
0018-9162/03/$17.00 © 2003 IEEE April 2003 45

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Metropolis: An
Integrated Electronic
System Design
Environment

A solid design flow must capture designs at
well-defined levels of abstraction and pro-
ceed toward an efficient implementation.
The critical decisions involve the system’s
architecture, which will execute the com-

putation and communication tasks associated with
the design’s overall specification. Understanding
the application domain is essential to ensure effi-
cient use of the design flow.

Today, the design chain lacks adequate support.
Most system-level designers use a collection of
unlinked tools. The implementation then proceeds
with informal techniques that involve numerous
human-language interactions that create unnecessary
and unwanted iterations among groups of designers
in different companies or different divisions. These
groups share little understanding of their respective
knowledge domains. Developers thus cannot be sure
that these tools, linked by manual or empirical trans-
lation of intermediate formats, will preserve the
design’s semantics. This uncertainty often results in
errors that are difficult to identify and debug.

The move toward programmable platforms shifts
the design implementation task toward embedded
software design. When embedded software reaches
the complexity typical of today’s designs, the risk
that the software will not function correctly
increases dramatically. This risk stems mainly from
poor design methodologies and fragile software sys-

tem architectures, the result of growing functional-
ity over an existing implementation that may be
quite old and undocumented. The Metropolis pro-
ject seeks to develop a unified framework that can
cope with these challenges.

DESIGN OVERVIEW
We designed Metropolis to provide an infra-

structure based on a model with precise semantics
that remain general enough to support existing
computation models1 and accommodate new ones.
This metamodel can support not only functional-
ity capture and analysis, but also architecture
description and the mapping of functionality to
architectural elements.

Metropolis uses a logic language to capture non-
functional and declarative constraints. Because the
model has a precise semantics, it can support sev-
eral synthesis and formal analysis tools in addition
to simulation.

The first design activity that Metropolis supports,
communication of design intent and results, focuses
on the interactions among people working at dif-
ferent abstraction levels and among people working
concurrently at the same abstraction level. The
metamodel includes constraints that represent in
abstract form requirements not yet implemented or
assumed to be satisfied by the rest of the system and
its environment.

Based on a metamodel with formal semantics that developers can use
to capture designs, Metropolis provides an environment for complex
electronic-system design that supports simulation, formal analysis,
and synthesis.

Felice Balarin
Yosinori
Watanabe
Cadence Berkeley
Labs

Harry Hsieh
University of
California, Riverside

Luciano
Lavagno
Claudio
Passerone
Politecnico
di Torino

Alberto
Sangiovanni-
Vincentelli
University of
California, Berkeley

46 Computer

Metropolis accomplishes the second design activ-
ity, analysis, through simulation and formal verifi-
cation to determine how well an implementation
satisfies the requirements. Proper use of abstrac-
tion can dramatically accelerate verification. The
constant use of detailed representations, on the
other hand, can introduce excessive dependencies
between developers, reduce the interfacing require-
ments’ understandability, and diminish the effi-
ciency of analysis mechanisms.

Metropolis addresses the third design activity,
synthesis, throughout the abstraction levels used in
a design. Typical problems we address include set-
ting the parameters of architectural elements such
as cache sizes, or designing scheduling algorithms
and interface blocks. We also deal with synthesis
of the final implementations in hardware and soft-
ware. In Metropolis, a specification may mix
declarative and executable constructs of the meta-
model, which are then automatically translated into
the semantically equivalent mathematical models
that the synthesis algorithms are applied to.

It can be argued that application domains and
their constraints on attributes—such as cost, energy,
performance, design time, and safety—are so dif-
ferent that there is insufficient economy of scale to
justify developing tools to automate these design
activities. With the Metropolis project, however, we
seek to show that this is untrue for at least a broad
class of domains and implementation choices.

The choice of technique or algorithm for analy-
sis and synthesis of a particular design depends on
the application domain and the design phase. For
example, safety-critical applications may need for-
mal verification techniques, which require signifi-
cant human skills for use on realistic designs. On
the other hand, formal verification tools can exe-
cute simple low-level equivalence checks between
various abstraction levels in hardware design—
such as logic versus transistor levels.

Thus, we do not intend for Metropolis to pro-
vide algorithms and tools for all possible design
activities. Instead, it offers syntactic and semantic
mechanisms to compactly store and communicate
all relevant design information, and designers can
use it to plug in the required algorithms for a given
application domain or design flow.

Metropolis includes a parser that reads meta-
model designs and a standard API that lets devel-
opers browse, analyze, modify, and augment
additional information within those designs. For
each tool integrated into Metropolis, a back end
uses the API to generate required input by the tool
from the design’s relevant portion. This unified

Related Research and Tools

Several past and present research activities have influenced our devel-
opment of Metropolis, including those that follow.

POLIS/VCC and related research
Cadence Design Systems based its system-level design environment,

Virtual Component Codesign (VCC), on the idea of separation
between functionality and architecture pioneered in POLIS.1 Metrop-
olis is based on the same ideas but implements them more flexibly.
For example, VCC uses a fixed computation model, while Metropo-
lis lets users define the communication primitives and execution rules
most suitable for the application at hand. An architecture can be con-
structed from a predefined set of components in VCC, although it can-
not handle a recursive layering of platform models. VCC uses C and
C++ to define the behavior of processes, which rules out formal process
analysis or optimization techniques beyond those that standard soft-
ware compilers use.

Tools from Arexsys, Foresight, Artisan, and CardTools resemble VCC’s
spirit and implementation. They all use a separation between functional-
ity and architectural resources as well as a mapping to derive performance
information. Of these tools, only Arexsys’s ArchiMate uses a formal lan-
guage, SDL, to model system functionality; the others use C or C++.

System-level languages and frameworks
The Metropolis metamodel bears several similarities to systems and

languages such as Ptolemy,2 SystemC,3 and SpecC,4 since all share the
notion of concurrent processes communicating through channels.
Their primary focus is system modeling, and therefore they omit fea-
tures necessary to orthogonalize functionality and architecture, such
as mapping between functional and architectural networks or between
different refinement levels. Further, these languages do not have the
ability to explicitly represent constraints. Finally, using the underly-
ing C/C++ semantics, particularly pointers, while convenient for mod-
eling, hinders automated synthesis.

Commercial hardware and software coverification tools from com-
panies such as Mentor, Vast, Virtio, and Axys can provide fast instruc-
tion-set simulation linked to various hardware simulators. They attack
the functional and performance modeling problem for software-dom-
inated embedded systems, although they do not address the issues of
high-level hardware modeling and refinement.

References
1. F. Balarin et al., Hardware-Software Co-Design of Embedded Systems:

The Polis Approach, Kluwer Academic Publishers, 1997.
2. J. Buck et al., “Ptolemy: A Framework for Simulating and Prototyp-

ing Heterogeneous Systems,” Int’l J. Computer Simulation, Apr. 1994,
pp. 155-182.

3. T. Grotker et al., System Design with SystemC, Kluwer Academic Pub-
lishers, 2002.

4. D. Gajski, J. Zhu, and R. Domer, The SpecC Language, Kluwer Aca-
demic Publishers, 1997.

mechanism makes it easy to incorporate tools
developed elsewhere, as demonstrated by integrat-
ing the Spin2 software verification tool into
Metropolis.

Throughout Metropolis’s development, we have
drawn on related work in this field—some of which
we describe in the “Related Research and Tools”
sidebar—both as a basis for our own work and as
a reference point for further improvement.

METROPOLIS METAMODEL
A language for specifying networks of concurrent

objects that each take actions sequentially, the
Metropolis metamodel formally defines a network’s
behavior by the language’s execution semantics.3 The
metamodel can be used to represent all the key ingre-
dients in the design flows: function, architecture,
mapping, refinement, abstraction, and platforms.

Function modeling
A system’s function is the set of objects that con-

currently take actions while communicating with
one another. We call such an object a process in the
metamodel and associate it with a sequential pro-
gram called a thread. A process communicates
through the ports defined in it. A port is specified
with an interface, which declares a set of methods
that the process can use through the port.

An interface may be implemented in different
ways, and we refer to objects that implement port
interfaces as media. Any medium can be connected
to a port if it implements the port’s interface. This
mechanism lets the metamodel separate computa-
tion by processes from communication among
them. This separation is essential to facilitate the
description of the objects to be reused for other
designs. Figure 1 shows a network of two producer
processes and one consumer process that commu-
nicate through a medium.

Once we have established a network of
processes, we use the metamodel’s semantics to pre-
cisely define the network’s behavior as a set of exe-

cutions. First, we define a process’s execution as a
sequence of events, which are a program’s entries
or exits to some piece of code. For example, for
Figure 1’s process X, the beginning of the call to
R.read() is an event, as is its termination.

We then define a network execution as a
sequence of event vectors in which each vector has
at most one event for each process to define the set
of events that happen altogether. The metamodel
can model nondeterministic behavior, useful for
abstracting a part of the design, thus there may be
more than one possible execution of the network.

Constraints, written in logic formulas, further
restrict the set of executions defining the set of legal
executions.3 For example, the constraint in Figure
1 specifies the mutual exclusion of the two pro-
ducers when one calls the medium’s write method.
Constraints describe the coordination of processes
or relate the behavior of networks through map-
ping or refinement.

Architecture modeling
Two aspects distinguish architectures: the func-

tionality they can implement and that implemen-
tation’s efficiency. In the metamodel, we model
functionality as a set of services that an architec-
ture offers to the functional model. Services are just
methods, bundled into interfaces.4

To represent an implementation’s efficiency, we
must model the cost of each service. We do so by
first decomposing each service into a sequence of
events, then annotating each event with a value rep-
resenting the event’s cost.

To decompose the services into sequences of
events, we use networks of media and processes,
just as in the functional model. These networks
often correspond to the physical structures of
implementation platforms. For example, Figure 2
shows an architecture consisting of n processes, T1,
…, Tn,—and three media—CPU, BUS, MEM. The
architecture in Figure 2 also contains quantity man-
agers, represented by diamond-shaped symbols.

April 2003 47

process X {
 port Read R;
 port Write W;

 void thread(){
 while(true){
 x = R.read();
 z = foo(x);
 W.write(z);
 }
 }
}

interface Read extends Port {
 update int read();
 eval int nItems();
}
interface Write extends Port {
 update int write(int data);
 eval int nSpace();
}

medium S implements Read, Write {
 int n, space;
 int[] storage;
 int read(){ ... } // body of read
 int write(){ ... } // body of write
 ...
}constraint{ ltl G(beg(P0, M.write) -> !beg(P1, M.write) U end(P0, M.write) &&

 beg(P1, M.write) -> !beg(P0, M.write) U end(P1, M.write)); }

process X
name P0

process X
name P1

process X
name C

medium S
name M

Figure 1. Functional network model. The network consists of two producer processes and one consumer process, all of which communicate
through a medium.

48 Computer

The processes model software tasks executing on
a CPU, while the media model the CPU, bus, and
memory.

The services that this architecture offers are the
execute, read, and write methods that the Task
processes implement. The thread function of a Task
process repeatedly and nondeterministically executes
one of the three methods. In this way, we model that
the tasks can execute these methods in any order.
The actual order will become fixed only after the
designer finishes function-mapping to the architec-
ture so that each task implements a particular
process of the functional model.

While a Task process offers its methods to the sys-
tem’s functional part, the process itself uses services
that the CPU medium offers, which, in turn, uses the
BUS medium’s services. In this way, the system
decomposes the top-level services that the tasks offer
into sequences of events throughout the architecture.

The metamodel includes the notion of using
quantity to annotate individual events and using
values to measure cost. For example, Figure 2 uses
the energy quantity to annotate each event with the
energy required to process it. To specify that a given
event takes a given amount of energy, we associate
with that event a request for that amount. The sys-
tem makes these requests to the quantity manager
object, which collects all requests and, if possible,
fulfills them. An event can be processed if its request
is filled; otherwise it will wait until the manager
grants the request.

Quantities can also be used to model shared
resources. For example, in Figure 2 the CpuArb
quantity labels every event with the current CPU
owner’s task identifier. Assuming that a process can
progress only if it is the current CPU owner, the
CpuArb manager effectively models the CPU sched-

uling algorithm. The metamodel has no built-in
notion of time, but developers can model the time
as yet another quantity that puts an annotation—
in this case a time stamp—on each event.

For efficiency’s sake, Metropolis provides stan-
dard libraries for managing common quantities,
such as time. In addition, design flow developers
can write quantity managers to support quantities
relevant to a specific application domain.

Mapping
Evaluating a particular implementation’s per-

formance requires mapping a functional model to
an architectural model. The metamodel can do this
without modifying the functional and architectural
networks. It does so by defining a new network to
encapsulate the functional and architectural net-
works and relating the two by synchronizing events
between them. This new network, called a map-
ping network, can be considered a top layer that
specifies the mapping between the function and
architecture.

The synchronization mechanism roughly corre-
sponds to an intersection of the execution sets for
the functional and architectural models. Functional-
model executions specify a sequence of events for
each process, but they usually allow arbitrary inter-
leaving of the concurrent processes’ event sequences,
as their relative speed is undetermined.

On the other hand, architectural model execu-
tions typically specify each service as a timed
sequence of events, but they exhibit nondetermin-
ism with respect to the order in which they perform
services and on what data. The mapping eliminates
all executions from the two sets except those in
which the events that should be synchronized
always appear simultaneously. Thus, the remain-

 void execute(int n) {
 {$
 ... // make request to CpuArb
 ... // to become CPU owner
 $}
 cpu.execute(n);

 ...

 }

 }
 void write() { ... }
 void thread() { ... }
}

 void read() {

 cpu.read();

 {$
 ... // make request to Time
 ... // for a memory read delay
 $}

medium MEM implements SlaveService {

 void write { ... }
}

medium CPU implements CpuService {
 prt BusService bus;

 void execute(int n) {
 {$
 ... // make request to Time

 void read {

 }

 void read() { ... bus.read(); }
 void write() { ... bus.write(); }
}

medium BUS implements BusService {
 port SlaveService mem;

 void read() {

 {$
 ... // make request to BusArb
 ... // to become bus master

 ... // for a delay of n clock cycles

 mem.read();
 }
 void write() { ... mem.write(); }
}

 port CpuService cpu;

 }
 $}

process Task {

 $}

process Task
name T1

process Task
name Tn

medium
CPU

medium

medium
MEM

BUS

q-manager

q-manager

q-manager

q-manager

Time

BusArb

CpuArb

Energy

…

Figure 2. Architectural network model. Several processes model software tasks that execute on the CPU; three media model the CPU, bus, and
memory; and four quantity managers measure the cost in system resources of processing individual events.

ing executions represent timed sequences of events
for the concurrent processes.

Figure 3 shows a mapping network that com-
bines the functional network from Figure 1 with
the architectural network from Figure 2. The map-
ping network’s constraint clause synchronizes the
two networks’ events. For example, executions of
execute, read, and write by T1 synchronize execu-
tions of foo, read, and write by P0. Since P0 exe-
cutes its actions in a fixed order, while T1 chooses
its actions nondeterministically, synchronization
forces T1 to follow P0’s decisions, while P0 inher-
its T1’s quantity annotations. Thus, mapping P0 to
T1 makes T1 become a performance model of P0.

Similarly, T2 and T3 become performance models
of P1 and C, respectively.

Recursive paradigm of platforms
Suppose that we obtain a mapping network such

as the one shown in Figure 3. We can consider the
network itself an implementation of a certain ser-
vice. The functional network provides the algo-
rithm for implementing the service, while the
architecture counterpart defines its performance.

In Figure 4, the interface at the top defines meth-
ods that specify a service. The medium in the mid-
dle implements the interface at the desired
abstraction level. Underneath the medium, a map-

April 2003 49

constraint { ltl G(beg(P0,P0.foo) <->beg(T1,CPU.execute(50)) &&
end(P0,P0.foo) <->end(T1,CPU.execute(50)) &&
beg(P0,M.write) <->beg(T1,CPU.write) &&
...
end(P1,P1.foo) <->end(T2,CPU.execute(50)) &&

end(C,C.foo) <->end(T3,CPU.execute(50)) &&
...)}

...

process Task
name T1

process Task
name T3

process Task
name T2

medium
CPU

medium

medium
MEM

BUS

q-manager

q-manager

q-manager

q-manager

Time

BusArb

CpuArb

Energy
constraint{ ltl G(beg(P0, M.write) -> !beg(P1, M.write) U end(P0, M.write) &&
 beg(P1, M.write) -> !beg(P0, M.write) U end(P1, M.write)); }

process X
name P0

process X
name P1

process X
name C

medium S
name M

Figure 3. Mapping network. This network encapsulates the functional and architectural networks and relates them to define an implementa-
tion of the function. The network itself can be considered an architecture of a service: The functional network specifies the service’s
algorithm, while the architectural network defines its performance.

constraint { ltl G(...); ... }constraint { ltl G(...); ... } constraint { ltl G(...); ... }

interface MpegDecode extends Port{
 update VideoData mpegDecode(ElemStream)
}

refine(AbsMpeg, MC1);
constraint{ ... }

medium AbsMpeg implements MpegDecode
 VideoData mpegDecode(ElemStream es){
 // body of abstracted mpegDecode
 }

Figure 4. Multiple mapping netlists refine the same service to create a platform. The method declaration interface at the top defines methods
that specify a service, while the oval medium in the middle implements the interface at the desired abstraction level. The refinement
constraints help the metamodel relate the medium to each network.

50 Computer

ping network provides a more detailed
description of the service’s implementation.
The metamodel can use the construct refine
and constraints to relate the medium and each
network. For example, the constraints may
say that the begin event of the medium’s
mpegDecode is synchronized with the begin
event of vldGet for the network’s VLD
process, and that the end of mpegDecode syn-
chronizes with the end of yuvPut in the OUT-
PUT process, while the value of the variable
YUV at the event’s execution agrees with the
mpegDecode output value.

Many mapping networks can exist for the
same service, each with different algorithms or
architectures. Such a set of networks, together with
constraints on event relations for a given interface
implementation, constitute a platform. The plat-
form elements provide the same service with dif-
ferent costs, with given design requirements
favoring one over another.

This concept of platforms appears recursively in
the design process. Generally, an implementation
of what one designer conceives as the entire system
represents a refinement of a more abstracted ser-
vice model, which can in turn be employed as a sin-
gle component of the larger system.

For example, a mapping network might give a
particular implementation of an MPEG decoder, but
its service may be modeled by a single medium in
which the events generated in that medium are anno-
tated with performance quantities to characterize
the decoder. A company that designs broadband set-
top appliances could use such a medium as part of
its product’s architectural model. The company
would use this medium to evaluate its set-top box
design, while the MPEG decoder’s provider might
use the same medium for its design requirements.

Similarly, the MPEG decoder can use a bus model
in its architecture, which another company provides
as a medium. For the company that provides it, the
bus design itself forms the entire system, as given by
another mapping network that refines the medium.
Yet this mapping network may be only one candi-
date in the communication service’s platform, and
the MPEG decoder’s designer may explore various
options based on the design criteria.

The Metropolis metamodel uniformly describes
this recursive paradigm of platform-based design.
Its key contributions are that it employs formal
semantics that precisely define network behavior,
and it provides a mechanism for relating different
networks’ events in terms of quantities annotated
to the events.

TOOLS
The Metropolis framework includes tools for

verification, simulation,5 and synthesis. Here we
highlight three of them: tools for formal and sim-
ulation-based property verification, and schedule
synthesis for concurrent computation.

Formal property verification
Both academia and industry have long studied

formal property verification, but the state-explo-
sion problem restricts its usefulness to protocols or
other high abstraction levels. At the implementa-
tion or other low abstraction levels, hardware and
software engineers have used simulation monitors
as basic tools to check simulation traces while
debugging designs.

Verification languages, such as Promela, which
the Spin model checker uses,2 allow only simple
concurrency modeling and are not amenable to sys-
tem design specification, which requires complex
synchronization and architecture constraints. In
contrast, Metropolis, with its formal semantics,
automatically generates verification models for all
the design’s levels.6

Our translator automatically constructs the Spin
verification model from the metamodel specification,
taking care of all system-level constructs. For exam-
ple, it can automatically generate a verification
model for the example in Figure 1 and verify the
medium’s nonoverwriting properties. Further, as the
translator refines the design through structural trans-
formation and architectural mapping, it can prove
more properties, including throughput and latency.
This kind of property verification typically requires
several minutes of computation on a 1.8-GHz Xeon
machine with 1 Gbyte of memory. When the state
space complexity becomes too high, Metropolis uses
approximate verification and provides the user with
a confidence factor on the passing result.

Simulation monitors
Simulation monitors offer an attractive alterna-

tive to formal property verification. In Metropolis,
designers can use logic of constraints (LOC) for-
mulas3 to specify quantitative properties. The sys-
tem can automatically translate the specification to
simulation monitors in C++,7 thus relieving design-
ers from the tedious and error-prone task of writ-
ing monitors in the simulator’s language. The
monitors analyze the traces and report any LOC
formula violations. Like any other simulation-
based approach, this one can only disprove a LOC
formula if it finds a violation—it can never prove
conclusively the formula’s correctness because that

The Metropolis
metamodel’s

recursive platform-
based design

paradigm employs
formal semantics

that precisely define
network behavior.

would require analyzing traces exhaustively. The
automatic trace analyzer can be used in concert
with model checkers. It can perform property ver-
ification on a single trace even when other
approaches would fail because of their excessive
memory and space requirements.

In our experience with applying the automatic
LOC-monitor technique to large designs with com-
plex traces, we have found that in most cases the
analysis completes in minutes and consumes only
hundreds of bytes of data memory to store the LOC
formulas. The analysis time tends to grow linearly
with the trace size, while the memory requirement
remains constant regardless of the trace size.7

Quasi-static scheduling
We have developed an automatic synthesis tech-

nique called quasistatic scheduling8 to schedule a
concurrent specification on computational resources
that provide limited concurrency. QSS considers a
system to be specified as a set of concurrent
processes communicating through FIFO queues and
generates a set of tasks that are fully and statically
scheduled, except for data-dependent controls that
can be resolved only at runtime. A task usually
results from merging parts of several processes
together and shows less concurrency than the ini-
tial specification. Moreover, QSS allows interprocess
optimizations that are difficult to achieve if
processes remain separated, such as replacing inter-
process communication with assignments.

This technique proved particularly effective and
let us generate production-quality code with
improved performance. Applying QSS to a signifi-
cant portion of an MPEG-2 decoder resulted in a
45 percent increase in overall performance.

The assumptions that QSS requires for the input
specification form a subset of what the metamodel
can represent. Therefore, when integrating QSS
into the Metropolis framework, we addressed two
main problems: how to verify if a design satisfies
the required set of rules and how to convey all rel-
evant design information to the QSS tool.

We addressed the first problem by providing a
library of interfaces and communication media that
implement a FIFO communication model. Those
parts of the design optimized with QSS need to use
these communication primitives.

To convey relevant design information to QSS,
we use a back-end tool that translates a design to
be scheduled with QSS into a Petri net specifica-
tion, which is QSS’s underlying model. QSS then
uses the Petri net to produce a new set of processes.
These new processes show no interprocess com-

munication because QSS removes it. The
processes communicate with the environ-
ment using the same primitives implemented
in the library. The new code can thus be
directly plugged into the metamodel specifi-
cation as a refinement of the network selected
for scheduling.

T he Metropolis metamodel’s formal
semantics allow embedding computa-
tion models in a rigorous framework

that favors design reuse and design chain sup-
port. The system’s features can facilitate the
dialog among designers with different knowledge
domains. With Metropolis, we seek to avoid
imposing a specific language or flow model on
designers, instead making their preferred approach
more robust and rigorous. Metropolis also offers a
set of analysis and synthesis tools that show how
designers can use the framework to integrate flows.

We plan to add tools to Metropolis as we address
different application domains. Currently, we are
exploring the automotive, wireless communication,
and video application domains in collaboration
with our industrial partners. As we identify the
design’s critical parts and determine what must be
supported to facilitate design hand-offs, we plan to
tune the metamodel and increase the infrastruc-
ture’s power to support successive refinement. We
also plan to make Metropolis and its components
open domain to expose these ideas to the academic
and industrial communities. �

Acknowledgments
We thank the MARCO GSRC program, which

partially supported the development of Metropolis;
Cadence Berkeley Labs’s researchers for helping to
develop Metropolis; and our partners PARADES,
the Berkeley Wireless Research Center, Intel,
Cypress Semiconductor, Nokia, Philips, STMicro-
electronics, BMW, and Magneti Marelli for pro-
viding support and collaboration during the
various phases of Metropolis’s development. We
also thank the many people involved in Metropolis
and related projects, including Jerry Burch, Luca
Carloni, Rong Chen, Xi Chen, Robert Clariso
Viladrosa, Jordi Cortadella, Erwin deKock, Doug
Densmore, Alberto Ferrari, Daniele Gasperini,
Gregor Gössler, Timothy Kam, Arjan Kenter, Mike
Kishinievski, Alex Kondratyev, Wido Kruijtzer,
Dunny Lam, Alberto La Rosa, Radu Marculescu,
Grant Martin, Trevor Meyerowitz, John

April 2003 51

Metropolis avoids
imposing a specific

language or flow
model on designers,
instead making their
preferred approach

more robust
and rigorous.

52 Computer

Moondanos, Andy Ong, Roberto Passerone,
Claudio Pinello, Alessandro Pinto, Sanjay Reikhi,
Ellen Sentovich, Marco Sgroi, Greg Spirakis, Laura
Vanzago, Ted Vucurevich, Howard Wong-Toi, and
Guang Yang.

References
1. E. Lee and A. Sangiovanni-Vincentelli, “A Frame-

work for Comparing Models of Computation,”
IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, Dec. 1998, pp. 1217-1229.

2. G.J. Holzmann, “The Model Checker Spin,” IEEE
Trans. Software Eng., May 1997, pp. 258-279.

3. F. Balarin et al., “Modeling and Designing Hetero-
geneous Systems,” Concurrency and Hardware
Design, J. Cortadella, A. Yakovlev, and G. Rozen-
berg, eds., Springer, 2002, pp. 228-273.

4. S. Solden, “Architectural Services Modeling for Per-
formance in HW-SW Co-Design,” Proc. Workshop
on Synthesis and System Integration of Mixed Tech-
nologies, IEEE Press, 2001, pp. 72-77.

5. F. Balarin et al., “Concurrent Execution Semantics
and Sequential Simulation Algorithms for the
Metropolis Metamodel,” Proc. 10th Int’l Symp.
Hardware/Software Codesign, IEEE CS Press, 2002,
pp. 13-18.

6. X. Chen et al., “Formal Verification of Embedded
System Designs at Multiple Levels of Abstraction,”
Int’l Workshop High-Level Design, Validation and
Test, IEEE CS Press, 2002, pp. 125-130.

7. X. Chen et al., “Automatic Generation of Simulation
Monitors from Quantitative Constraint Formula,”
to be published in Proc. Design Automation and Test
in Europe 2003, ACM Press, 2003.

8. J. Cortadella et al., “Quasi-Static Scheduling of Inde-
pendent Tasks for Reactive Systems,” Proc. 23rd Int’l
Conf. Application and Theory of Petri Nets, Springer,
2002, pp. 80-99.

Felice Balarin is a research scientist at Cadence
Berkeley Labs. His research interests focus on the
development and application of formal methods
for the design, verification, control, and timing
analysis of embedded systems implemented both
by hardware and software. Balarin received a PhD
in electrical engineering and computer science
from the University of California, Berkeley. Con-
tact him at felice@cadence.com.

Yosinori Watanabe is a research scientist at
Cadence Berkeley Labs. His research interests focus
on methodologies and synthesis and verification of
system designs. Watanabe received a PhD in elec-
trical engineering and computer science from the
University of California, Berkeley. Contact him at
watanabe@cadence.com.

Harry Hsieh is an assistant professor at the Uni-
versity of California, Riverside. His research inter-
ests include all aspects of electronic systems design,
with emphasis on computer-aided design and ver-
ification, embedded systems architecture, and
embedded software. Hsieh received a PhD in elec-
trical engineering and computer science from the
University of California, Berkeley. Contact him at
harry@cs.ucr.edu.

Luciano Lavagno is an associate professor in the
Department of Electronics at the Politecnico di
Torino. His research interests include synthesis and
testing of asynchronous circuits and concurrent
design of mixed hardware and software embedded
systems. Lavagno received a PhD in electrical engi-
neering and computer science from the University
of California, Berkeley. Contact him at lavagno@
polito.it.

Claudio Passerone is a research associate in the
Department of Electronics at the Politecnico di
Torino. His research interests include system-level
design, electronic system simulation, and reconfig-
urable hardware. Passerone received a PhD in elec-
trical and communication engineering from the
Politecnico di Torino. Contact him at claudio.
passerone@polito.it.

Alberto Sangiovanni-Vincentelli is a professor at
the University of California, Berkeley, and is chief
technology advisor to Cadence. His research inter-
ests include computer-aided analysis and design and
hybrid and embedded-system design. Sangiovanni-
Vincentelli received a DrEng degree in engineering
from Politecnico di Milano, Italy. He is a member
of the National Academy of Engineering. Contact
him at alberto@eecs.berkeley.edu

