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Metrological complementarity reveals the Einstein-
Podolsky-Rosen paradox
Benjamin Yadin1,2,5, Matteo Fadel 3,5✉ & Manuel Gessner 4,5

The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of

quantum mechanics, and is associated with the possibility of predicting the results of non-

commuting measurements with a precision that seems to violate the uncertainty principle.

This apparent contradiction to complementarity is made possible by nonclassical correlations

stronger than entanglement, called steering. Quantum information recognises steering as an

essential resource for a number of tasks but, contrary to entanglement, its role for metrology

has so far remained unclear. Here, we formulate the EPR paradox in the framework of

quantum metrology, showing that it enables the precise estimation of a local phase shift and

of its generating observable. Employing a stricter formulation of quantum complementarity,

we derive a criterion based on the quantum Fisher information that detects steering in a

larger class of states than well-known uncertainty-based criteria. Our result identifies useful

steering for quantum-enhanced precision measurements and allows one to uncover steering

of non-Gaussian states in state-of-the-art experiments.
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I
n their seminal 1935 paper1, EPR presented a scenario where
the position and momentum of one quantum system (B) can
both be predicted with certainty from local measurements of

another remote system (A). Based on this apparent violation of
the uncertainty principle, in 1989 Reid formulated the first
practical criterion for an EPR paradox2, which has enabled
numerous experimental observations3: Steering from A to B is
revealed when measurement results of A allow one to predict the
measurement results of B with errors that are smaller than the
limit imposed by the Heisenberg–Robertson uncertainty relation
for B. More generally, an EPR paradox implies the failure of any
attempt to describe the correlations between the two systems in
terms of classical probability distributions and local quantum
states for B, known as local hidden state (LHS) models, as was
shown by Wiseman et al.4 using the framework of quantum
information theory. Aside from its fundamental interest, steering
is recognised as an essential resource for quantum information
tasks5, such as one-sided device-independent quantum key
distribution6,7 and quantum channel discrimination8.

Uncertainty relations describe the complementarity of non-
commuting observables, but the complementarity principle
applies more generally to notions that are not necessarily asso-
ciated with an operator. One generalisation9 involves the quan-
tum Fisher information (QFI), the central tool for quantifying the
precision of quantum parameter estimation10–13. Besides its
fundamental relevance for quantum-enhanced precision mea-
surements, the QFI is of great interest for the characterisation of
quantum many-body systems14,15 and gives rise to an efficient
and experimentally accessible witness for multipartite
entanglement12,13,16, but so far, its relation to steering has
remained elusive. It has been a long-standing open problem to
determine if quantum correlations stronger than entanglement,
such as steering or Bell correlations, play a role in metrology17.

In this work we formulate a steering condition in terms of the
complementarity of a phase shift θ and its generating Hamilto-
nian H, using information-theoretic tools from quantum
metrology. We express our steering condition in terms of the QFI.
The more general phase-generator complementarity principle
reproduces the Heisenberg–Robertson uncertainty relation in the
special case where the phase is estimated from an observable M.
Therefore, our metrological criterion is stronger than the
uncertainty-based approach and allows us to uncover hidden EPR
paradoxes in experimentally relevant scenarios. Our result
answers positively the question of whether steering can be a
resource in quantum sensing applications.

Results
Reid’s criterion for an EPR paradox. We first recall some basic
definitions by considering the following scenario (see Fig. 1a).
Alice (A) performs a measurement on her subsystem and com-
municates her setting X and result a to Bob (B). Based on this
information, Bob uses an estimator hest(a) to predict the result of
his subsequent measurement of H ¼ ∑hh hj i hh j. The average
deviation between the prediction and Bob’s actual result h is given

by Var½Hest� :¼ ∑a;hpða; hjX;HÞ hestðaÞ � h
� �2

, often called the

inference variance3, where p(a, h∣X,H) is the joint probability
distribution for results a and h, conditioned on the measurement
settings X and H. The procedure is repeated with different
measurement settings Y andM, and Reid’s criterion2,3 for an EPR
paradox consists of a violation of the local uncertainty limit

Var½Hest�Var½Mest�≥
jh½H;M�iρB j2

4
: ð1Þ

From the perspective of quantum information theory, the
condition (1) plays the role of a witness for steering, but it may
not always succeed in revealing an EPR paradox.

The most general way to formally model the joint statistics p(a,
h∣X, H) is offered by the formalism of assemblages, i.e. functions
Aða;XÞ ¼ pðajXÞρBajX that map any possible result a of Alice’s

measurement of X to a local probability distribution p(a∣X) and a
(normalised) conditional quantum state ρBajX for Bob’s

subsystem18. This description avoids the need to make assump-
tions about the nature of Alice’s system, which is key to one-sided
device-independent quantum information processing5–7. We only
impose a no-signalling condition which requires that
∑aAða;XÞ ¼ ρB for all X, where ρB is the reduced density
matrix of Bob’s system. Based on the assemblage A, the joint
statistics are described as pða; hjX;HÞ ¼ pðajXÞ hh jρBajX hj i.

The EPR paradox can now be formally defined as an
observation that rules out the possibility of modelling an
assemblage by a LHS model. In such a model, a classical random
variable λ with probability distribution p(λ) determines both
Alice’s statistics p(a∣X, λ) and Bob’s local state σBλ , leading to the

assemblage Aða;XÞ ¼ ∑λpðajX; λÞpðλÞσBλ . Inequality (1) holds
for arbitrary estimators and measurement settings whenever a
LHS model exists. The sharpest formulation of Eq. (1) is thus
obtained by optimising these choices to minimise the estimation
error. The optimal estimator hestðaÞ ¼ Tr½ρBajXH� attains the lower
bound3 Var½Hest�≥∑apðajXÞVar½ρBajX ;H�, where Var½ρ;H� ¼
hH2iρ � hHi2ρ is the variance with hOiρ ¼ Tr½ρO�. Optimising

over Alice’s measurement setting X leads to the quantum
conditional variance

Var
BjA
Q ½A;H� :¼ min

X
∑
a
pðajXÞVar½ρBajX ;H�; ð2Þ

and the optimised version of Reid’s condition (1) reads

Var
BjA
Q ½A;H�VarBjAQ ½A;M�≥ jh½H;M�iρB j

2=4. The uncertainty-

based detection of the EPR paradox is based on the fact that
Alice’s choice of measurement can steer Bob’s system into
conditional states that have small variances for either one of the
two non-commuting observables H and M.

EPR-assisted metrology. To express quantum mechanical com-
plementarity in the framework of quantum metrology10–13, we
assume that the observable H imprints a local phase shift θ on
Bob’s system through the unitary evolution e−iHθ—see Fig. 1b.
The phase shift θ is complementary to the generating observable
H and we show that the violation of

Var½θest�Var½Hest�≥
1

4n
ð3Þ

implies an EPR paradox and reveals steering from A to B. Here,
Var[θest] describes the error of an arbitrary estimator for the
phase θ, constructed from local measurements by Alice and Bob
on n copies of their state. Given any M, it is possible to construct
an estimator θest that achieves in the central limit (n≫ 1)

Var½θest� ¼
Var½Mest�

njh½H;M�iρB j2
: ð4Þ

Essentially, we convert an n-sample average of Mest into an
estimate of θ (see “Methods” for details). For this specific estimation
strategy, we thus recover the uncertainty-based formulation (1) of
the EPR paradox from the more general expression (3).

In the following, we will derive our main result, which will allow us
to prove the above statements. First note that the local phase shift acts
on Bob’s conditional quantum states but has no impact on Alice’s
measurement statistics due to no-signalling, and thus produces the

assemblage Aθða;XÞ ¼ pðajXÞρBajX;θ , where ρBajX;θ ¼ e�iHθρBajXe
iHθ .

This implies the phase shift has no impact on the existence of LHS
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models, and Aθða;XÞ ¼ ∑λpðajX; λÞpðλÞσBλ;θ. Without any assis-

tance from Alice, Bob’s precision of the estimation of θ is determined
by his reduced density matrix ρBθ . In this case, the error of an

arbitrary unbiased estimator θBest for θ is bounded by the quantum

Cramér–Rao bound, Var½θBest�≥ ðnFQ½ρB;H�Þ�1
, the central theorem

of quantum metrology11–13,19–21, where FQ[ρB, H] is the QFI. FQ[ρB,
H] can be thought of intuitively as measuring the sensitivity of the
state ρB to evolution generated by H; see “Methods” for a formal
definition and explicit expression in terms of the eigenvectors and
eigenvalues of ρB. The quantum Cramér-Rao bound can be saturated
by optimising both the estimator and the measurement observable21.

In the assisted phase-estimation protocol, Fig. 1b, Alice
communicates to Bob her measurement setting and result, i.e.
X and a. This additional knowledge allows Bob to adapt the
choice of his observable as a function of the conditional state ρBajX
and to achieve the maximal sensitivity FQ½ρBajX ;H� for an

estimation of θ. This way, he can attain an average sensitivity
as large as the quantum conditional Fisher information

F
BjA
Q ½A;H� :¼ max

X
∑
a
pðajXÞFQ½ρBajX ;H�: ð5Þ

As the main result of our paper, we show that in the absence of
steering the quantum conditional Fisher information (5) is always
bounded from above in terms of the quantum conditional
variance (2): For any assemblage A that admits a LHS model, the

following bound holds:

F
BjA
Q ½A;H�≤ 4VarBjAQ ½A;H�: ð6Þ

The proof (see “Methods”) primarily follows from the fact that
the QFI FQ[ρ, H] is a convex function of the state ρ, while the
variance Var[ρ, H] is instead concave22. Note that FQ[ρB, H] ≤
4Var[ρB, H] holds for arbitrary ρB, and by means of the
Cramér–Rao bound implies the phase-generator complementar-
ity relation

Var½θBest�Var½ρB;H�≥ 1

4n
: ð7Þ

This clearly shows how a violation of (3) implies an EPR
paradox. The result (6) has several important consequences that
we discuss in the remainder of this article.

Useful steering for quantum metrology is identified by
correlations that violate the condition (6). We note that classical
correlations between Alice and Bob may be sufficient for having

FQ½ρB;H�< F
BjA
Q ½ρAB;H� and Var

BjA
Q ½ρAB;H�<Var½ρB;H�. This

shows that assistance is useful even in the absence of steering
to improve the estimation precision for θ and H, but only with
steering can the limit defined by quantum mechanical comple-
mentarity (6) be overcome.

Fig. 1 Formulation of the EPR paradox as a metrological task. a In the standard EPR scenario, Alice’s measurement setting X (Y), and result a (b), leave

Bob in the conditional quantum states ρBajX (ρBbjY). Knowing Alice’s setting and result allows Bob to choose what measurement to perform on his state, and

to make a prediction for the result. In an ideal scenario with strong quantum correlations, Alice’s measurement of X (Y) steers Bob into an eigenstate of his

observable H (M), allowing him to predict the result with certainty. When H and M do not commute, this seems to contradict the complementarity

principle. In practice, an EPR paradox is revealed whenever Bob’s predictions are precise enough to observe an apparent violation of Heisenberg’s

uncertainty relation, see Eq. (1). b In our formulation of the EPR paradox as a metrological task, a local phase shift θ is generated by H on Bob’s state. Then,

depending on Alice’s measurement setting and result, he decides whether to predict and measure H (as before), or to estimate θ from the measurementM.

Here, Bob can choose the observable M as a function of Alice’s measurement result. The complementarity between θ and its generator H seems to be

contradicted if the lower bound on their estimation errors, Eq. (3), is violated. This gives a metrological criterion for observing the EPR paradox. Since the

metrological complementarity is sharper than the uncertainty-based notion, this approach leads to a tighter criterion to detect steering. Both results

coincide in the special case when Bob estimates θ only from the observable M.
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Comparison to Reid-type criteria. The metrological steering
condition (6) is stronger than standard criteria based on
Heisenberg–Robertson uncertainty relations. In fact, the lower
bound

jh½H;M�iρB j2

VarBjAQ ½A;M�
≤ FBjA

Q ½A;H� ð8Þ

holds for arbitrary observables H, M and, besides no-signalling,
does not require assumptions about the assemblage A (see
“Methods” for the proof). Hence, the bound (6) implies Reid’s
uncertainty-based condition (1) for all LHS models. In experi-
mentally relevant situations where the observables H and M are
chosen as linear observables, such as quadrature measurements in
quantum optics or collective spins in atomic systems, the bound
(8) can be interpreted as a Gaussian approximation to the assisted
sensitivity. In fact, violation of criterion (1) (choosing the
appropriate observables) is necessary and sufficient for steering of
Gaussian states by Gaussian measurements4. The criterion (1) is
also able to detect the steering of some non-Gaussian states23,24,
but its ability to capture complex distributions is ultimately
limited by only considering first and second moments. The
metrological approach thus provides particular advantages for the
highly challenging problem of steering detection in non-Gaussian
quantum states. This is in analogy to the metrological detection of
entanglement that is known to be significantly more efficient in
terms of the QFI instead of Gaussian quantifiers such as spin
squeezing coefficients13,16,25,26.

Bounds for specific measurements. Experimental tests of the
condition (6) are possible even without knowledge of the mea-
surement settings that achieve the optimisations in Eqs. (5) and
(2). Any fixed choice of local measurement settings X and X0 for
Alice and Bob, respectively, provides a joint sensitivity quantified
by the (classical) Fisher information FAB½Aθ;X;X

0�, and we
obtain the hierarchy of inequalities (see “Methods” for a proof)

1

nVar½θest�
≤ FAB½Aθ;X;X

0�≤ FA;B
Q ½Aθ�≤ F

BjA
Q ½A;H�; ð9Þ

where FA;B
Q ½Aθ� ¼ maxX;X0FAB½Aθ;X;X

0� is the joint Fisher

information, maximised over local measurement settings. Simi-
larly, any fixed choice of X yields an upper bound on (2) and the
inequalities

VarBjAQ ½A;H�≤ ∑
a
pðajXÞVar½ρBajX ;H�≤Var½Hest� ð10Þ

are saturated by an optimal measurement (2) and estimator,
respectively3. These hierarchies reveal that any choice of local
measurement settings leads to experimentally observable bounds
for both sides of the inequality (6). They further show how the
simpler condition (3) can be derived from (6). Note that a dif-
ferent choice of setting X must be used for estimating θ or H in
order to observe any effect from steering correlations. Both par-
ties generally need to know which of the two settings is
being used.

Bounds on F
BjA
Q and VarBjAQ . It is interesting to note that both

sides of the inequality (6) respect the same upper and lower
bounds

FQ½ρB;H� ≤ FBjA
Q ½A;H� ≤

ð�Þ
4Var½ρB;H�;

FQ½ρB;H� ≤
ð�Þ

4VarBjAQ ½A;H� ≤ 4Var½ρB;H�:
ð11Þ

These inequalities hold for arbitrary assemblages A.
When we can assume Alice’s system to be quantum, we obtain

the assemblage A from the bipartite quantum state ρAB as

Aða;XÞ ¼ TrA½EA
ajXρ

AB�, where the EA
ajX ≥ 0 form a positive

operator-valued measure (POVM) for the measurement setting

X, normalised by ∑aE
A
ajX ¼ 1

A. The inequalities in (11) marked

by (*) are saturated when ρAB is a pure state, assuming Alice is
able to perform any quantum measurement (see “Methods”). This
result is a consequence of the remarkable facts that the QFI is the
convex roof of the variance27 while the variance is its own
concave roof22, in addition to Alice being able to steer Bob’s
system into any pure-state ensemble for the local state ρB28.

We construct explicit measurement bases for Alice to achieve
steering in the optimal ensembles that saturate the above
inequalities (Supplementary Note 5). We further observe that
the inequality (6), even with a fixed generator H, is capable of
witnessing steering correlations for almost any pure state ψAB.
More precisely, (6) is violated for any entangled ψAB whenever H
is not constant on the support of the local state ρB.

Steering of GHZ states. Let us illustrate our criterion with a
simple but relevant example. Consider a system composed of N+ 1
qubits, partitioned into a single control qubit (Alice) and the
remaining N qubits on Bob’s side, that are prepared in a
Greenberger–Horne–Zeilinger (GHZ) state of the form

GHZNþ1
ϕ

�
�
�

E

¼ 1
ffiffiffi
2

p 0j i � 0j i�N þ eiϕ 1j i � 1j i�N
� �

; ð12Þ

where 0j i; 1j i are eigenstates of the Pauli matrix σz. We take
the local Hamiltonian JBz ¼ 1

2
∑i2Bσ

ðiÞ
z , where the sum extends

over the particles on Bob’s side. When Alice measures her
qubit in the σz basis, Bob attains the quantum conditional

variance VarBjAQ ½jGHZNþ1
ϕ i; JBz � ¼ 0. GHZ states have the

property29 jGHZNþ1
ϕ i¼ 1ffiffi

2
p ðjþi � jGHZN

ϕ i þ j�i � jGHZN
ϕþπiÞ,

where þj i; �j i are eigenstates of σx. This allows Alice to steer
Bob’s system into GHZ states by measuring in the σx basis, and
we obtain

FBjA
Q GHZNþ1

ϕ

�
�
�

E

; Jz

h i

¼ 1

2
FQ GHZN

ϕ

�
�
�

E

; JBz

h i

þ FQ GHZN
ϕþπ

�
�
�

E

; JBz

h i� �

¼ N2:

ð13Þ

This measurement is optimal and achieves the maximum in (5)
since FQ½ρ; JBz �≤N2 holds for arbitrary quantum states12,13. Steering
is detected by the clear violation of the condition (6) for LHS
models. So far the only known criteria able to detect steering in
multipartite GHZ states are based on nonlocal observables that
require individual addressing of the particles (see e.g. refs. 30,31),
while our criterion is accessible by collective measurements. The
criterion is moreover robust to white noise: For a mixture
ρ ¼ pjGHZNþ1

ϕ ihGHZNþ1
ϕ j þ ð1� pÞ1=2Nþ1, using the same

measurements we obtain F
BjA
Q ½ρ; Jz�≥ p2N2=½pþ 2ð1� pÞ=2N �;

4Var
BjA
Q ½ρ; Jz�≤ ð1� pÞN þ pð1� pÞN2. For large N, whenever

p ⪆ 1=
ffiffiffiffi
N

p
, the criterion witnesses steering. See Supplementary

Note 2 for details and Supplementary Note 3 for an additional
example involving a Schrödinger cat state.

Steering of atomic split twin Fock states. As an example of
immediate practical relevance for state-of-the-art ultracold-atom
experiments, consider N/2 spin excitations symmetrically dis-
tributed over N particles, i.e., a twin Fock state. Separating the
particles into two addressable modes A and B with a 50:50 beam
splitter results in a split twin Fock state STFN

�
�

�
, which has been

generated experimentally32. Similar experiments based on
squeezed states were able to use Reid’s criterion to verify
steering33,34, but the vanishing polarisation hJBx iρB ¼ hJBy iρB ¼ 0

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22353-3

4 NATURE COMMUNICATIONS |         (2021) 12:2410 | https://doi.org/10.1038/s41467-021-22353-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


makes this challenging for split twin Fock states and so far only
the entanglement between A and B could be detected32. We show
that the criterion (6) successfully reveals the EPR steering of split
twin Fock states when Alice measures local spin observables JAx ,

JAz and a phase shift θ is generated by JBz . We obtain

VarBjAQ ½jSTFNi; JBz � ¼ 0 and FBjA
Q ½jSTFNi; JBz � ¼ N=4, leading to a

violation of (6) that scales linearly with N. This value is limited by
the partition noise that is introduced by the beam splitter which
generates binomial fluctuations of the particle number in
each mode.

To overcome this limit, we propose the following alternative
preparation of split Dicke states. Consider two addressable groups
of N/2 atoms each. A collective measurement of the total number
k of spin excitations projects the system into a split Dicke state
jSDN;ki without partition noise. This can be realised, e.g., with

arrays of cold atoms in a cavity35. Using the same settings
for Alice and Bob as before, these states still yield

Var
BjA
Q ½jSDN;ki; JBz � ¼ 0 while leading to significantly larger values

of the quantum conditional Fisher information, and for the
twin Fock case, k=N/2, we obtain the quadratic scaling

F
BjA
Q ½jSDN;N=2i; JBz � ¼ NðN þ 4Þ=12; see Fig. 2. For details on

arbitrary split Dicke states with and without partition noise, see
Supplementary Note 4.

Phase estimation with multiple generators. Our result reveals
the role of steering for generating probe states that are highly
sensitive to the evolutions generated by a family of non-
commuting generators, H= (H1,…,Hm). We focus on a
sequential scenario, where in each experimental trial a single
parameter is generated by one of the elements of H. Bob’s esti-
mation of the phase is assisted by steering from Alice who picks
different measurement settings Xi as a function of the acting
Hamiltonian Hi and includes details of Hi in her communication
to Bob. Achieving high sensitivity for multiple generators is
relevant for multiparameter quantum metrology36–41, but the
identification of a single measurement observable that is suitable
for all parameters42,43 provides an additional complication that is
not considered in our scenario.

A suitable figure of merit for Bob’s average sensitivity is

F
BjA
Q ½A;H� ¼ ∑

m

i¼1
F
BjA
Q ½A;Hi�: ð14Þ

Using the same techniques as for the main inequality (6), we
find that any assemblage admitting a LHS model satisfies (see
“Methods”)

F
BjA
Q ½A;H�≤ max

ϕj iB
∑
m

i¼1
4Var½ ϕj iB;Hi�: ð15Þ

An advantage over (6) is that the right-hand side is state-
independent. For a system B of dimension d, we can take the Hi

to be a set of d2− 1 Hilbert–Schmidt orthonormal generators of
SU(d), and this bound simplifies to

F
BjA
Q ½A;H�≤ 4ðd � 1Þ: ð16Þ

As a simple example, when Bob has a qubit (d= 2), we can take

the Pauli matrices as generators, Hi ¼ σ i=
ffiffiffi
2

p
; i ¼ x; y; z. Then

(16) becomes F
BjA
Q ½A;H�≤ 4. For a shared maximally entangled

state, this inequality is violated since F
BjA
Q ½A;H� ¼ 6. To interpret

these numbers, note that any pure qubit state on Bob’s side is
optimal for sensing rotations about two orthogonal axes (each of
which contributes a QFI of 2), but useless for the remaining axis.
With a maximally entangled state, Alice can choose to steer Bob’s

Fig. 2 EPR-assisted metrology with twin Fock states. a We consider a

twin Fock state with N= 200 particles, that is split into two parts with

NA= NB= N/2, here represented by the Wigner function on the Bloch

sphere. b The reduced state on either side is a mixture of Dicke states,

resulting from tracing out the other half of the system. c The two

subsystems show perfect correlations for both measurement settings Jx

and Jz: When Alice measures JAz (JAx ) and obtains the result kA, she steers

Bob’s system into an eigenstate of JBz (JBx ) with eigenvalue N/2− kA. This

can be used for assisted quantum metrology, and to reveal an EPR

paradox. In the plot we show Bob’s sensitivity FQ½ρBkA jJAx ; J
B
z � when Alice

obtains the result kA from measuring JAx (blue line). Alice’s results are all

equally probable with pðkAjJAx Þ ¼ 2=ðNþ 2Þ. Bob’s average sensitivity

F
BjA
Q ½jSDN;N=2i; JBz � coincides with the variance for the reduced state

4Var½ρB; JBz � (yellow line), indicating that the measurement is optimal

(Supplementary Note 4).
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system into a state that is optimal for whichever axis has been
chosen, thus sensing about any given axis is optimal.

Steering quantification. We may expect that the degree of vio-
lation of (6), in a suitable sense, measures the amount of steering
correlations. The proposed resource theory of steering7 gives a set
of criteria to be satisfied by a valid measure of steering. A general
steering monotone S assigns a non-negative real number to each
assemblage. First, we require (i) SðAÞ ¼ 0 for every assemblage A
with a LHS model. Next, (ii) S must be non-increasing (on
average) when A is operated upon by local operations and one-
way classical communication from Bob to Alice (1W-LOCC).
Finally, we may optionally require (iii) convexity: SðpA1 þ ½1�
p�A2Þ≤ pSðA1Þ þ ð1� pÞSðA2Þ for any pair of assemblages
classically mixed with probability p. Here, we propose two
potential quantifiers and address whether they satisfy these
criteria.

One quantity is the maximum possible violation of (6), given
the ability to vary the generator H. Since a rescaling of H→ rH
scales the QFI and the variance by the same factor r2, we fix the
norm of H – a convenient choice is to take Tr½H2� ¼ 1. Then the
maximum violation of (6) is

SmaxðAÞ :¼ max
H;Tr½H2�¼1

1

4
F
BjA
Q ½A;H� � Var

BjA
Q ½A;H�

	 
þ
; ð17Þ

where x½ �þ ¼ maxf0; xg. For a bipartite pure quantum state ψAB,
we have the easily computable formula (Supplementary Note 6)
SmaxðψABÞ ¼ λmax½diagðpÞ � ppT �, where p is the vector of
eigenvalues of ρB (equivalently, the Schmidt coefficients of ψAB)
and λmax denotes the largest eigenvalue.

Alternatively, we can average over all H with Tr½H2� ¼ 1.
Formally, this (rescaled) average is defined by

SavgðAÞ ¼ ðd2 � 1Þ
Z

μðdnÞ 1
4
F
BjA
Q ½A; n �H� � Var

BjA
Q ½A; n �H�

	 
þ
;

ð18Þ
where Hi is any basis of orthonormal SU(d) generators, and μ is
the uniform measure over the sphere of unit vectors ∣n∣= 1. For
pure states, we have SavgðψABÞ ¼ ∑i≠jpipjð1þ 2

piþpj
Þ.

It follows immediately from (6) that both Smax and Savg satisfy
criterion (i). Moreover, we find that both are faithful indicators
for pure states, meaning that they each vanish if and only if ψAB is
separable. Convexity is also straightforward to prove (see
Supplementary Note 6 for all details). Criterion (ii) can be ruled
out for Smax by again considering pure states: in this case, steering
correlations (as with all correlations) are equivalent to
entanglement4,44. Smax is found not to be an entanglement
monotone; nevertheless, it remains an important quantity to
consider if one is interested in observing the maximum possible
violation. On the other hand, we prove that Savg is a pure state

entanglement monotone. Thus it remains an open question
whether Savg is in general a steering monotone.

Discussion
We formulated the EPR paradox in the framework of quantum
metrology, showing that it can be interpreted as an apparent
violation of the complementarity relation between a local phase
shift and its generator. This idea allowed us to derive a criterion
to detect EPR correlations which is based on the QFI, and thus
stronger than known criteria based on the Heisenberg uncertainty
relation. We illustrated this with concrete examples of non-
Gaussian states in optical and atomic systems that are of
immediate interest for experimental studies. By expressing the
EPR paradox as a metrological task, our results demonstrate that

such correlations can be useful for quantum-enhanced mea-
surement protocols, thus having the potential to enable new
sensing applications in quantum technologies.

Methods
Fisher information. For a probability distribution p(x∣θ) parameterised by θ 2 R,

the classical Fisher information is F½pðxjθÞ� :¼
R
dx pðxjθÞ ∂θ ln pðxjθÞ

� �2
. The

quantum version FQ[ρθ] for a parameter-dependent state ρθ may be defined as the
maximum classical Fisher information associated with statistics obtained from any
possible POVM {Ex} via pðxjθÞ ¼ Tr½ρθEx �21. In the case of unitary parameter
encoding ρθ= e−iθHρeiθH with a fixed generator H, the QFI is independent of θ, so

we denote it by FQ[ρ, H]. This can be computed from the eigenvectors ψi

�
�

�
and

eigenvalues λi of ρ:

FQ½ρ;H� ¼ 2 ∑
i;j: λiþλj≠0

ðλi � λjÞ2

λi þ λj
hψijHjψji
�
�
�

�
�
�

2

: ð19Þ

Proof of the main result. Suppose A is described by a LHS model, then

FBjA
Q ½A;H� ¼ max

X
∑
a
pðajXÞFQ ∑

λ

pðajX; λÞpðλÞ
pðajXÞ σBλ ;H

	 


≤ max
X

∑
a
∑
λ
pðajX; λÞpðλÞFQ½σBλ ;H�

¼ ∑
λ
pðλÞFQ½σBλ ;H�;

ð20Þ

where we used the convexity of the QFI and ∑ap(a∣X, λ)= 1, since λ and X are
independent. Making use of the upper bound13,21 FQ[ρ, H] ≤ 4Var[ρ, H] that holds
for arbitrary states ρ, we obtain

FBjA
Q ½A;H�≤ 4∑

λ
pðλÞVar½σBλ ;H�: ð21Þ

Moreover, following analogous steps, we obtain from the concavity of the
variance3

Var
BjA
Q ½A;H�≥∑

λ
pðλÞVar½σBλ ;H�: ð22Þ

Inserting (22) into (21) proves the result (6).

Recovering Reid’s criterion. The QFI describes the sensitivity for a parameter θ
generated by H that is achievable with an optimal measurement and estimation
strategy. By using a specific estimator, constructed from the expectation value of
some observable M, one obtains the lower bound13,25

FQ½ρ;H�≥
jh½H;M�iρj2

Var½ρ;M� : ð23Þ

Together with the Cauchy-Schwarz inequality, we obtain for all A

F
BjA
Q ½A;H�≥ max

X
∑
a
pðajXÞ

jh½H;M�iρB
ajX
j2

Var½ρB
ajX ;M�

≥ max
X

j∑apðajXÞh½H;M�iρB
ajX
j2

∑apðajXÞVar½ρBajX ;M�

¼ max
X

jh½H;M�iρB j
2

∑apðajXÞVar½ρBajX ;M�

¼
jh½H;M�iρB j

2

Var
BjA
Q ½A;M�

:

ð24Þ

Inserting (24) into (6) yields Reid’s criterion. The formulation (1) follows by

using that Var½Mest�≥Var
BjA
Q ½A;M� for all M.

In the case of a Gaussian quantum bipartite state with Gaussian measurements
by Alice, Eq. (24) can be saturated. First, note that the quadrature variances (in fact,
the whole covariance matrix) are identical for each conditional state ρBajX

45. A

suitable pair of conjugate quadratures H, M can be chosen such that Eq. (23) is
saturated26, thus the first inequality in (24) is saturated. For the second inequality,
note that all variances in the denominator are identical.

We can also directly recover Reid’s criterion from the weaker condition (3) by
constructing a specific estimator from the measurement data b, m of Alice and Bob,
respectively. We assume that the dependence of the average value hMest �Miθ ¼
∑b∑mpðb;mjY ;M; θÞðmestðbÞ �mÞ on θ is known from calibration, where
pðb;mjY ;M; θÞ ¼ pðbjYÞ mh jρBbjY;θ mj i. Given a sample of n measurement results,

the value of θ can now be estimated as the one that yields
hMest �Miθ ¼ 1

n
∑

n
i¼1ðmestðbiÞ �miÞ. Without the loss of generality we calibrate

the estimator around the fixed value θ= 0, such that the estimator for m is
unbiased, i.e., 〈Mest〉= 〈M〉θ=0 (any biased estimator would lead to a larger error).
The sample average evaluated at θ= 0 has a variance of 1

n
Var½Mest�. Note that only

the distribution of Bob’s results mi depends on θ, and therefore
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j ∂

∂θ
hMest �Miθ j ¼ j ∂

∂θ
hMiθ j. In the central limit (n≫ 1), this strategy therefore

yields a sensitivity of

Var½θest� ¼
Var½Mest�

n
∂hMiθ
∂θ

�
�
�

�
�
�

2 ; ð25Þ

which can be shown from a maximal likelihood analysis of the sample average
distribution or from Gaussian error propagation46. We obtain the result Eq. (4).

Sensitivity for fixed local measurements. For fixed measurement settings X and
X0 , respectively, the joint statistics of Alice and Bob are described by the probability
distribution pða; bjX;X0; θÞ ¼ pðajXÞTr½EbjX0ρBajX;θ � where EbjX 0 is a POVM

describing the measurement X0. The Cramér–Rao bound

nVar½θest�≥ 1=FAB½Aθ ;X;X
0� ð26Þ

identifies the precision limit for any estimator that is constructed from the local
measurement results a and b and for any choice of X and X0 in terms of the Fisher
information

FAB½Aθ ;X;X
0� ¼ ∑

a;b
pða; bjX;X0; θÞ ∂

∂θ
ln pða; bjX;X0; θÞ


 �2

: ð27Þ

A straightforward calculation reveals that

FAB½Aθ ;X;X
0� ¼ ∑

a
pðajXÞFB½X0jρBajX;θ �; ð28Þ

i.e., for fixed settings, the joint sensitivity coincides with Bob’s average conditional

sensitivity FB½X0jρBajX;θ � ¼ ∑bTr½EbjX0ρBajX;θ � ∂

∂θ
ln Tr½EbjX0ρBajX;θ �

� �2

since Alice’s data

is independent of θ. Maximising over the choice of measurement yields the
hierarchy

FAB½Aθ ;X;X
0�≤ max

X
max
X0

∑apðajXÞFB½X0jρBajX;θ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FA;B
Q

½Aθ �

≤max
X

∑
a
pðajXÞmax

X0
FB½X0jρBajX;θ �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

FQ ½ρBajX ;H�

¼ F
BjA
Q ½A;H�:

ð29Þ

This completes the proof for the set of inequalities (9).

Metrological steering for bipartite quantum states. Let us first note that if
Alice’s system is quantum, the optimal measurements in (2) and (5) can always be
implemented by rank-1 POVMs. This follows from the convexity of the QFI and
the concavity of the variance (Supplementary Note 1).

Now suppose that ρAB is pure. Since the optimal POVM for F
BjA
Q is rank-1, the

corresponding conditional states ρBajX are pure. An important fact about bipartite

pure states is that any pure-state ensemble on Bob’s side (consistent with the
average state ρB) may be realised by an appropriate rank-1 POVM on Alice’s side28.
Thus the optimisation can be reduced to

F
BjA
Q ½ρAB;H� ¼ max

fpðaÞ; ϕaj iga :

∑apðaÞ ϕaj i ϕah j¼ρB

∑
a
pðaÞFQ½ ϕa

�
�

�
;H�

¼ max
fpðaÞ; ϕaj iga :

∑apðaÞ ϕaj i ϕah j¼ρB

4∑
a
pðaÞVar½ ϕa

�
�

�
;H�

¼ 4Var½ρB;H�:

ð30Þ

In the last line we used that the variance is its own concave roof22. For Var
BjA
Q

the minimisation is the same as taking the convex roof, resulting in27 FQ[ρB, H].

Hence, for a pure state ρAB, we obtain the equalities F
BjA
Q ½ρAB;H� ¼ 4Var½ρB;H�

and 4Var
BjA
Q ½ρAB;H� ¼ FQ½ρB;H�. For arbitrary assemblages, we obtain the upper

bounds F
BjA
Q ½A;H�≤ 4Var½ρB;H� and 4Var

BjA
Q ½A;H�≥ FQ½ρB;H� as a consequence

of convexity of the QFI, concavity of the variance, and FQ[ρ,H] ≤ 4Var[ρ,H]. For

the same reason, we obtain that F
BjA
Q ½A;H�≥ FQ½ρB;H� and

Var
BjA
Q ½A;H�≤Var½ρB;H� for arbitrary assemblages A, including those obtained

from ρAB. This concludes the proof of (11).

Multiple generators. One can ask whether there is a (potentially weaker) steering
witness involving only the QFI. It is clear that the right-hand side of (6) cannot be

made state-independent: the best one can do is to replace VarBjAQ ½A;H� by
maxσVar½σ;H�, leading to an inequality that holds for all cases, even steerable.

Instead, we turn to the quantity (14). Without any assistance from Alice, the
best achievable precision would be

FQ½ρB;H� :¼ ∑
m

i¼1
FQ½ρB;Hi�: ð31Þ

Following the same technique as for a single parameter, any LHS model satisfies

F
BjA
Q ½A;H�≤ F�

Q½H�
:¼ max

σB
FQ½σB;H�

¼ max
ϕj iB

FQ½ ϕj iB;H�

¼ max
ϕj iB

∑
i
4Var½ ϕj iB;H i�:

ð32Þ

The fact that pure states achieve the maximum on the right-hand side follows
from convexity of the QFI. This bound is of course only possible when the Hi are
bounded.

Using the same techniques as for Savg (Supplementary Note 6), we can take Hi

to be a set of d2− 1 traceless generators of SU(d) satisfying Tr½HiHj� ¼ δi;j , and

compute F�
Q½H� ¼ FQ½ ϕj i ϕh jB;H� ¼ 4ðd � 1Þ (which actually holds for any ϕj i).

Thus, for this set of H in d dimensions, the LHS bound is

FQ½A;H�≤ 4ðd � 1Þ: ð33Þ
For a pure state ψAB,

F
BjA
Q ½ψAB;H� ¼ ∑

i
4Var½ρB;Hi�

¼ 4ðd � 1Þ þ 4∑
i≠j
pipj;

ð34Þ

so that (33) is violated if and only if ψAB is entangled.

Data availability
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Received: 12 October 2020; Accepted: 11 March 2021;

References
1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description

of physical reality be considered complete? Phys. Rev. 47, 777 (1935).
2. Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using

nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989).
3. Reid, M. D. et al. Colloquium: the Einstein-Podolsky-Rosen paradox: from

concepts to applications. Rev. Mod. Phys. 81, 1727 (2009).
4. Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement,

nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98,
140402 (2007).

5. Uola, R., Costa, A. C. S., Nguyen, H. C. & Gühne, O. Quantum steering. Rev.
Mod. Phys. 92, 015001 (2020).

6. Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M.
One-sided device-independent quantum key distribution: security, feasibility,
and the connection with steering. Phys. Rev. A 85, 010301(R) (2012).

7. Gallego, R. & Aolita, L. Resource theory of steering. Phys. Rev. X 5, 041008
(2015).

8. Piani, M. & Watrous, J. Necessary and sufficient quantum information
characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114,
060404 (2015).

9. Braunstein, S. L., Caves, C. M. & Milburn, G. J. Generalized uncertainty relations:
theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996).

10. Paris, M. G. A. Quantum estimation for quantum technology. Int. J. Quant.
Inf. 07, 125–137 (2009).

11. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology.
Nat. Photon. 5, 222 (2011).

12. Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information
science perspective. J. Phys. A 47, 424006 (2014).

13. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum
metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90,
035005 (2018).

14. Hauke, P., Heyl, M., Tagliacozzo, L. & Zoller, P. Measuring multipartite
entanglement through dynamic susceptibilities. Nat. Phys. 12, 778–782 (2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22353-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2410 | https://doi.org/10.1038/s41467-021-22353-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


15. Pezzè, L., Gabbrielli, M., Lepori, L. & Smerzi, A. Multipartite entanglement in
topological quantum phases. Phys. Rev. Lett. 119, 250401 (2017).

16. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin
states. Science 345, 424–427 (2014).

17. Fröwis, F., Fadel, M., Treutlein, P., Gisin, N. & Brunner, N. Does large
quantum Fisher information imply Bell correlations? Phys. Rev. A. 99, 040101
(2019).

18. Cavalcanti, D. & Skrzypczyk, P. Quantum steering: a review with focus on
semidefinite programming. Rep. Prog. Phys. 80, 024001 (2017).

19. Holevo, A. S. Probabilistic and Statistical Aspects of Quantum Theory (North-
Holland, Amsterdam, 1982).

20. Helstrom, C. W. Quantum Detection and Estimation Theory (Academic Press,
New York, 1976).

21. Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of
quantum states. Phys. Rev. Lett. 72, 3439 (1994).

22. Tóth, G. & Petz, D. Extremal properties of the variance and the quantum
Fisher information. Phys. Rev. A 87, 032324 (2013).

23. Teh, R. Y., Rosales-Zárate, L., Opanchuk, B. & Reid, M. D. Signifying the
nonlocality of NOON states using Einstein-Podolsky-Rosen steering
inequalities. Phys. Rev. A 94, 042119 (2016).

24. Reid, M. D. Interpreting the macroscopic pointer by analysing the elements of
reality of a Schrödinger cat. J. Phys. A: Math. Theor. 50, 41LT01 (2017).

25. Pezzè, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg
limit. Phys. Rev. Lett. 102, 100401 (2009).

26. Gessner, M., Smerzi, A. & Pezzè, L. Metrological nonlinear squeezing
parameter. Phys. Rev. Lett. 122, 090503 (2019).

27. Yu, S. Quantum Fisher information as the convex roof of variance. Preprint at
https://arxiv.org/abs/1302.5311.

28. Hughston, L. P., Jozsa, R. & Wootters, W. K. A complete classification of
quantum ensembles having a given density matrix. Phys. Lett. A 183, 14–18
(1993).

29. Gessner, M. & Smerzi, A. Encrypted quantum correlations: delayed choice of
quantum statistics and other applications. EPJ Quantum Technol. 6, 4 (2019).

30. Cavalcanti, E. G., He, Q. Y., Reid, M. D. & Wiseman, H. M. Unified criteria for
multipartite quantum nonlocality. Phys. Rev. A 84, 032115 (2011).

31. Reid, M. D., He, Q. Y. & Drummond, P. D. Entanglement and nonlocality in
multi-particle systems. Front. Phys. 7, 72–85 (2012).

32. Lange, K. et al. Entanglement between two spatially separated atomic modes.
Science 360, 416–418 (2018).

33. Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement
patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.
Science 360, 409–413 (2018).

34. Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR
steering of atomic clouds. Science 360, 413–416 (2018).

35. Haas, F., Volz, J., Gehr, R., Reichel, J. & Estève, J. Entangled states of more
than 40 atoms in an optical fiber cavity. Science 344, 180–183 (2014).

36. Humphreys, P. C., Barbieri, M., Datta, A. & Walmsley, I. A. Quantum
enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013).

37. Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter
quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).

38. Proctor, T. J., Knott, P. A. & Dunningham, J. A. Multiparameter estimation in
networked quantum sensors. Phys. Rev. Lett. 120, 080501 (2018).

39. Ge, W., Jacobs, K., Eldredge, Z., Gorshkov, A. V. & Foss-Feig, M. Distributed
quantum metrology and the entangling power of linear networks. Phys. Rev.
Lett. 121, 043604 (2018).

40. Guo, X. et al. Sensitivity enhancement by mode entanglement in distributed
phase sensing. Nat. Phys. 16, 281–284 (2020).

41. Gessner, M., Smerzi, A. & Pezzè, L. Multiparameter squeezing for
optimal quantum enhancements in sensor networks. Nat. Commun. 11, 3817
(2020).

42. Matsumoto, K. A new approach to the Cramer-Rao-type bound of the pure-
state model. J. Phys. A 35, 3111 (2002).

43. Pezzè, L. et al. Optimal measurements for simultaneous quantum estimation
of multiple phases. Phys. Rev. Lett. 119, 130504 (2017).

44. Gisin, N. Bell’s inequality holds for all non-product states. Phys. Lett. A 154,
201 (1991).

45. Fiurášek, J. Gaussian transformations and distillation of entangled Gaussian
states. Phys. Rev. Lett. 89, 137904 (2002).

46. Pezzè, L. & Smerzi, A. Quantum theory of phase estimation, in Atom
Interferometry. In Proceedings of the International School of Physics "Enrico
Fermi”, Course 188, Varenna (eds Tino, G. M. & Kasevich, M. A.) 691 (IOS
Press, Amsterdam, 2014).

Acknowledgements
We thank G. Adesso, L. Pezzè, A. Smerzi, and P. Treutlein for discussions. BY

acknowledges financial support from the European Research Council (ERC) under the

Starting Grant GQCOP (Grant No. 637352) and grant number (FQXi FFF Grant number

FQXi-RFP-1812) from the Foundational Questions Institute and Fetzer Franklin Fund, a

donor advised fund of Silicon Valley Community Foundation. MF was partially sup-

ported by the Swiss National Science Foundation, and by the Research Fund of the

University of Basel for Excellent Junior Researchers. MG acknowledges funding by the

LabEx ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*. Open Access

funding provided by University of Basel.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-021-22353-3.

Correspondence and requests for materials should be addressed to M.F.

Peer review information Nature Communications thanks Jan Chwedenczuk and the

other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22353-3

8 NATURE COMMUNICATIONS |         (2021) 12:2410 | https://doi.org/10.1038/s41467-021-22353-3 | www.nature.com/naturecommunications

https://arxiv.org/abs/1302.5311
https://doi.org/10.1038/s41467-021-22353-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox
	Results
	Reid’s criterion for an EPR paradox
	EPR-assisted metrology
	Comparison to Reid-type criteria
	Bounds for specific measurements
	Bounds on FQ^B| AFQB|A and VarQ^B| AVarQB∣A
	Steering of GHZ states
	Steering of atomic split twin Fock states
	Phase estimation with multiple generators
	Steering quantification

	Discussion
	Methods
	Fisher information
	Proof of the main result
	Recovering Reid’s criterion
	Sensitivity for fixed local measurements
	Metrological steering for bipartite quantum states
	Multiple generators

	Data availability
	Code availability
	References
	Acknowledgements
	Competing interests
	Additional information


