translate between different domains. For example, this technique is
used in Ptolemy II to translate from the discrete to the continuous domain, and vice
versa, through special transducers. This, however, appears to relax the requirement
for strict hierarchical heterogeneity. Our approach to heterogeneity is instead based on
establishing clear abstraction and refinement relationships between models, typically
through the use of a common semantic domain. Adaptors which are consistent with the
chosen abstractions and refinements can be constructed to coordinate the execution of
different models. The approach is therefore not hierarchical, as in Ptolemy II, where
the interaction between models is prescribed by the framework, but favors instead a
more flexible horizontal adaptation of models, as discussed in Section 4.6.

ForSyDe [Sander and Jantsch 2004] initially specifies the system as a deterministic
network of fully synchronous processes that communicate over sequences of events.
Haskell has been chosen as the concrete language for expressing the model, since
it natively supports higher order constructs. This specification, which lacks detailed
timing, is then refined into an implementation by applying a series of network transfor-
mations, that may or may not preserve the semantics. These transformations can, for
example, partition the system into sub-domains that run at different speeds (the model
is therefore no longer fully synchronous), interfaced through up- and down-converters.
When the desired structure has been obtained, processes can be converted into hard-
ware or software. The basic ForSyDe model was then extended to cover a larger array
of MoCs [Jantsch 2003], and has been implemented in Standard ML in the SML-Sys
project [Mathaikutty et al. 2004b], as well as in C++ [Mathaikutty et al. 2006]. There,
the initial assumption of a fully synchronous system is dropped in favor of an untimed
model similar to Kahn process networks [Kahn 1974]. In addition, synchronous, clocked
and timed models can be used for refinement. However, SML-Sys appears to be more
focused on heterogeneous design, rather than on transformational refinement. For this
reason, SML-Sys relies on ForSyDe for network transformations, while more complex
interfaces have been introduced to bridge the gap between different sub-domains. More
recently, the same group has developed a front-end to both SML-Sys and ForSyDe,
called EWD [Mathaikutty et al. 2004a], which captures their common structure into
a GME-based metamodel, and provides some code generation facilities. GME uses the
static semantics to catch certain classes of errors early in the design process. Unlike
ForSyDe, METROII supports non-deterministic systems, a choice that renders analy-
sis more complex, but greatly simplifies the description of the system’s environment.
As the design is refined, deterministic components are replaced for non-deterministic
ones in the system. The transformation-based refinement in ForSyDe has clear advan-
tages in terms of the ability to prove correctness and maintain consistency with the
original specification. However, the distinction between functionality and architecture
is lost, and a change of mapping may require substantial restructuring of the system.
Our approach to mapping, instead, makes this task simpler, since only the mapping
function must be changed. Heterogeneity is addressed in SML-Sys, using domain in-
terfaces, or adaptors, that add or remove events from the event sequences. However,
SML-Sys does not advocate building these adaptors based on an underlying common
semantic domain substrate, as we do in METROII.

In the heterogeneous system-level design language Rosetta [Alexander 2006; Kong
and Alexander 2003], a MoC is described declaratively as a set of assertions in a
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higher order logic. Different MoCs can be obtained by extending a definition in a
way similar to the sub-classing relation of a type system. MoCs obtained in this way
are automatically related by an abstraction/refinement relationship. Unrelated MoCs
can still be compared by constructing functions that (sometimes partially) express
the consequences of the properties and quantities of one domain onto another. This
process is particularly useful for expressing and keeping track of constraints during the
refinement of the design. In contrast to Rosetta, the relationship between the function
and the architecture in METROII is not described explicitly as a function, but rather as a
mapping and annotation process at the event level. Annotations at this level are simpler
to express, and can be used directly for simulation. Conversely, domain interactions
are harder to manipulate, since they are defined at the level of the domain, but may in
principle be used to derive stronger results via formal reasoning. Tools that take full
advantage of the Rosetta representation are, however, still in development.

The separation between computation and coordination is central to the Behavior-
Interaction-Priority (BIP) framework [Basu et al. 2006]. In BIP, a system specification
is divided into three layers. The lowest layer describes a set of independent components,
while the second layer controls their activation and interaction via connectors. The top
layer overlays a set of priorities to govern component interaction which reduce non-
determinism. One of the strengths of the BIP framework is the ability to check certain
properties, such as deadlock-freedom, compositionally. However, this may require a
complex coordination scheme between a large set of connectors. In contrast, we utilize
a centralized scheduler to accomplish similar objectives. Another difference is our
utilization of an imperative description for the scheduler instead of BIP’s declarative
specification of connectors. More information is provided in Section 8, where integration
between BIP and METROII is explored.

3. FROM METROPOLIS TO METROII

The METROPOLIS [Balarin et al. 2003] design framework was the precursor of METROII
and it was developed to embody the principles of PBD. METROPOLIS was the first system
to leverage the concept of a semantic metamodel (abstract semantics) to manage the
integration of heterogeneous components, to allow declarative and operational design
entry, and to model architecture and functionality in a unified way. The concepts of
separation of concerns, mapping of functionality to architectural components as a way
of refining a design from specification to implementation, and communication as a
first class citizen were all instrumental to building the framework. These concepts
originated from work over years of research and development. The roots of METROPOLIS

can be found in Polis [Balarin et al. 1997] that was the first framework to be based on
the separation of functionality and architecture.

METROPOLIS has its own specification language, the METROPOLIS Meta-Model (MMM),
that is used to capture functionality, architecture, mapping, and a variety of design
activities. It is based on formal semantics and remains general enough to support
existing models of computation [Lee and Sangiovanni-Vincentelli 1998] and accom-
modate new ones. MMM also includes a logic language to capture nonfunctional and
declarative constraints. Because MMM has a precise semantics, METROPOLIS is able to
perform synthesis and formal analysis in addition to simulation.

METROPOLIS offers syntactic and semantic mechanisms to compactly store and com-
municate all relevant design information. Designers can plug in algorithms and tools
for all possible design activities that operate on the design information. The capability
of introducing external algorithms and tools is important, because these needs vary
significantly for different application domains. To support this capability, METROPOLIS

provides a parser that reads MMM designs and a standard API that lets developers
browse, analyze, modify, and add additional information within those designs. For each

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1, Article 49, Publication date: March 2013.



METROII: A Design Environment for Cyber-Physical Systems 49:7

tool integrated into METROPOLIS, a back-end uses the API to generate required input by
the tool from the relevant portion of the design.

Based on experience gained from the development and usage of METROPOLIS, we iden-
tified three main features to enhance. These features form the basis of the second-
generation METROII framework.

(1) Import of pre-designed heterogeneous IPs. IP providers develop their models using
languages and tools that are domain specific. Requiring a singular form of de-
sign entry in a system-level environment results in significant effort not only for
syntactic translation, but also to ensure the semantics are preserved. Instead, het-
erogeneity has to be supported by the new environment to import IPs with different
semantics and languages.

(2) Cost/behavior separation. In a system-level framework that supports multiple ab-
straction levels, different implementations will have the same behavioral repre-
sentation at higher abstraction levels. For instance, different processors will be
abstracted into the same programmable component. What distinguishes them are
the performance vs. cost trade-offs, which may not be optimized at the same time.
It should be possible to introduce various performance metrics during the design
process from specification to implementation. Separating cost and behavior is im-
portant to support such design activities.

(3) Structured exploration of the design space. This requirement is divided into two
main parts: facilitating correct-by-construction abstraction/refinement and effi-
ciently relating the functional and architectural portions of the design together.
The first part is crucial to guarantee that the points explored in the design space
are legal, while the second part enables fast exploration to achieve optimal design.

In this article we show how these activities, which are basic tenets of the PBD method-
ology, are implemented in the METROII framework.

4. METROII BUILDING BLOCKS

To realize the features we envision for METROII, various types of objects are defined as
building blocks for modeling. Events are the fundamental elements that constitute the
semantics of the system and provide the foundation for the definitions of other objects.
Components are the primary entities used for specification, and ports define the com-
munication between components. A set of specialized objects operating on events are
defined to capture different aspects of the system and govern its execution, including
annotators, schedulers, constraint solvers and adaptors.

To better explain these objects, we utilize a simple producer-consumer example, as
shown in Figure 1. The figure shows both the functional model at the top and the
architectural model at the bottom. The functional model consists of a producer compo-
nent communicating over a blocking FIFO to a consumer component. The architectural
model includes write and read tasks that implement the producer and consumer func-
tionality, executing on a processing element, and communicating through a shared
memory. Additional architectural components regulate the platform execution. Vari-
ous snippets of code are shown in Figure 2. In the rest of this section we will provide
details on the building blocks of METROII and refer back to this example and figures for
concrete explanations.

4.1. Events

An event is a tuple <p, T, V>, where p is a process, T is a tag set, and V is a set of
associated values. An event denotes an action taken by a process (p). Events may be
associated with tags (T ) and values (V ). Tags correspond to physical quantities in the
design, such as time or power. Values come from the variables that are in the scope of
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Functional model

FIFO 
component

Wrapper

IP
read_portwrite_port

Producer 
component

Wrapper

IP

Architectural model

Memory 
component

Read_task(rt) 
component

Processor(p)
component

Scheduler Annotator

provided
port

required 
port

M2_connectorWrite_task(wt) 
component

Consumer 
component

M2_interface

provided
port

required 
port

Wrapper

IP

MAPPING

M2_connector

M2_interface

Constraint
Solver

Constraint

Solver

Fig. 1. Producer and consumer communicating through shared FIFO example. The top shows the functional
model, while the bottom shows the architectural model. In the middle the mapping process is modeled using
constraint solvers.

std::vector<m2_event *> ptime_event_list;
ptime_event_list.push_back(rt.receive_event_end);
ptime_event_list.push_back(wt.send_event_end);

std::map<const char*, double, ltstr> ptime_table;
ptime_table[rt.receive_event_end->get_full_name()] = 0.5;
ptime_table[wt.send_event_end->get_full_name()] = 2;

m2_physical_time_annotator* ptime = new 
m2_physical_time_annotator("pt_annotator", ptime_event_list, &ptime_table); 
register_annotator(ptime);

m2_logical_time_scheduler* ltime = new 
m2_logical_time_scheduler("lt_scheduler", 4);

ltime->add_event(rt.receive_event_beg);
ltime->add_event(rt.receive_event_end);
ltime->add_event(wt.send_event_beg);
ltime->add_event(wt.send_event_end);

register_scheduler(ltime);
Scheduler

Annotator

M2_INTERFACE(if_comsumer) {
public:    M2_TWOARG_PROCEDURE(receive, int) }; M2_CONNECT(rt, read_port, p, read_port);

M2_COMPONENT(Consumer) {
public:

m2_required_port<if_consumer> out_port;
m2_event *receive_event_beg, *receive_event_end;
sc_process_handle thread;

SC_HAS_PROCESS(Consumer);
Reader(sc_module_name n) : m2_component(n) {

SC_THREAD(main);
receive_event_beg = &(out_port->receive(M2_EVENT_BEGIN));
receive_event_end = &(out_port->receive(M2_EVENT_END));

}
void main() {

thread = sc_get_current_process_handle();
for (int i=0; i<10; i++) {

out_port->receive(k);
cout<<k<<endl;

}      }    };

class c_fifo : public m2_component,
public if_producer, 
public If_consumer {

public: m2_provided_port<if_consumer> read_port;
m2_provided_port<if_producer> write_port;
c_fifo(sc_module_name n) : m2_component(n) {

...
}
void receive(int) {

...
}
void send(int) {

...
}};

IP
IP

WrapperWrapper

M2_INTERFACE(if_producer) {
public:     M2_TWOARG_PROCEDURE(send, int) };

FIFO component

Consumer component

M2_MAP(producer, send, wt, send);
M2_MAP(consumer, receive, rt, receive);

Constraint
Solver

Fig. 2. Code snippets of METROII elements: communication, components, interfaces, scheduler, constraint
solver, and annotator.

an event. An event also has state, which will be explained more in Section 5. The tags,
values and states of events may be modified by other objects, as shown later in this
section.

4.2. Processes and Components

A component is an object that encapsulates imperative code, used for either functional
or architectural modeling, which may contain zero or more processes. Processes contain
their own thread of control and execute concurrently with other processes in the system.
Process execution is represented by a sequence of events.

There are two types of components: atomic components and composite components.
An atomic component is made of two parts: the internal behavior and its interface. The
internal behavior of an atomic component is specified in some language and defines the
functionality or the service that the component offers to the system. However, a com-
ponent is seen by the system as a black box with no visibility of the internal behavior.
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This is necessary to guarantee language independence. Instead, components communi-
cate with other components through their interface, which is composed of zero or more
ports. Within a component, ports must be able to interact with the internal behavior
by means of wrapper code, which translates between the two levels of specification
(internal behavior and interface). The wrapper is the only language dependent part of
a METROII specification, and can usually be instantiated by following simple templates.
Conversely, the semantics of component interaction in METROII is defined exclusively on
ports, and on the events that occur at the ports. This way, the same abstract semantics
definitions are reused across different specification styles and can be used to achieve
integration of heterogeneous models. More details on ports will be introduced in the
next section.

Composite components are used to hierarchically structure the system. A composite
component contains one or more internal components connected through ports, and in
turn exposes an interface of ports, so that it can be instantiated into other composite
components that sit higher in the hierarchy.

In the producer-consumer example shown in Figure 1 there are seven components,
shown as rectangles. They can be categorized into functional or architectural compo-
nents. On the functional side we have a producer, a consumer and a FIFO components.
The producer sends data that are then received by the consumer. The communication
takes place through a FIFO which provides blocking read and blocking write services.
On the architectural side we have a writer and a reader task components, which are
synchronized to the functional producer and consumer components through mapping
constraints. More details of mapping constraints will be explained in Section 5.4. The
processor and memory components capture the structure and behavior of the architec-
tural platform.

The code snippets of the consumer and the FIFO component are shown in Figure 2.
The basic behavior of the components is initially specified in SystemC, then encapsu-
lated by wrapper code (shown enclosed in a circle inside components) to provide METROII
interfaces. As a simple example, the main function inside the reader component reads
the incoming data using a typical SystemC procedure out port → receive(), where
out port is viewed by the internal code as a SystemC port. The wrapper then wraps the
SystemC procedure as a METROII method by implementing the out port as a METROII
port and associating a pair of events with the begin and the end of the receive() proce-
dure respectively. The states, tags and values of these events coordinate the execution
of the procedure with other actions in the system and pass the information between
the internal main function and the outside world.

4.3. Ports

METROII ports are used for communication between components. Each port is associated
with a set of methods defined by the port interface. A method, which corresponds to the
call to a function, is abstracted at the component interface by being associated with
a pair of begin and end events. For instance, a METROII method corresponding to the
receive() function is shown above in the producer-consumer example.

Activities at the ports take place through the operations on the method begin/end
events. Specifically, the execution of the methods/functions are based on the event
states (to be described in Section 5), while the quantity information of the methods,
such as the time taken to execute them, are reflected in the annotation of the end event
tags. A sequence of such events describes the activity at the port (see the semantics
in Section 5 below). Methods can refer to variables which are used in the computation
within a component.

There are two types of ports: required ports and provided ports. A required port
of a component specifies a set of methods that the component requires from other
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components to support its execution, while a provided port specifies methods that the
component implements and provides to other components for them to utilize. One-to-
one port connections are allowed between a required port and a provided port with the
same interface, i.e., the same set of specified methods. Figure 1 shows how producer
and consumer communicate with the FIFO by means of two pairs of provided and
required ports, represented as triangles at the border of the components.

4.4. Annotators and Schedulers

In METROPOLIS, both the performance annotation and the scheduling of events are carried
out by a type of special component called quantity manager. In METROII, to have a
more clear separation of design concerns, performance and scheduling are handled
separately by annotators and schedulers, through operations on events.

As explained above, end events are associated with tags to represent certain quan-
tities of interest (e.g., physical time, power). Each tag is determined based on the
parameters supplied to the annotator, the state of the event, and the values of the
event. Parameters are set by designers according to the characterization of the archi-
tecture platforms. Only static parameters are permitted for annotators, which may not
have their own state. An annotator base class is provided in METROII, and subclasses
can be derived for various quantities or quantities in different systems. As an example,
a physical time annotator is provided in the METROII library. The code snippet for in-
stantiating this annotator (triangle) is shown in Figure 2. The events rt.read event end
and wt.write event end are associated with the methods in the architectural compo-
nent read task and write task, respectively. They are added to a list (time event list) as
events to be annotated. In addition, a table (ptime table) stores the physical time units
annotated for the events. In the design process, this table is typically constructed from
platform specification or profiling. The event list and table are used to instantiate the
annotator, which will update the tags of the events during the appropriate execution
phase.

Events can be enabled or disabled according to whether they are allowed to occur
at a certain point in the execution. Schedulers (the trapezium in Figures 1 and 2)
coordinate the execution of the components by enabling/disabling the events, based on
the local state of the scheduler, the current states of the events, as well as their values
and tags. Enabling/disabling events corresponds to changes of events states, which
will be explained more in Section 5. A base class scheduler is provided in METROII for
designers to derive various schedulers. A logical time scheduler, for instance, schedules
the events based on the mapping constrains, the physical time tags and the scheduling
policy. This is a basic scheduler of METROII that determines the sequence of executed
processes. A round-robin and first-come first-served schedulers are provided as library
schedulers to regulate the access to shared resources. The logical time scheduler of the
producer-consumer example is shown in Figure 2. It orders events rt.read event begin,
rt.read event end, wt.write event begin and wt.write event end, based on the physical
times annotated to them. A round-robin scheduler orders the events accessing the
memory component (not shown in the figure to avoid clutter).

4.5. Constraint Solvers

Constraints are a form of declarative specification, as opposed to the imperative speci-
fication contained in components. Specifically, they are expressions built on the states,
tags and values of the events that are associated with the ports in the system.

Constraint solvers are objects that enforce the validity of constraints during runtime
by enabling/disabling events. Fundamentally they serve a similar purpose as the
schedulers. The main difference is that schedulers are typically used for resource
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scheduling and described in imperative code, while constraints solvers enforce the
synchronization between events through declarative expressions.

Designers can derive various constraint solvers from the base class solver provided
by the METROII infrastructure. In addition, a mapping constraint solver is provided as
a library solver. Mapping constraints synchronize the execution of functional compo-
nents with corresponding architectural components through events. Two events that
are specified in a mapping constraint must occur simultaneously during simulation.
Figure 1 shows two constraint solvers at the interface between the functional and the
architectural model to establish mapping constraints, while Figure 2 shows an example
of usage of the mapping constraint solver. The semantics of mapping will be further
explained in Section 5.4.

4.6. Adaptors

Heterogeneity is one principal feature of CPS, so that tool must be able to precisely
mix models of computation. In our experience, there is a strong need to interconnect
heterogeneous models at the same level. For instance, the designer may want to connect
the output of a base-band processing component to the input of an RF component (i.e.,
a dataflow model interacting with a continuous time model).

To bridge the different semantics of heterogeneous components, we define adaptors
as first class objects in our specification. Adaptors are connected with other compo-
nents through ports. When two heterogeneous components communicate, the adaptor
between them translates the events at one end of the connection to the events at the
other end. Denotationally, an adaptor is a relation that maps sets of events from one
component to sets of events in another component. The difference between an adaptor
and a component is that adaptors do not own specific begin/end events at their ports,
but instead rely on those generated by the connected components. This way, each port
transparently inherits the annotations and the scheduling of the connected compo-
nents, making the adaptor a passive translator. Adaptors can also be used to build
transactors, components that can translate communication at different granularity
levels. Techniques for the automatic synthesis of adaptors and transactors have been
reported in our previous work [Passerone et al. 2002; Balarin and Passerone 2007].

In the producer-consumer example, if the producer contained a dataflow processing
element and obtained its data from a continuous time component, an adaptor would be
required to bridge the two components. In continuous time, an event could be associated
with a pair of a function and a right open interval of the reals (i.e., a time interval),
( f (t), [t−, t+)), through its tags and values. One possible adaptor between continuous
time and data flow would relate the continuous time event with a set of data flow events
that sample the function at specific times:

{( f (ti), t′
i ) : t0 = t−, ti+1 − ti = T ,

ti < t+ ∧ t′
i < t′

j ⇐⇒ ti < tj},
where T is the sampling period. This definition corresponds to sampling the continuous
time signal at constant rate and storing the values in a FIFO which delivers them to
the dataflow model.

Control and data-dominated subsystems are common in CPS, and can be connected
by adaptors that translate between a finite state machine (FSM) model to a process
network (KPN) model. The FSM is a synchronous model that generates and consumes
data tokens at regular intervals, while the KPN model is asynchronous and is triggered
by the presence of the tokens. The FSM models introduces an undefined value, denoted
by the symbol ⊥, when no information needs to be exchanged. The KPN models does
not require the ⊥ value, since it can intrinsically distinguish when data is available.
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Fig. 3. A bidirectional adaptor between an FSM and a KPN model of computation in both SystemC and
METROII.

Fig. 4. Different FSM to KPN adaptors in METROII: one holds the last value, the second introduces default
values.

Interfacing thus consists in adding and removing ⊥ events from the stream of data,
according to some desired logic of operation.

Adaptors of this kind can be built in several frameworks. Figure 3 shows an example
of a bidirectional adaptor in both SystemC and METROII. The SystemC event filter is
responsible for removing the ⊥ values from the FSM stream, when interfacing towards
KPN. Likewise, the event generator of the KPN to FSM adaptor will introduce such
events. These components of the interface are modeled as threads or methods that
must be synchronized with the state machine clock in order to function properly.

Although this METROII implementation is also based on SystemC, it takes advantage
of the possibility of calling the adaptor methods directly from the components. Thus, all
the adaptor methods are provided methods, and are driven by the respective domains.
This way, the clock synchronization is no longer required, making the adaptor passive
and self contained.

Unlike other frameworks which operate more rigidly at the interface between models
(such as the hierarchical heterogeneity approach of Ptolemy II), the METROII designer
can easily switch between different adaptor implementations. Figure 4 shows further
examples of different implementations of the FSM to KPN adaptor. In the first case, on
the left, the ⊥ values are not completely discarded, but the last available valid value is
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Fig. 5. Three Phase Execution in METROII (top) and process and event state transition diagrams (bottom).

repeated. We call this the Hold adaptor. A different implementation, useful when one
needs to distinguish effective data duplication, is given by the Default adaptor, which
introduces a default value d in place of the undefined value. This implementation tends
to preserve the most information when moving from one domain to the other.

5. EXECUTION SEMANTICS

The two key concepts underlying the METROII semantics are the basic notions of event
and process that were introduced in Section 4. METROII has a three-phase execution
semantics, during which processes execute and then block to generate events, events
are annotated with quantities, and finally scheduled to resume the process execution.
The top of Figure 5 shows these three phases and the METROII elements involved in
each phase (here FC is a functional component and AC an architectural component).
During simulation, processes and events transition through a number of states which
determine, together with annotators, schedulers and constraints, the execution order.
The bottom of Figure 5 shows these states and their transitions. In the rest of this
section we provide details on each of the phases, and show how to use the infrastructure
for architecture exploration.

5.1. Process and Event States

Events can be in one of three states: inactive, proposed or annotated. During simulation,
all events begin in the inactive state, where they can remain indefinitely. An event
becomes proposed when a method call on a required port generates it. The begin event
will be proposed before the end event associated with the same method call. The event
can then be annotated with quantities by the annotators and enter the annotated state.
From there, it will transition back to the inactive state if enabled by a constraint solver
(CS) or a scheduler (Sch) (via a variety of scheduling decisions).

Processes can be in two states: running or suspended. Processes start in the running
state. They execute concurrently until an event is proposed on a required port of the
component containing the process, or until they are blocked on a provided port. At this
point, they transition to the suspended state. Once the event is enabled or the internal
blocking is resolved, the process will return to the running state.
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5.2. Three-Phase Execution

The execution semantics is partitioned in three phases, following the state changes of
events. Events are i) proposed by processes in the first phase, ii) associated with tags
in the second phase, and iii) enabled or disabled in the third phase. This three-phase
semantics is used to clearly separate the processes of functional simulation, annotation
and scheduling. Figure 5 summarizes such execution semantics.

First phase: Base Model Execution. The base model consists of concurrently exe-
cuting processes, which may be suspended only after proposing events or by waiting
(blocking) for other processes. A process may propose multiple events—this represents
non-determinism in the system. After all processes in the base model are blocked, the
design shifts to the second phase. The execution of processes between blocking points
is beyond the control of the framework.

Second phase: Quantity Annotation. In the second phase, proposed events are an-
notated with various quantities by annotators. For instance, a proposed event may be
annotated with a physical time quantity to represent the time cost of executing the
corresponding method. One event may be annotated by multiple annotators that model
different quantities. New events may not be proposed during this phase of execution.

Third phase: Scheduling or Constraint Solving. In this phase, a subset of the pro-
posed events are enabled and permitted to execute, while the remainder remain sus-
pended. The enabled events become inactive again while simultaneously allowing their
associated processes to resume. Events are enabled/disabled by constraint solvers and
schedulers, based on the resolution of declarative constraints or by imperative code. At
most one event per process is permitted to execute. Once again, new events may not be
proposed during this stage.

A collection of three completed phases is referred to as a round. After the constraint
solving phase, the states of some processes are switched to running while the others
remain suspended. The execution will then shift to the first phase and start a new
round. Those processes that are in the running state will resume their execution.

5.3. Execution Semantics of Required and Provided Ports

We explained in Section 4 that required and provided ports with the same set of methods
can be connected in METROII. We call the method associated with the required port
“required method,” and the one associated with the provided port “provided method.”
During simulation, first the begin event of the required method is proposed. Once it is
enabled, the control transfers to the component at the other end of the connection that
owns the provided port, and the begin event of the provided method is proposed. When
this begin event is enabled, the content of the provided method is executed. After its
execution is over, the provided method proposes the end event, waits until it is enabled,
then transfers the control back to the required method, which has been waiting at the
other end. Note that the provided method does not have a separate process to carry
out the execution. Instead, it inherits the process from the caller component and the
method is executed in that context.

5.4. Mapping Semantics

As a key step in the platform-based design process, mapping explores the design space
when bridging the functionality and the architecture. In order to explore multiple im-
plementations with minimal effort, the design framework needs to provide a fast and
efficient way of mapping without significantly changing the functional or the architec-
tural models. In METROPOLIS, this was achieved by event level synchronization. While
providing a powerful way to link the models, this approach breaks the encapsulation of
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the models by allowing constraints to be established between arbitrary pairs of events,
and allowing any local variables in the scope of the events to be accessed. Furthermore,
since there are no special declarative constructs for mapping, the process of finding
events and setting up constraints is not easy for designers to manipulate and debug. In
METROII, we restrict mapping to occur at the service level, i.e., the only accessible events
for synchronization are the begin/end events of interface methods in the functional and
architectural models. In addition, the only accessible values are parameters and return
values of the interface methods. This coarser granularity and more restrictive mapping
approach retains IP encapsulation, and makes mapping easier and more robust.

In the METROII framework, event synchronization is implemented with rendezvous
constraints. These rendezvous constraints are handled in the same way as any other
event constraint during phase 3 of the execution semantics. Because mapping uses
the same infrastructure as the rest of the system, the semantics of simulation is not
burdened with additional dedicated steps for mapping.

During execution, the functional and architectural methods independently propose
their begin events. Because of the rendezvous constraint enforced on the two begin
events, they may only be enabled when both are proposed. Then, after the begin events
are enabled, the functional and architectural methods are executed. Upon completion
of the methods, two end events will be proposed, one from the functional method
and one from the architectural method. Again, these two end events may be enabled
only once both of them are proposed. The enabling of the two end events marks the
end of execution of a mapped functional and architectural method pair. Parameters and
return values can be passed between functional and architectural methods through the
value field of the synchronized begin/end events.

5.5. Execution Semantics of the Producer-Consumer Example

In the producer-consumer example presented in Section 4, the receive event beg
and send event beg events of the functional model and the rt.receive event beg and
wt.send event beg events of the architectural tasks will be proposed in the first phase
of the first round of the execution at the same time. The begin and end events of
the functional components mapped to the architectural tasks of this example will be
proposed synchronously and thus mapping constrains will be satisfied. Thus, when de-
scribing the execution steps of the producer-consumer example we will refer only to the
events of the architectural tasks. The rt.receive event beg and wt.send event beg events
will be annotated with “zero” time units in the second phase. The wt.send event beg
event, however, will be disabled in the third phase of the execution semantics, since it
is listed later than the rt.receive event beg event in the logical time scheduler. The
process of the consumer component will then be suspended. In the second round
both the wt.send event beg event and the rt.receive event end will be proposed. The
rt.receive event end event will be annotated with 0.5 time units. The wt.send event beg
event will be disabled once more, since both tasks are executed on the same processing
element and the round-robin scheduling policy used in the producer-consumer example
does not allow method execution preemption. In the third execution round the global
time will be equal to 0.5 time units. The value received by the consumer component
will be equal to “zero”, since nothing was sent yet by the producer component. The
execution of the send method will be performed in the next execution rounds following
the same execution scheme.

6. MODELING WITH METROII

Following the idea of Platform-Based Design, METROII supports the separate devel-
opment of functional and architectural models of a system. A functional model is a
structural representation of the system functionality described as a set of processes
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that concurrently take actions while communicating with each other. An architectural
model is an interconnection of elements, representing CPUs, memories, or physical
level communication channels, which support Multi Processor System-on-Chip designs
(MPSOC). Elements of the architectural model provide services which are annotated
with cost metrics when used by a function to perform an operation. The architectural
services complement the functional modeling effort. In order to offer a variety of map-
ping solutions, architectural services are modular and are able to support various con-
figurations (association with different processing units) and parameterizations (service
costs with respect to processing units). The ultimate goal is to create a model which
has a firm grounding in the real world, and therefore provides meaningful simulation
data when associated to a functional design during design space exploration.

The main building blocks of both functional models and architectural services are the
METROII components, described in the previous sections, which may include both newly
developed and pre-designed IPs encapsulated by wrappers. The appropriate events
and interfaces are exposed by these wrappers for further components communication
(functional to functional component connection) or mapping (functional to architectural
components connection).

6.1. General Structure

To simplify the mapping process, models of architectural services are best described
using certain specific patterns. In particular, as a service, the model must be able to
support the functional model requirements and provide the associated costs when the
service is requested. To do this, an architectural element typically contains a component
that exposes ports at its interface to be associated, through appropriate mapping con-
straints, to the functional model. We call this component the architectural task, which
is equipped with its own thread of execution. In turn, the thread generates events as-
sociated with the ports, which are synchronized with the corresponding events at the
functional level. In order to compute costs, the events associated to the architectural
task are also registered with the necessary annotators and schedulers. These are then
able to accumulate the overall cost of the simulation.

Besides the architectural tasks, whose purpose is to serve as mapping targets for the
functional component, the architectural model may also include operating systems (OS)
and processing elements. An operating system is an explicit, imperative mechanism for
scheduling and assigning tasks to processing elements. Processing elements, in turn,
are the workhorse of the architectural model and are used to return the core cost of a
service.

Figure 6 illustrates these three classes of architectural elements, and details, on
the left, the various steps of architectural evaluation, as will be explained in the next
sections. Selected components are exploded to see internal details. Tasks, shown at the
top, compete for execution by proposing events. The OS, in the middle, gathers and
orders the requests, and mediates with the physical platform components by assign-
ing the tasks to the processing elements. The platform is shown at the bottom, as a
collection of processor and memory resources (other platform components may also be
present, and are omitted here for simplicity). The processing elements provide exe-
cution metrics through various styles of performance modeling (runtime and profiled,
as discussed below). Processors communicate in this case through a shared memory.
Below, we discuss each of the architectural elements in more details.

6.2. Architectural Tasks

Tasks in the architecture model are lightweight active METROII components. The
thread they contain is created such that it is in a constant state of event proposal.
Mapping creates a rendezvous constraint between the event generated by the task
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steps for architectural evaluation are shown schematically on the left.

thread (request job() in Figure 6) and the functional event. Therefore there is a
one-to-one mapping between these tasks and components which one desires to map
in the functional model. The continually running architecture task is then blocked
until the mapped event in the functional model is proposed. Step 1 in Figure 6
illustrates the task role in the architecture model execution.

6.3. Operating System

Using a METROII component, it is possible to define an operating system (OS) to assign
tasks to processing elements in a many-to-one relationship. In addition, it can also
perform scheduling during phase 1 to determine which events will be proposed prior
to phases 2 and 3. As was described in Section 4.4, there exist two predefined METROII
schedulers (i.e., RR and logical time). However, the user is free to add his/her own
scheduling policy to the system. An operating system is a component with N threads
(where N is the number of processing elements it controls), that maintains a queue
of requested jobs from tasks and that queries the processing elements to decide if a
task can be execute or not. Scheduling controls how events are added to this queue.
Access to the queue is coordinated such that there is a limited amount of outstanding
requests to any processing element. Steps 2-5 in Figure 6 illustrate the OS role in the
architecture model execution.

The OS is also used to access the annotation tables, which relate event costs to
architectural services. The annotation tables are used by the annotator in phase 2
where event tags can be written. The OS updates the appropriate entry in the table
after a request is completed and the true cost known. In addition to the processing
cost, the OS may also add cost related to overhead (e.g., context switching). Tables are
updated dynamically at runtime and do not require to be statically created with the
netlist. The advantage of this configuration is that tasks are independent of this process
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Fig. 7. Sparc Runtime Processing Element: instruction code, datapath microarchitecture, and cost
computation.

and only need to indicate which service they require. This is essential to separate the
computation behavior from its performance cost.

6.4. Processing Elements

The third element of the architecture platform are the actual processing elements
themselves. Once the OS decides to run a request from a task, it calls the corresponding
run proc() function on one of its N required ports. There are two distinct types of
processing elements, which compute the cost for its use in a different way. Steps 6-7 in
Figure 6 illustrate the processing element role in the architecture execution.

6.4.1. Runtime Processing. In runtime processing, a component executes a routine at
runtime to determine the cost and the annotation for a given event. An example of
runtime processing is a cycle accurate model of a Leon 3 SPARC shown in Figure 7.
It is a METROII composite component that offers three key functions used in three
different steps of function cost evaluation. The first step in using this type of processing
element is for the OS to provide information gathered from the task as to which
operation is requested. This will be done via the set program() function where the
instruction memory of the processing element is loaded with pre-compiled code for the
operation. The second step is then to execute that code at runtime with run proc()
which will return the cycle requirements for that code. The operating system will use
that information to update the annotation table. Finally, the OS will call reset proc() to
prepare the processor for the next request.

While this style may result in slower simulation performance compared to the fol-
lowing approach, it only requires that the code for the function be available. It requires
no other modeling work by the user and is as accurate as the level of detail in the
microarchitectural model. svalues for vari

6.4.2. Profiled Processing. In profiled processing a set of precomputed values for various
job requests are collected prior to simulation and stored for later look up. Again, the
OS will indicate to the processing element which services are requested. In turn, the
processing element will look up the costs for the given operations. These can be trivial
table look-ups or more complex (but still static) calculations based on the current
state of the processing element. Ways to characterize processing elements for this
approach have been shown in previous work [Meyerowitz et al. 2008; Densmore et al.
2006a; Simalatsar et al. 2008]. One advantage of this approach is that the look-up is
extremely fast compared to the runtime processing approach. The drawback is that
the modeling of these elements is often more limited in its usage and requires that
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Fig. 8. UMTS METROII Functional Model.

characterization be carried out prior to simulation. This pre-characterization however
only needs to be done once per computation routine. It does require a more complex set
of transformations compared to simple compilation (runtime processing approach).

7. MODELING MPSOCS: THE UMTS CASE STUDY

In this section we present an example of MPSoC modeling with METROII. The example
is based on the UMTS data link layer functional model mapped into various multi-
processing architectures. After describing the functional and architectural models of
the UMTS data link layer, we enumerate and explore 48 different points in the design
space. In Section 7.4, we detail the estimated execution times and processing element
utilization, the design effort, the simulation cost breakdown, and an analysis of how
events are processed during each simulation phase.

7.1. Functional Model

We focus on the Data Link (DLL) layer User Equipment Domain of the UMTS pro-
tocol [3rd Generation Partnership Project 2004]. The DLL layer contains the Radio
Link Control (RLC) and the Medium Access Control (MAC) sublayers and performs
general packet forming. The RLC communicates with the MAC through different log-
ical channels to distinguish between user, signaling, and control data. Depending on
the required quality of service, the MAC layer maps the logical channels into a set of
transport channels, which are then passed to the Physical Layer.

The UMTS application is separated into both receiver and transmitter portions and
then further by the RLC and MAC functionality. Simulation consists of processing
100 packets, each packet being 70 bytes. The functional model is shown in Figure 8.
The semantics follows the dataflow model, with blocking read and blocking write FI-
FOs. Both timed and untimed models were created to determine the advantages of
functional/architectural separation—the timed model mixes both, while the untimed
model relies on mapping with an architectural model to obtain performance metrics.
Both models are presented in Figure 8.

The pure functional model allows processes to communicate in zero time through cor-
responding FIFO elements. The timed model, on the other hand, introduces a scheduler
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and a timer. The scheduler is modeled as a finite state machine which controls the ex-
ecution of the system. The activation of each process is controlled by the typical firing
conditions of process networks, i.e., the availability of data at the input queues, and
the availability of space at the output queues. These conditions are notified to the pro-
cesses every time data is written to or read from the attached FIFOs. When a firing
condition is satisfied, the process triggers the scheduler by sending a “Ready to Run”
signal through the dedicated bi-directional scheduling channel and then waits for per-
mission to start computation, which will be granted by the scheduler. For this example
we have used a fixed-priority preemptive scheduler [Simalatsar et al. 2008]. Therefore,
the permission to start computation will be granted to a processes when the resources
are available and when no higher priority process is ready to run. The process runs to
completion, and stops before the results are written to the output FIFO. Computation
is carried out in logically zero time, however, the outputs are posted in the FIFOs only
at the correct time calculated by the preemptive scheduler.

Other scheduling policies, such as round robin (RR), priority (PR) based, and first-
come, first-serve (FCFS) are implemented in the architectural OS component, outside
of the timed functional model. Therefore, mapping between functionality and MPSoC
architecture uses the untimed model allowing for costs and scheduling to come purely
from the architecture services.

7.2. Architecture Model

The architecture model assigns one task for each of 11 UMTS components (TR Buffer
and PHY were not mapped as they represent the environment). The OS employs three
different scheduling policies for each processing element: RR, PR and FCFS. The pro-
cessing elements communicate through FIFO links or shared memories.

The runtime processing elements were fed C code reflecting the kernels of each UMTS
component. The runtime processing element available for this case study is a cycle
accurate datapath model of the Leon 3 Sparc processor. The pre-profiled processors use
the same code but carry out offline characterization as detailed in [Meyerowitz et al.
2008] and [Densmore et al. 2006a]. The processors profiled were the ARM7, ARM9,
and Xilinx’s MicroBlaze, all of which are common in embedded and SoC applications
and are widely documented.

7.3. Mapped System

Table I describes the 48 mappings that were investigated. These reflect systems with
a high level of concurrency (11 PEs) all the way down to 1 PE. The mappings reflect
system partitions broken down by Rx and Tx as well as RLC and MAC functionality.
The partitions are enumerated at the bottom of the table. Each mapping is categorized
into one of 9 separate classes, assigned to make analysis more manageable. The classes
are based on the number of processing elements and the mix of pre-profiled and runtime
processing elements. Mappings are further categorized as purely runtime processing
based (RTP) elements, purely profiled processing (PP) elements, or a mix (MIX) of both.

7.4. Results

We analyze results presenting model estimated processing time as well as design
effort, framework simulation time, and event processing. Five different models
were utilized in the experiments: a timed SystemC UMTS model [Simalatsar et al.
2008], a timed METROII UMTS model, an untimed METROII UMTS functional model, a
SystemC runtime processing model, and a METROII architectural model. We have used
constraints to synchronize the execution of the components in the functional model
as opposed to explicit synchronization primitives (for instance in SystemC), to make
synchonization visible in the framework and because experiments have shown better
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Table I. Mapping Scenarios for UMTS Case Study
# Type Partition # Type Partition # Type Partition
1 1: RTP 11 Sp 17 6: PP 2 μB (2), 2 A9 (3) 33 7: MIX A7 (4), Sp (5), μB (6), A9 (7)
2 2: PP 11 μB 18 6: PP 2 A9 (2), 2 μB (3) 34 7: MIX A7 (4), Sp (5), A9 (6), μB (7)
3 2: PP 11 A7 19 6: PP 2 A7 (2), 2 A9 (3) 35 7: MIX A7 (4), μB (5), Sp (6), A9 (7)
4 2: PP 11 A9 20 6: PP 2 A9 (2), 2 A7 (3) 36 7: MIX A7 (4), μB (5), A9 (6), Sp (7)
5 3: RTP 4 Sp (1) 21 7: MIX Sp (4), μB (5), A7 (6), A9 (7) 37 7: MIX A7 (4), A9 (5), μB (6), Sp (7)
6 4: PP 4 μB (1) 22 7: MIX Sp (4), μB (5), A9 (6), A7 (7) 38 7: MIX A7 (4), A9 (5), Sp (6), μB (7)
7 4: PP 4 A7 (1) 23 7: MIX Sp (4), A7 (5), μB (6), A9 (7) 39 7: MIX A9 (4), Sp (5), μB (6), A7 (7)
8 4: PP 4 A9 (1) 24 7: MIX Sp (4), A7 (5), A9 (6), μB(7) 40 7: MIX A9 (4), Sp (5), A7 (6), μB (7)
9 5: MIX 2 Sp (2), 2 μB (3) 25 7: MIX Sp (4), A9 (5), A7 (6), μB (7) 41 7: MIX A9 (4), μB (5), Sp (6), A7 (7)
10 5: MIX 2 μB (2), 2 Sp (3) 26 7: MIX Sp (4), A9 (5), μB (6), A7 (7) 42 7: MIX A9 (4), μB (5), A7 (6), Sp (7)
11 5: MIX 2 Sp (2), 2 A7 (3) 27 7: MIX μB (4), Sp (5), A7 (6), A9 (7) 43 7: MIX A9 (4), A7 (5), μB (6), Sp (7)
12 5: MIX 2 A7 (2), 2 Sp (3) 28 7: MIX μB (4), Sp (5), A9 (6), A7 (7) 44 7: MIX A9 (4), A7 (5), Sp (6), μB (7)
13 5: MIX 2 Sp (2), 2 A9 (3) 29 7: MIX μB (4), A7 (5), Sp (6), A9 (7) 45 8: RTP 1 Sp
14 5: MIX 2 A9 (2), 2 Sp (3) 30 7: MIX μB (4), A7 (5), A9 (6), Sp (7) 46 9: PP 1 μB
15 6: PP 2 μB (2), 2 A7 (3) 31 7: MIX μB (4), A9 (5), A7 (6), Sp (7) 47 9: PP 1 A7
16 6: PP 2 A7 (2), 2 μB (3) 32 7: MIX μB (4), A9 (5), Sp (6), A7 (7) 48 9: PP 1 A9
(1 = Rx MAC, Tx MAC, Rx RLC, Tx RLC), (2 = Rx MAC, Rx RLC), (3 = Tx MAC, Tx RLC)
(4 = Rx MAC), (5)(Rx RLC), (6)(Tx MAC), (7 = Tx RLC) (Sp = Sparc, μB = Microblaze, A7 = ARM7, A9 = ARM9)

Fig. 9. UMTS Estimated Execution Time vs. Utilization.

simulation performance. The selection of constraints, functional model configuration,
architectural model parameters, and mapping assignment is all achieved through
small changes to the top level netlist. For example, to change the mapping of one
method of a functional component into another method of an architectural task, only
one line of code needs to be changed (see the code snippet of the constraint solver of
Figure 2, lines of kind MAP(FC, func method, AC, arch method), where FC is a func-
tional component and AC an architectural component). To change parameters of the
architectural model we only need to change the model annotation values. All results
are gathered on a 1.8 GHz Pentium M laptop running Windows XP with 1GB of RAM.

Figure 9 shows the UMTS estimated execution times in cycles for the various map-
pings along with the average processing element utilization. The x-axis (mapping #) is
ordered such that execution times increase moving toward the right.
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Examining the RR scheduling first, as expected, the lowest and highest execution
times are obtained with mapping #1 (11 Sparcs) and mapping #46 (1 μBlaze) respec-
tively. Mapping #1 is 2167% faster than mapping #46. This shows a large range in
potential performance across mappings. It is interesting to note that there are 23 dif-
ferent mappings which offer better performance than the 11 μBlaze or 11 ARM7 cores
(mappings 2 and 3). This illustrates that communication becomes a bottleneck for some
designs and despite having maximum concurrency those designs cannot keep pace with
smaller, more heavily loaded mappings. Among all 4 processor systems, mapping #14
has the lowest execution time (two ARM9s used for receiver, two Sparcs used for trans-
mitter). Mapping #31 has a similar execution time with 4 different processors (Rx MAC
on μBlaze, Rx RLC on ARM9, Tx MAC on ARM7, and Tx RLC on the Sparc). Many of
the execution times are similar and the graph shows that there are essentially 4 areas
of interest. The lowest utilization values occur in the 11 processor setups (average of
15%). The highest is 100% for all single processor setups. The max utilization before
100% is 39%. This gap points to a deficiency in the RR scheduler used in the OS. One
should also notice that for similar execution times, utilization can vary as much as 28%
(mappings #41 and #32 for example).

The PR scheduling keeps the same relative ordering amongst the execution times but
reduces them on average by 13%. The highest reduction is an 18% reduction (mapping
#22 for example) and the smallest reduction is 9% (mapping #8 for example). The
utilization numbers are actually reduced (made worse) as well by an average of 2%.
The largest reduction was 7% (in mapping #6 for example) and the smallest was 1%
(in mapping #31 for example). As expected there was no change to the utilization or
execution times for mappings involving either 11 processing elements (fully concurrent)
or those with 1 element (no scheduling options). The utilization drop results from high
priority, data dependent jobs running before low priority, data independent jobs.

FCFS scheduling also does not change the relative ordering of execution times but is
not as successful at reducing them. The average reduction is only 7%. The maximum
reduction is 11% (in mapping #24 for example) and the minimum reduction is 4% (in
mapping #5 for example). However, utilization is improved (increased) by 27%. The max
improvement was 45% (in mapping #31 for example) and the minimum improvement
was 20% (in mapping #5 for example). FCFS improves utilization by allowing low
priority jobs to be processed in the same round as high priority jobs. A priority based
scheme neglects their arrival time instead queuing large jobs in-lieu of processing
waiting, small jobs. FCFS’s round robin tie breaking scheme arbitrates between the
small and large jobs.

The analysis of execution and utilization for UMTS shows that high utilization on
multi PEs platform is difficult to obtain due to the data dependencies in the application.
Also, some of the partitions explored do not balance computation well amongst the
different processing elements in the architecture. Many of the more coarse mappings
only make this problem worse. A solution is to further refine the functional model to
extract more concurrency. From an execution time standpoint, scheduling can improve
the overall execution time but not as much as is needed to make a large majority of
these mappings desirable for an actual implementation. In fact only 11 (23%) of the
mappings would actually be feasible for an actual UMTS system.

The size-utilization-performance trade-off (cost function) in relative units ar-
ranged in logarithmic scale is presented in Figure 10. This function is computed as
f = util · perf/size, hence an optimal solution for a real implementation is an architec-
ture with the smallest physical size (because of the inverse proportion), and the highest
performance and utilization values, in direct proportion to these values. All proportion-
ality constants are set to 1. Low utilization numbers corresponds to the overcharge. To
estimate the die area we have chosen the NXP LPC2119 as a microcontroller based on
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Fig. 10. Size/utilization/performance trade-off (optimization) function.

ARM7 processor core and NXP LPC3220 as a microprocessor based on ARM9. Their die
areas are estimated to be 2600 mm2 and 225 mm2 respectively. For the Sparc we have
chosen its ASIC implementation LEON3FT-RTAX with the die area equal to 191.52
mm2. The die area of Xilinx Virtex-4 chip is estimated to be 1156 mm2. A MicroBlaze
on a Xilinx Virtex-4 (XC4VLX60) requires roughly .9% of the logic resources (based on
a 1000 LUT design). To estimate the total circuit size we have simply summed the die
areas of microcontrollers composing the hardware platforms of the evaluated mapping.
For the FPGA implementation, one should carefully choose the size depending on
what else can be mapped on the chosen FPGA, and considering that smaller FPGAs
could also be used. For illustration purpose only, we will use the full die size here.

Mappings #3 has the worst parameters trade-off; its potential real implementation
will have the largest physical size that cannot be justified by the performance or
utilization. Mappings #8 (4 ARM9), #13(2 ARM9 and 2 Sparc), #45 (1 Sparc), and #48
(1 ARM9) shows the best size/utilization/performance trade-offs. Among them mapping
#48 has the greatest value. It has one of the two smallest die areas, 100% utilization
and one of the smallest execution time values (see Figure 9).

Design Effort. The untimed METROII UMTS functional model contains 12 processes
while the architectural model may contain up to 26 processes depending on the config-
uration. The specification of the entire design is spread across 85 files and 8,300 lines
of code. This is clearly a large design. The changing of a mapping is trivial however as
it requires us to change a few macros and recompile 2 of the 85 files (2.3%) which takes
less than 20 seconds. The 48 mappings could be done in less than 16 minutes.

Also METROII constraints for the read/write semantics of a FIFO only require 60 lines
of code which is 1.4% of the total code cost. In fact the average difference of the entire
conversion to METROII was only 1% per file. More than half of these lines (58%) have to
do with registering the constraints with the solvers.

The conversion of a SystemC runtime processing model (for the Sparc processing
element) to METROII only requires 92 additional lines for a direct conversion. This was
a mere 3.4% increase (2773 lines to 2681). This includes adding support for loading
new code at runtime, returning the cost of operation to the highest element in the
hierachical netlist, and exposing events for mapping. Since METROII was created to
easily import existing code, this result is encouraging.

Framework Simulation Time. Figure 11 illustrates the percentage of the actual sim-
ulation runtime spent in each of METROII’s simulation phases for the 9 classes of
mappings. The SystemC entry indicates the time spent in the SystemC simulation
infrastructure upon which METROII is built.

As shown, on average 61% of the time is spent in Phase 1 (lowest section on the
bar graph), 5% in Phase 2 (second section), and 17% in Phase 3 (third section). For
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Fig. 11. METROII Phase Runtime Analysis.

models with only runtime processing elements (RTP) the averages are 93%, 0.9%,
and 3% respectively. This indicates that in runtime processing, the METROII activities
of annotation and scheduling are negligible in the runtime picture. For pure profiled
(PP) mappings they are 21%, 7% and 26%. In this case one can see that METROII
now accounts for a greater percentage of runtime than would normally occur (phase
1 alone is representative of other simulation environments). For mixed classes the
numbers are 82%, 2.6%, and 7.6%. Again the runtime processing elements dominate.
It should be noted that while PPs have higher averages, the average runtime to process
7000 bytes of data was 54 seconds. Phase 1 runtime (and SystemC overhead) are the
main contributors to overall runtime.

If we consider the SystemC timed functional model, METROII timed functional model,
and the METROII untimed functional model mapped to an architecture, the METROII
timed functional model had an average increase of 7.4% in runtime for the 9 classes
while the mapped version had a 54.8% reduction. This reduction is due to the fact that
METROII phases 2 and 3 have significantly less overhead than the timer-and-scheduler
based system required by the SystemC timed functional model.

In a comparison of the METROII timed model running without constraints and one
running with them, the average decrease for the 9 classes of mappings was 25%. There
was little discernible difference between the runtimes for each class here. This is not
surprising since constraints have no direct role in the scheduling of processes - only in
how the phases switch (simulation scheduling).

8. HETEROGENEOUS MODELING: INTEGRATING BIP AND METROII

The ability to integrate different models is one of the strengths of the METROII infras-
tructure. In this section we discuss a structural semantic preserving integration of a
subclass of BIP systems [Basu et al. 2006], which supports formal reasoning, and show
how to take advantage of the METROII capabilities to analyze a BIP functional model in
the context of a separately defined architecture platform.

8.1. BIP Framework Overview

BIP supports a component construction methodology based on the superposition of
three layers: (1) behavior, (2) interactions, and (3) priorities. At the lower level of BIP,
atomic components contain behavior described by automata or Petri Nets and extended
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with arbitrary computation, expressed as C/C++ functions/methods. Automata tran-
sitions are triggered by ports, which are action names used to specify interactions.
Interactions in BIP define the execution paradigm and model both the synchroniza-
tion as well as the communication mechanism among the components. An interaction
is specified using connectors, which declare the sets of ports of different components
that can synchronize in an execution step. The communication within an interaction
is represented in the connector by an arbitrary computation on the local variables as-
sociated to the ports in the components. When the interaction is executed, the local
variables are read and written through the ports of the components associated with
the connector. An interaction is executed when all involved components are ready, i.e.,
when every component reaches a control location enabling a transition labeled by the
required port. Whenever enabled, the interaction code is executed as an atomic step,
and all involved components execute (concurrently) the local computations of the in-
teracting transitions. When several interactions are enabled for execution, the choice
is restricted according to priority rules.

The BIP toolbox provides tools for implementation on distributed execution plat-
forms. Send/Receive BIP (S/R-BIP) models are a subclass of BIP models where multi-
party interactions are replaced by extra components and protocols, called engines, using
only binary send/receive communication. Any BIP model can be automatically trans-
formed into an observationally equivalent S/R model, that is, preserving all functional
properties [Bonakdarpour et al. 2010]. The S/R BIP models are used for the connection
with METROII, since they preserve the structure of the system which is essential for
proceeding with architectural exploration.

8.2. BIP to MetroII Integration

From the actual code point of view, we take advantage of the ability of BIP to generate
C++ code, which can be easily imported in METROII by defining wrappers that mediate
between the component and the framework. Therefore, an atomic behavior of the BIP
model can be easily embedded into a metroII component. Instead, we must pay greater
attention in the correct handling of the interaction semantics, which includes both data
communication and synchronization.

Communication. While communicating the value of variables within an interaction,
BIP connectors can operate on them using two functions: up() and dn(). The up() func-
tion reads the values from the components and performs a specifically defined action,
while the dn() function assigns new values to these variables to make them available to
the corresponding components. METROII ports represent only communication interfaces
and do not have associated variables. Therefore, the functionality of the BIP connectors
must be implemented as separate METROII channels that provide the up() and dn() func-
tions to the connected components. More importantly, the interactions in the connector
specify synchronization primitives that determine whether the connected components
can proceed, and if they have to do so in lock-step. These aspects, and conflicts between
simultaneously enabled interactions, are normally handled by the BIP simulation en-
gine. However, replicating the simulation engine in METROII would be error prone from
a semantic point of view. For this reason, we rely on the S/R-BIP distributed model,
where control is handled primarily by the engines, as our starting point.

The S/R-BIP model more closely follows the communication structure required by
METROII, where components communicate through dedicated channels that incorporate
the computation performed by the BIP connectors. As an example, we integrated the
parallelized version of the bitonic sorting algorithm [Batcher 1968]. The algorithm
splits the sequence into subsequences (d0, d1, etc.) which are handled in parallel by
an equal number of components that sort them in ascending or descending manner.
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Fig. 12. S/R-BIP and METROII models of the bitonic sorting algorithm.

The bitonic sorting algorithm in BIP consists of four equal atomic components each one
handling one part of the sequence.

The top of Figure 12 shows a fragment of the S/R-BIP model. The METROII translation
of the same example is presented in the lower part of Figure 12. The figure shows the
details of how the interaction between Chiffre d0 and Chiffre d2 (there labeled with
the suffix dist, for distributed) has been realized with a dedicated communication
component. Ports of the classical BIP model are replaced with a pair of ports (e.g.,
S step2 and step2) for send and receive communication, while the connector itself is
replaced by a scheduler component called Engine2. Other ports and connectors of the
model components are transformed in a similar way. The states of the components are
split each into two states, one that sends the data to the scheduler, and the other that
receives and synchronizes the updated values.

The Engine2 scheduler is described as a Petri Net (PN) that manages explicitly the
interaction of the BIP connector. The scheduler waits for the components to provide
messages that denote they are ready to communicate, reads the values of their vari-
ables, and executes the up() and dn() functions. Then, it notifies back the components
to resume their execution.

Synchronization. In the C code generated out of BIP models, including the S/R-BIP
models, interactions between components are concretely realized by using a synchro-
nization function call. This function call carries information about the current com-
ponent state and the ports available for interaction. When the kernel receives all the
requests from the components, it correlates the available ports with the list of reg-
istered interactions and sends the final decision back to the component, enabling or
disabling their transitions to a new state. During code synthesis, this part of the model
is not explicitly included into the generated C code of the BIP model. Therefore, in
order to make the synthesized METROII models completely independent from the BIP
core system, we have reimplemented this mechanism in a separate METROII component
called synchronizer. This component plays the role of the BIP kernel where the decision
about the next state transition of the component automata is taken. The synchronizer is
shown in the bottom right part of Figure 12. The synchronizer component is present in
any METROII model translated from BIP and remains identical for any of these models.
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Fig. 13. Mapping of the Transformed BIP Model into METROII Architectures.

These model transformation rules have been implemented as an automatic BIP
to METROII converter which takes as input the BIP functional model and produces a
corresponding, structurally equivalent, METROII functional model.

8.3. Mappings and Results

Once the BIP model is imported in METROII, it is relatively easy to explore the per-
formance of the system under different mappings. From the point of view of the BIP
model, the architecture model and the METROII semantic can be seen as additional con-
straints on the execution of the BIP model. Thus the traces of the mapped model are a
subset of all the possible traces of the original BIP model. Therefore the good properties
in the BIP model are retained in the mapped model. For example, if the architecture
can make sure that all the processes in the BIP model eventually have a chance to
run, the mapped model will remain deadlock-free as long as the original BIP model is
deadlock-free.

We show how this is done for the Bitonic Sorting Algorithm depicted in Figure 12.
The METROII representation of this part of the functional model is repeated in the upper
section of Figure 13. Components d0 dist and d2 dist include the threads that reuse the
functionality of the BIP atoms, imported as C functions. Similar to the BIP model, each
of these components has two ports to communicate with Engine2. These ports use two
different interfaces, called PSType and PIntPort. The methods of these two interfaces
are implemented inside the Engine2 channel. Engine2 also includes a thread that
encapsulates the Petri Net implementation of the Engine2 atom of the S/R-BIP model.

METROII is very flexible in terms of changing the platform architecture and the perfor-
mance metrics. In Figure 13, each d(n) dist component, with n ∈ {0, 1, 2, 3}, is mapped
using mapping constraints solvers to a dedicated task component d(n) t of the archi-
tectural model. We have evaluated two different mappings of the tasks to the platform.
In the first mapping (m1), each of the tasks is executed on a separate processing ele-
ment which communicate through dedicated channels, realizing the functionality of the
Engine components of the S/R-BIP model. In the second mapping (m2), pairs of compo-
nents (e.g., d0 dist/d1 dist and d2 dist/d3 dist) share a processing element. Each task
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Table II. Results of Mapping of the Integrated BIP Model

m1RR m1FCFS m1mix m2RR m2FCFS m2mix
set1 d0(de)sort = 100; write/read memory = 10

d1(de)sort = 200; write/read memory = 20
d2(de)sort = 300; write/read memory = 30
d3(de)sort = 400; write/read memory = 40

Exe t 1480 2050 1980 2590 2640 2670
p0: 20.27 14.63 15.15 34.75 34.09 33.70

Util p1: 40.54 29.27 30.30 81.08 79.55 78.65
% p2: 60.81 43.90 45.45

p3: 81.08 58.54 60.60
set2 d0(de)sort = d1(de)sort = d2(de)sort = d3(de)sort = 200

write/read memory = 20
Exe t 1040 1040 1040 1460 1460 1460

Util % 57.69 57.69 57.69 82.19 82.19 82.19

of the architectural model is annotated and scheduled using METROII annotators and
schedulers. Performance numbers are selected arbitrarily to illustrate the mapping
capabilities. However, METROII provides strong support for both off-line and run-time
architectural components characterization as presented in Section 6.4.

We run our experiments with two sets of annotation data (set1 and set2) while
the tasks are scheduled either using a pure Round Robin (RR) or a First-come First-
served (FCFS) scheduler, or their mix where RR is used for scheduling tasks on the
processing elements and non-preemptive FCFS is used as an arbiter for communication
channels. The information about the mappings, annotation, scheduling policies and
simulation results are summarized in Table II. Each column name denotes the type of
mapping and scheduling policy. For instance, m1FCFS denotes mapping (m1) where
tasks and packets communication are scheduled using the FCFS scheduler. We have
studied two main parameters of the system, the total execution time of the distributed
algorithm (Exe t) and the processors utilization (Util) for both sets of annotation data.
We calculate the utilization as the percentage of time when the processing element is
actually performing some job. The rest of the time it is idle either due to interprocessor
communication or due to the data from other components being delayed.

For the annotation data we assume that the execution time for ascending and
descending sorting as well as write/read to/from the memory running on the same
processing element to be the same. The time for these operations is marked in the
table as d(n) (de)sort and write/read memory respectively. In the first annotation
set, the execution and write/read memory time for different processing elements is
different while in the second set they are all equal. Therefore, for the first set we have
different utilization of processing elements while for the second set the utilization will
be equal for all of the processing elements, so we show only one value in the table.
Comparing the total execution time of the first annotation set we see that while using
the FCFS scheduling policy the distributed algorithm is executed more slowly than
while using the RR scheduling. This is due to the tight synchronization among the
computational blocks that require bidirectional communication of data after each
part of the computation. In such cases the smart RR scheduling shows better results.
As for the second set of data, we can see that there is no difference while using one
or another scheduling policy. This is again explained by the tight inter-component
synchronization that does not allow any communication between pairs of components
unless the computation inside both of them is finished.

9. CONCLUSIONS

We presented METROII, a design environment for Cyber-Physical Systems (CPS). The
environment was developed to cope with the problems presented by the heterogeneity
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and complexity of CPS. In particular, we presented the design methodology supported
by METROII, its modeling approach, how to couple functionality and implementation
platforms and its simulation technology. We have shown adaptors to mediate between
different models of computation. We also presented how to use the environment to
model and analyze a UMTS system. To demonstrate the capability of METROII to work
as an integration framework for other environments and tools, we showed how it
was integrated with another popular design environment developed at Verimag, BIP.
We believe that much remains to be done to solve all the challenges presented by
CPS especially at the foundational level but that METROII can be effectively used to
support CPS research and development in the future. Our current work is focused on
developing foundational theories oriented towards the use of contracts in a CPS design
flow [Sangiovanni-Vincentelli et al. 2012; Raclet et al. 2011], and the integration of
these concepts in the tools to adequately support the design and analysis phase.
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