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Abstract

Model-X knockoffs is a wrapper that transforms essentially any feature importance measure
into a variable selection algorithm, which discovers true effects while rigorously controlling the
expected fraction of false positives. A frequently discussed challenge to apply this method is
to construct knockoff variables, which are synthetic variables obeying a crucial exchangeabil-
ity property with the explanatory variables under study. This paper introduces techniques for
knockoff generation in great generality: we provide a sequential characterization of all possible
knockoff distributions, which leads to a Metropolis–Hastings formulation of an exact knockoff
sampler. We further show how to use conditional independence structure to speed up computa-
tions. Combining these two threads, we introduce an explicit set of sequential algorithms and
empirically demonstrate their effectiveness. Our theoretical analysis proves that our algorithms
achieve near-optimal computational complexity in certain cases. The techniques we develop
are sufficiently rich to enable knockoff sampling in challenging models including cases where
the covariates are continuous and heavy-tailed, and follow a graphical model such as the Ising
model.

Keywords. False discovery rate (FDR), Metropolis–Hastings, Markov chain, graphical models, Ising

model, junction tree, treewidth

1 Introduction

In modern science, researchers often have access to large data sets featuring comprehensive measure-
ments about some phenomenon of interest. The question is then to discover meaningful relationships
between an outcome and all the measured covariates. While it is often expected that only a small
fraction of the covariates may be associated with the outcome, the relevance of any particular vari-
able is unknown a priori. For instance, a researcher may be interested in understanding which
of the thousands of gene-expression profiles may help determine the severity of a tumor. In such
circumstances, the researcher often relies on statistical algorithms to sift through large data sets
and find those promising candidates, making variable selection a topic of central importance in
contemporary statistical research.

The knockoff filter (Barber and Candès 2015; Candès et al. 2018) has recently emerged as a useful
framework for performing controlled variable selection, allowing the user to convert any black-box

∗Authors are listed in alphabetical order.
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feature importance measure into a variable selection procedure while rigorously controlling the
expected fraction of false positives. This means that the statistician can use essentially any black-
box importance measure to return a list of variables with the guarantee that, on the average, the
ratio between the number of false positives—loosely speaking, a false positive is a variable that does
not influence the response, see Candès et al. (2018)—and the total number of reported variables is
below a user-specified threshold. The strength of this method is that the guarantees hold in finite
samples and in situations where nothing can be assumed about the dependence between the response
and the explanatory variables. Instead, the statistician must have knowledge of the distribution of
the explanatory variables. When this happens to be the case, a remaining challenge is the ability
to generate the knockoffs, a set of synthetic variables, which can essentially be used as negative
controls; these fake variables must mimic the original variables in a particular way without having
any additional predictive power. In sum, constructing valid knockoff distributions and sampling
mechanisms across a wide range of covariate models is critical to deploying the knockoff filter in a
number of applications.

1.1 Our contribution

This paper describes a theory for sampling knockoff variables and introduces a general and efficient
sampler inspired by ideas from Markov chain Monte Carlo (MCMC). Before moving on, we pause to
explicitly mention the two main considerations one should keep in mind when constructing knockoffs:

Computation. How can we efficiently sample nontrivial knockoffs?

Statistical power. How can we generate knockoffs that will ultimately lead to powerful variable
selection procedures? On this note, it has been observed that knockoffs that are less correlated
with the original variables lead to higher power (Barber and Candès 2015; Candès et al. 2018)
and, therefore, low correlation must be a design objective.

Having said that, our work makes several specific contributions.

1. Characterization of all knockoff distributions. We provide a sequential characterization
of every valid knockoff distribution. Furthermore, we introduce a connection linking pairwise
exchangeability between original and knockoff variables to reversible Markov chains, enabling
the use of powerful sampling tools from computational statistics.

2. Complexity of knockoff sampling procedures. We introduce a class of algorithms which
use conditional independence information to efficiently generate knockoffs. The computational
complexity of such procedures is shown to be determined by the complexity of the dependence
structure in a precise way. Furthermore, we present a lower bound on complexity showing
that structural assumptions are necessary for efficient computation, and that our procedure
achieves the lower bound in certain cases.

3. Practical sampling algorithms. We develop a concrete knockoff sampler for a large number
of distributions. This is achieved by constructing a family of MCMC tools—designed to have
good performance—which only require the numerical evaluation of an unnormalized density.
We identify a default parameter setting for the sampler that performs well across a variety of
situations, producing a general and easy-to-use tool for practitioners.

We shall see that our ideas enable knockoff sampling in challenging models including situations
where the covariates are continuous and heavy-tailed and where they follow an Ising model.
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1.2 Related literature

This paper draws most heavily on Candès et al. (2018), which builds on Barber and Candès (2015)
to introduce the model-X knockoff framework. In particular, the former reference proposes the
Sequential Conditional Independent Pairs (SCIP) procedure for knockoff generation; this is the only
known generic knockoff sampler to date, which shall serve as our starting point. The SCIP procedure,
however, is only abstractly specified and prior to this paper, implementations were only available
for Gaussian distributions and discrete Markov chains. Briefly, Sesia et al. (2018) developed a
concrete SCIP algorithm for discrete Markov chains, and then leveraged this construction to sample
knockoffs for covariates following hidden Markov models widely used in genome-wide association
studies. Similarly relevant is the work of Gimenez et al. (2018), which developed a sampling strategy
for a restricted class of Bayesian networks, most notably Gaussian mixture models. In contrast, we
address here knockoff sampling for a much larger class of distributions, namely, arbitrary graphical
models. We also describe the form of all valid knockoff sampling strategies, thereby providing a
framework possibly enabling the construction of future knockoff sampling algorithms. Hence, our
work may be of value to the increasing number of researchers deploying the knockoff framework for
feature selection in a variety of applications including neural networks (Lu et al. 2018), time-series
modeling (Fan et al. 2018), Gaussian graphical model structure learning (Zheng et al. 2018), and
biology (Xiao et al. 2017; Gao et al. 2018). Lastly, we close by emphasizing that our contribution
is very different from a new strand of research introducing approximate knockoffs generated with
techniques from deep learning (Romano et al. 2018; Jordon et al. 2019; Liu and Zheng 2018).
While these approaches are tantalizing and demonstrate promising empirical performance in low-
dimensional situations, they currently lack formal guarantees about their validity.

2 Characterizing knockoff distributions

2.1 Knockoff variables

Consider random covariates X = (X1, X2, . . . , Xp). We say that the random variables X̃ =
(X̃1, X̃2, . . . , X̃p) are knockoffs for X if for each j = 1, . . . , p,

(X, X̃)swap(j)
d
= (X, X̃). (1)

Here, the notation swap(j) means permuting Xj and X̃j ; for instance, (X1, X2, X3, X̃1, X̃2, X̃3)swap(2)

is the vector (X1, X̃2, X3, X̃1, X2, X̃3).
a Property (1) is known as the pairwise exchangeability prop-

erty, and it is in general challenging to define joint distributions (X, X̃) satisfying this condition.
Before continuing, we briefly pause to understand the meaning of pairwise exchangeability. A con-
sequence of (1) is that for all sets A ⊆ {1, . . . , p},

(X, X̃)swap(A)
d
= (X, X̃),

where (X, X̃)swap(A) denotes the swapping of Xj and X̃j for all j ∈ A. Taking A = {1, . . . , p}
and marginalizing, we immediately see that X̃

d
= X; that is, X and X̃ are distributed in the

same way. Also changing any subset of entries of X with their knockoff counterparts does not
change the distribution either. Another consequence of the exchangeability property (1) is that the

aIn the presence of a response Y , we also require X̃ ⊥⊥ Y | X, which is easily satisfied by procedures that generate
X̃ from X without looking at Y .
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mixed second moments of (X, X̃) must match. Assume the second moments of X exist and write
Σ = Cov(X). Then the covariance of the vector (X, X̃) must take the form

Cov(X, X̃) = Γ(s) :=

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]

, (2)

where s ∈ Rp is any vector such that the right-hand side is positive semi-definite. In other words,
for each pair (i, j) with i 6= j, we have Cov(Xi, X̃j) = Cov(Xi, Xj).

We are interested in constructing knockoff variables and below we call a knockoff sampler a
procedure that takes as inputs a distribution P and a sample X ∼ P and returns X̃ such that (1)
holds. Nontrivial samplers have been demonstrated in a few cases, for instance, when X ∼ N (0,Σ)
is multivariate Gaussian. In this case, Candès et al. (2018) show that if (X, X̃) is jointly Gaussian
with mean zero and covariance Γ(s), then the entries of X̃ are knockoffs for X. One can say that
appropriately matching the first two moments is sufficient to generate knockoffs in the special case
of the multivariate normal distribution. However, this does not extend and matching the first two
moments is in general not sufficient; to be sure, (1) requires that all moments match appropriately.

Gibbs measures. As a motivating example, consider the Ising model, a frequently discussed
family of Gibbs measures first introduced in the statistical physics literature (Ising 1925). In this
model, the random vector X ∈ {−1, 1}d1×d2 defined over a d1 × d2 X ∈ {−1, 1}d1×d2 grid has a
probability mass function (PMF) of the form

P(X) =
1

Z(β, α)
exp







∑

s,t∈I
‖s−t‖1=1

βstXsXt +
∑

s∈I

αsXs







; (3)

here, I = {(i1, i2) : 1 ≤ i1 ≤ d1, 1 ≤ i2 ≤ d2} is the grid and α and β are parameters. As we have
seen, knockoffs X̃ for X must marginally follow the Ising distribution (3). Furthermore, X̃ must be
dependent on X in such a way that any vector of the form {(Z1, . . . , Zp) : Zj = Xj or Zj = X̃j , 1 ≤
j ≤ p} has PMF given by (3). It is tempting to naïvely define a joint PMF for (X, X̃) as

P(X, X̃) ∝ exp







∑

s,t∈I
‖s−t‖1=1

βst(XsXt + X̃sX̃t +XsX̃t + X̃sXt) +
∑

s∈I

αs(Xs + X̃s)







.

Although the joint distribution is symmetric in Xs and X̃s, the marginal distribution of X is not
an Ising model! Hence, this is not a valid joint distribution. Other than the trivial construction
X̃ = X, it is a priori unclear how one would construct knockoffs. Any distribution continuous or
discrete factoring over a grid poses a similar challenge.

2.2 SCIP and its limitations

The only generic knockoff sampler one can find in the literature is SCIP from Candès et al. (2018),
given in Procedure 1. While this procedure provably generates valid knockoffs for any input dis-
tribution, there are two substantial limitations. The first is that SCIP is only given abstractly;
it is challenging to specify L(Xj | X-j , X̃1:(j−1)),

b let alone to sample from it. As a result, it is

bWe use L(W1 | W2) to denote the conditional distribution of W1 given W2. We use the subscript 1 : 0 to mean
an empty vector.
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only known how to implement SCIP for very special models such as discrete Markov chains and
Gaussian distributions. The second limitation is that SCIP is not able to generate all valid knockoff
distributions. Recall that we want knockoffs to have low correlations with the original variables so
that a feature importance statistic will correctly detect true effects. To achieve this goal, we might
need a wider range of sampling mechanisms.

Procedure 1: Sequential Conditional Independent Pairs (SCIP)

for j = 1 to p do

Sample X̃j from L(Xj | X-j , X̃1:(j−1)), conditionally independently from Xj

end

2.3 Sequential formulation of knockoff distributions

We begin by introducing a sequential characterization of all valid knockoff distributions, which will
later lead to a new class of knockoff samplers.

Theorem 1 (Sequential characterization of knockoff distributions). Let (X, X̃) ∈ R2p be a random
vector. Then pairwise exchangeability (1) holds if and only if both of the following conditions hold:

Conditional exchangeability For each j ∈ {1, . . . , p},

(Xj , X̃j) | X-j , X̃1:(j−1)
d
= (X̃j , Xj) | X-j , X̃1:(j−1). (4)

Knockoff symmetry For each j ∈ {1, . . . , p},

P((Xj , X̃j) ∈ A | X
-j , X̃1:(j−1)) (5)

is σ(X(j+1):p, {X1, X̃1}, . . . , {Xj−1, X̃j−1})-measurable for any Borel set A, where {·, ·} denotes
the unordered pair. That is, the conditional distribution does not change if we swap previously
sampled knockoffs with the original features.

Theorem 1 implies that a sequential knockoff sampling algorithm faithful to these two conditions
is as general as it gets. The challenge now becomes creating exchangeable random variables at each
step (with a little caution on the dependence on the previous pairs of variables). In turn, this task
happens to be equivalent to designing a time-reversible Markov chain, as formalized below.

Proposition 1. A pair of random variables (Z, Z̃) is exchangeable, i.e., (Z, Z̃)
d
= (Z̃, Z), with

marginal distribution π for Z—and, therefore, for Z̃ as well—if and only if there exists a time-
reversible Markov chain {Zn}∞n=1 such that Z1 ∼ π is a stationary distribution of the chain, and

(Z1, Z2)
d
= (Z, Z̃).

Combining these two results gives SCEP (Procedure 2 below), which is a completely general
strategy for generating knockoffs: at each step j, we design a time-reversible Markov chain with
stationary distribution L(Xj | X-j , X̃1:(j−1)), and draw a sample by taking one step of this chain
starting from Xj . Proposition 1 implies that the conditional exchangeability (4) holds. Further-
more, the symmetry requirement on the transition kernel implies that SCEP does not break the
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exchangeability from previous steps; that is, the knockoff symmetry (5) also holds. Theorem 1 then
implies that such a procedure produces valid knockoffs.

Procedure 2: Sequential Conditional Exchangeable Pairs (SCEP)

for j = 1 to p do

Sample X̃j by taking one step of a time-reversible Markov chain starting from Xj .
The transition kernel must be such that it depends only on X(j+1):p and the unordered

pairs {X1, X̃1}, . . . , {Xj−1, X̃j−1}, and admits L(Xj | X-j , X̃1:(j−1)) as a stationary

distribution.

end

To rehearse the universality of SCEP, consider an arbitrary knockoff sampler producing X̃1, . . . , X̃p.
Then from Theorem 1 we know that X1 and X̃1 must be exchangeable conditional on X-1. Therefore,
X̃1 may be sampled by taking one step of a reversible Markov chain starting at X1. Moving on to
X2, Theorem 2 informs us that X2 and X̃2 are exchangeable conditional on {X1, X̃1}, X3, . . . , Xp, so
X̃2 can again be viewed as taking one step of a reversible Markov chain starting at X2. Continuing
in this fashion for j = 3, . . . , p establishes our claim.

SCEP as stated remains too abstract to be considered an implementable algorithm, so we will
next develop a concrete version of this procedure. Although this may not yet be clear, we would like
to stress that formulating a knockoff sampler in terms of reversible Markov chains is an important
step forward because it will ultimately enable the use of flexible MCMC tools.

3 The Metropolized knockoff sampler

We now demonstrate how one can generate knockoffs in a sequential manner by making proposals
which are either accepted or rejected in a Metropolis–Hastings-like fashion as to ensure pairwise
exchangeability.

3.1 Algorithm description

The celebrated Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953; Hastings 1970) pro-
vides a general time-reversible Markov transition kernel whose stationary distribution is an arbitrary
density function π. To construct a transition from x to y, MH operates as follows: generate a pro-
posal x∗ from a distribution q(· | x) (any distribution depending on x) and setc

y =

{

x∗ with prob. α,

x with prob. 1− α,
α = min

(

1,
π(x∗)q(x | x∗)
π(x)q(x∗ | x)

)

.

This can be implemented even when the density π is unnormalized, as the normalizing constants
cancel. In our setting, we shall make sure that the choice of the proposal distribution depends on
the previously sampled pairs in a symmetric fashion, thereby remaining faithful to the knockoff
symmetry condition (5) in Theorem 1. As such, we call such proposals faithful.

Consider now running SCEP (Procedure 2) with the MH kernel, where at the jth step, the target
distribution π is taken to be L(Xj | X-j , X̃1:j−1). The issue with such a naïve implementation is that
the target π cannot be readily evaluated. To understand why this is the case, set j = 2 and consider

cMore generally, we take as acceptance probability γ α with γ ∈ (0, 1]. In this work, γ is set to 1 as default, except
in Section 3.3 and Appendix F.2, which are cases where tuning γ is recommended.
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L(X2 | X-2, X̃1). This distribution has density proportional to P(X = x)P(X̃1 = x̃1 | X = x), which
is equal to

P(X = x)

[

q(x̃1 | x1)min

(

1,
q(x1 | x̃1)P(X1 = x̃1, X-1 = x-1)

q(x̃1 | x1)P(X1 = x1, X-1 = x-1)

)

+ δ(x̃1 − x1)

∫

q(x∗ | x1)
(

1−min

(

1,
q(x1 | x∗)P(X1 = x∗, X-1 = x-1)

q(x∗ | x1)P(X1 = x1, X-1 = x-1)

))

dx∗
]

. (6)

The first term in the summation within the brackets corresponds to the acceptance case while the
second corresponds to the rejection case. This latter term cannot be evaluated because of the
integral over x∗. Hence, the target density cannot be evaluated either.

We propose an effective solution to this problem: condition on the proposals and at step j, let
the target distribution be L(Xj | X-j , X̃1:j−1, X

∗
1:j−1) rather than L(Xj | X-j , X̃1:j−1). This has the

effect of removing the integral and makes computing the rejection probability tractable. This is
best seen by returning to our example where j = 2. Here, L(Xj | X-j , X̃1:j−1, X

∗
1:j−1) has density

now proportional to

P(X = x)q(x∗1 | x1)
[

δ(x̃1 − x∗1)min

(

1,
q(x1 | x̃1)P(X1 = x̃1, X-1 = x-1)

q(x̃1 | x1)P(X1 = x1, X-1 = x-1)

)

+ δ(x̃1 − x1)

(

1−min

(

1,
q(x1 | x∗1)P(X1 = x∗1, X-1 = x-1)

q(x∗1 | x1)P(X1 = x1, X-1 = x-1)

))]

. (7)

We will show in Section 4 how such terms can be efficiently computed. Leaving aside implementation
details for the moment, this strategy leads to Algorithm 1. Here and elsewhere, P denotes the density
of the variables under study, or formally, the Radon–Nikodym derivative with respect to a common
dominating measure.

Algorithm 1: Metropolized knockoff sampling (Metro).

for j = 1 to p do

Sample X∗
j = x∗j from a faithful proposal distribution qj .

Accept the proposal with probability

min

(

1,
qj(xj |x∗

j )P
(

X-j=x-j ,Xj=x∗
j ,X̃1:(j−1)=x̃1:(j−1),X

∗
1:(j−1)

=x∗
1:(j−1)

)

qj(x∗
j |xj)P

(

X-j=x-j ,Xj=xj ,X̃1:(j−1)=x̃1:(j−1),X
∗
1:(j−1)

=x∗
1:(j−1)

)

)

.

Upon acceptance, set x̃j = x∗j ; otherwise, set x̃j = xj .

end

Return X̃ = (x̃1, x̃2, . . . , x̃p)

At this point, it should be clear that Metropolized knockoff sampling generates exact knockoffs,
a fact we formally record below.

Corollary 1. Metropolized knockoff sampling (Metro) produces valid knockoffs.

Proof. For the sake of the proof, let Uj be the indicator of acceptance at step j, and Zj = (1−Uj)X
∗
j .

We will prove pairwise exchangeability jointly with the Uj ’s and Zj ’s; marginalizing out these
variables will establish the claim. For 1 ≤ j ≤ p, let fj(xj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1)) be the joint

density function of (Xj , X-j , X̃1:(j−1), U1:(j−1), Z1:(j−1)), in this order. We will use induction to show

that the density of (X, X̃1:j , U1:j , Z1:j) is symmetric in Xk and X̃k for 1 ≤ k ≤ j. For 1 ≤ j ≤ p,
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the inductive hypothesis is that fj is symmetric in xk and x̃k for 1 ≤ k ≤ j − 1 (since fj is just the
density of (X, X̃1:(j−1), U1:(j−1), Z1:(j−1)) after reordering the variables). For 1 ≤ j ≤ p,

the density of (X, X̃1:j , U1:j , Z1:j) at (x, x̃1:j , u1:j , z1:j)

= fj(xj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))×
[

1uj=1δ(zj − 0)qj(x̃j | xj)min

(

1,
fj(x̃j , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | x̃j)
fj(xj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(x̃j | xj)

)

+ 1uj=0δ(x̃j − xj)qj(zj | xj)
(

1−min

(

1,
fj(zj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | zj)
fj(xj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(zj | xj)

))]

,

which is symmetric in the first j − 1 pairs by the inductive hypothesis. For the symmetry in the
jth pair, when uj = 1, the density simplifies to

δ(zj − 0)×min
(
fj(xj , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(x̃j | xj),
fj(x̃j , x-j , x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | x̃j)

)
,

which is invariant to swapping xj and x̃j ; when uj = 0, the delta function δ(x̃j − xj) ensures
xj = x̃j , and thus swapping them has no effect. Hence, when the algorithm terminates, all pairs
are exchangeable and therefore remain exchangeable after marginalizing out the Uj ’s and Zj ’s.

Anticipating possible future applications, we wish to remark that Metro can be easily adapted
to sampling group knockoffs (Dai and Barber 2016); see Appendix E.

3.2 Covariance-guided proposals

Now that we have available a broad class of knockoff samplers, we turn to the question of finding
faithful proposal distributions that will generate statistically powerful knockoffs. The overall chal-
lenge is to propose samples that are far away from X to make good knockoffs, but not as far that
they are systematically rejected. A rejection at the jth step gives X̃j = Xj , leading to a knockoff
with poor contrast. Below, we shall borrow ideas from existing knockoff samplers for Gaussian
models to make sensible proposals.

Suppose that X has mean µ and covariance Σ, and consider s ∈ Rp with non-negative entries
such that Γ(s) from (2) is positive semidefinite. Such a vector s can be found with techniques
from Barber and Candès (2015) and from Candès et al. (2018). We have seen that if X were
Gaussian, this covariance matrix would induce a multivariate Gaussian joint distribution over X
and X̃ with the correct symmetry. In non-Gaussian settings, our observation is that we can still
make proposals as if the variables were Gaussian, but use the MH correction to guarantee exact
conditional exchangeability. This can be viewed as a Metropolis-adjustment to the second-order
knockoff construction of Candès et al. (2018). Concretely, the distribution qj for a covariance-
guided proposal—used to generate a proposal X∗

j —is normal with mean

µj +
(

Γ
(j)
12

)⊤ (

Γ
(j)
11

)† (

X − µ,X∗
1:(j−1) − µ1:(j−1)

)⊤

and variance

Γ
(j)
22 −

(

Γ
(j)
12

)⊤ (

Γ
(j)
11

)†
Γ
(j)
12 ;

here, X∗
1:(j−1) is the sequence of already generated proposals, Γ

(j)
11 = Γ1:(p+j−1),1:(p+j−1), Γ

(j)
22 =

Γp+j,p+j , Γ
(j)
12 = Γ1:(p+j−1),p+j , µ is the mean of X, and † stands for the pseudoinverse. The
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parameters of qj can be efficiently computed using the special structure of Γ; see Appendix D. The
faithfulness of the proposal is shown in Appendix B.

The covariance-guided proposals are valid even when Σ is replaced by any other positive semidef-
inite matrix—any faithful proposal distribution will give valid knockoffs. This allows us to use
an empirical estimate of Cov(X) based on simulated samples from L(X), or even to apply the
covariance-guided proposals to discrete distributions by rounding each proposal X∗

j to the nearest
point in the support of Xj . These proposals will be most successful when X is well-approximated
by a Gaussian density, indeed when X is exactly Gaussian and the true covariance is used, the
covariance-guided proposals will never be rejected. Numerical simulations in a variety of settings
can be found in Section 5.

3.3 Multiple-try Metropolis

A possibility for sampling X̃j “far away” from Xj is to run multiple MH steps instead of a single one.
The issue with this is that this would make the conditional distributions from Metro prohibitively
complex at later steps. Longer chains also require conditioning later proposals on a longer sequence
of proposals and acceptances or rejections, which will constrain those proposals to be closer to their
corresponding true variables and thus reduce power. Instead, we use the multiple-try Metropolis
(MTM) technique introduced in Liu et al. (2000).

The key idea of MTM is to propose a set of several candidate moves in order to increase the
probability of acceptance. As in Qin and Liu (2001), we take the candidate set to be Cm,t

x = {x±kt :
1 ≤ k ≤ m}, where m is a positive integer and t is a positive number; see Figure 1 for an illustration.
MTM proceeds by choosing one element x∗ from the set Cm,t

x , with probability proportional to the
target density, i.e.,

P(select x∗ from Cm,t
x ) =

π(x∗)
∑

u∈Cm,t
x

π(u)
. (8)

This proposal is then accepted with probability

γmin

(

1,

∑

u∈Cm,t
x

π(u)
∑

v∈Cm,t

x∗
π(v)

)

, γ ∈ (0, 1), (9)

where γ is an additional tuning parameter explained in Appendix F.2. This parameter should
be taken to be near 1 in most settings. If no element of Cm,t

x has positive probability, then one
automatically rejects. MTM is a special case of MH with the proposal q(x∗ | x) distribution defined
implicitly by the above rules, and furthermore, the proposals are faithful. Thus, MTM can be used
in Metro.

Figure 1: Multiple-try Metropolis (adapted from Figure 2 in Qin and Liu (2001)).

While there is no universally optimal combination of m and t, we provide guidance about
default values based on our experimental results from Section 5. To understand the choice of
parameters, first observe that with a fixed t, the knockoff distribution produced by the algorithm

9



should eventually stabilize as m grows to infinity, since (non-pathological) π will vanish at positive
and negative infinities and equations (8) and (9) will converge. Large values of m require more
density evaluations, so we would like to choose the smallest value of m such that the distribution
defined by equations (8) and (9) is nearly converged to its limit as m → ∞. Turning our attention
to t, smaller values cause higher acceptance rates, and at the same time, encourage X̃j to be close to
Xj . Clearly, there is a trade-off. Based on our experiments, a sensible default setting is m = 4 and
tj = 1.5

√

1/(Σ−1)jj where Σ = Cov(X). In the Gaussian case, Var(Xj |X-j) = 1/(Σ−1)jj for any
observed value of X-j (Anderson 2009), hence this choice of scaling is intuitive. In the non-Gaussian
case 1/(Σ−1)jj should be viewed as an approximation to the conditional variance. We have found
that this parameter setting achieves nearly the best performance in most of our experiments.

4 Graphical models and conditional independence

One outstanding issue is whether the Metropolized knockoff sampler can be run in reasonable
time for cases of interest. We begin by showing why sequential knockoff sampling is prohibitively
expensive without additional structure, and then turn our attention to a common type of structure
that enables efficient sampling: graphical models. The central contribution of this section will be a
complexity bound on Metro showing how the graphical structure affects the difficulty of sampling.
To complete this line of investigation, we give a complexity lower bound for all knockoff samplers
which shows that Metro is optimal in some cases.

4.1 Why do we need structure?

Consider running Metro for some input distribution P and sample X = x. In view of (7), at step
j we need to evaluate P(X-j , Xj = zj , X̃1:(j−1), X

∗
1:(j−1)) for zj ∈ {xj , x∗j} up to a constant.d Metro

defines a joint distribution on (X, X̃1:(j−1), X
∗
1:(j−1)) implicitly, so the only way to evaluate this

density is to compute it step by step, from 1 to j − 1, i.e., through the sequential decomposition

P(X-j , Xj = zj , X̃1:(j−1), X
∗
1:(j−1)) = P(X-j , Xj = zj)×

j−1
∏

k=1

[

P(X̃k | X-j , Xj = zj , X̃1:(k−1), X
∗
1:k)P(X

∗
k | X-j , Xj = zj , X̃1:(k−1), X

∗
1:(k−1))

]

. (10)

Consider the term P(X̃k | X-j , Xj = zj , X̃1:(k−1), X
∗
1:k). By the definition of Metro, computing this

term will require evaluating an acceptance probability of the form

min

(

1,
qk(xk | x∗k)P(X-(j,k), Xk = x∗k, Xj = zj , X̃1:(k−1), X

∗
1:(k−1))

qk(x
∗
k | xk)P(X-(j,k), Xk = xk, Xj = zj , X̃1:(k−1), X

∗
1:(k−1))

)

. (11)

Now, to compute the terms in the acceptance probability, we must use the same sequential decompo-
sition (10) for the terms P(X-(j,k), Xk = zk, Xj = zj , X̃1:k−1, X

∗
1:k−1) for zk ∈ {xk, x∗k}. Considering

k = j − 1, we see that step j is making two calls to the probability at step j − 1, each of which is
in turn making two calls to the probability function at step j − 2 and so on. Thus, each evaluation
of (10) will require Ω(2j) function calls. This behavior is not due to a shortcoming of Metro; any
genuine knockoff sampler with access only to an unnormalized density will require time exponential
in p. We will present the formal statement of this lower bound later in Theorem 3.

dIn this section, when not explicitly specified, a variable is set to its observed value, e.g., P(X1 | X2 =
z2, X3, X̃1, X

∗
1 ) is shorthand for P(X1 = x1 | X2 = z2, X3 = x3, X̃1 = x̃1, X

∗
1 = x∗

1).
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Although knockoff sampling with no restriction on the distribution is prohibitively slow, we will
show how to avoid the exponential complexity when there is additional known structure. Consider
a Markov chain, i.e., a density that factors as P(x) =

∏p−1
j=1 φj(xj , xj+1). In this case, the joint

density (10) can be evaluated efficiently provided we proceed along the chain in the natural order.
Assume for simplicity that the proposal distribution is fixed in advance so that the second term
within the square brackets in (10) does not depend on any variables and can be ignored. Due to
the Markovian structure, only the k = j − 1 term in the product depends on zj , so it suffices to
compute the acceptance probability (11) for k = j − 1. Again using the Markovian structure, this
simplifies to

min

(

1, aj−1

qj−1(xj−1 | x∗j−1)P(X-(j,j−1), Xj−1 = x∗j−1, Xj = zj)

qj−1(x∗j−1 | xj−1)P(X-(j,j−1), Xj−1 = xj−1, Xj = zj)

)

= min

(

1, aj−1

qj−1(xj−1 | x∗j−1)φj−2(xj−2, x
∗
j−1)φj−1(x

∗
j−1, zj)

qj−1(x∗j−1 | xj−1)φj−2(xj−2, xj−1)φj−1(xj−1, zj)

)

where aj−1 is the ratio

aj−1 =
P(X∗

1:(j−2), X̃1:(j−2) | X-(j,j−1), Xj−1 = x∗j−1, Xj = zj)

P(X∗
1:(j−2), X̃1:(j−2) | X-(j,j−1), Xj−1 = xj−1, Xj = zj)

which does not depend on zj by the Markov structure. The key here is that aj−1 was previously
computed with zj = xj when sampling X̃j−1. Thus, the acceptance probability can be computed in
constant time. Putting this all together, for a Markov chain, each of the necessary joint probabilities
(10) can be computed in constant time, and the time to sample the entire vector X̃ is linear in the
dimension p. Markov chains are not the only case where computing the acceptance probability can
be done quickly; for other distributions with conditional independence structure, we next develop a
systematic way of computing (10), using the graphical structure to control the depth of the recursion
and hence control the running time.

4.2 Time complexity of Metro for graphical models

We have seen that we must restrict our attention to a subset of distributions in order to efficiently
sample knockoffs, so in this section we show how to implement Metropolized knockoff sampling for a
very broad class of distributions: graphical models. Let X ∈ Rp be a random vector whose density
factors over a graph G:

P(x) ∝ Φ(x) =
∏

c∈C

φc(xc); (12)

here, C is the set of maximal cliques of the graph G and Φ is an unnormalized version of P. The
variables in X can be either discrete or continuous. All graphical models with positive density or
mass take this form (Hammersley and Clifford 1971), and such distributions are known to have
particular conditional independence properties. We refer the reader to Koller and Friedman (2009)
for a general treatment.

In order to take advantage of the conditional independence structure of X, we use a graph-
theoretic object known as a junction tree (Bertele and Brioschi 1972) which encodes properties of
the graph G.

Definition 1 (Junction tree). Let T be a tree with vertices that are subsets of the nodes {1, . . . , p}
of a graph G. T is a junction tree for G if the following hold:
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X1,1, X1,2, X2,1 X1,2, X2,1, X2,2 X1,2, X1,3, X2,2 X1,3, X2,2, X2,3

Figure 2: A junction tree of treewidth 2 for the 2× 3 grid, which happens to be a chain.

1. Each j ∈ {1, . . . , p} appears in some vertex V of T .

2. For every edge (j, k) in G, j ∈ V and k ∈ V for some vertex V .

3. (Running intersection property) If the vertices V and V ′ both contain a node of G, then every
vertex in the unique path from V to V ′ also contains this node.

Figure 2 gives an example of a junction tree over a 2×3 grid. The size of the largest vertex of T
minus one is known as the width of the junction tree T , and the smallest width of a junction tree over
G is called the treewidth of G, a measure of graph complexity. Finding the junction tree of lowest
width for a graph G is known to be NP-hard (Arnborg et al. 1987), but there exist efficient heuristic
algorithms for finding a junction tree with small width (Kjærulff 1990; Koller and Friedman 2009).

Given a junction tree T for the graph G, we will soon prove that Metro can be run with O(p2w)
queries of the unnormalized density Φ, where w is the width of T . In view of (7), at step j of Metro
we need to evaluate P(X-j , Xj = zj , X̃1:(j−1), X

∗
1:(j−1)) for zj ∈ {xj , x∗j} up to a constant as well

as sample from and evaluate the proposal distribution qj(· | xj). We can use the graphical model
structure to make these operations tractable by both (1) sampling the variables in a specific order,
and (2) choosing proposal distributions that are not unnecessarily complex. We formalize these two
requirements below.

We first consider the order in which we sample the variables. Recalling (10), the complexity
of the computations of P(X-j , Xj = zj , X̃1:(j−1), X

∗
1:(j−1)) depends on the number of function calls

implied by the recursion (10). For simplicity, assume that the proposal terms in the product,
P(X∗

k | X-j , Xj = zj , X̃1:(k−1), X
∗
1:(k−1)), never depends on zj ; this will be relaxed soon. In that

case, we need only consider the terms in (10) of the form P(X̃k | X-j , Xj = zj , X̃1:(k−1), X
∗
1:k) for

k < j. When there is graphical structure, not all such terms will depend on zj , and the number of
terms that do depend on zj determines the recursion depth. In particular, if at step j only rj terms
depend on zj , then there will be O(2rj ) function calls in the recursion. A desirable ordering of the
variables is then one that minimizes the largest rj , and such an ordering can be extracted from a
junction tree T using Algorithm 2.

Algorithm 2: Junction tree variable ordering for Metro

Initialize tree Tactive = T and list J = {}.
while Tactive 6= ∅ do

Select a leaf node V of Tactive. V is connected to at most one other node V ′ of Tactive

because it is a tree.
In any order, append each j ∈ V \ V ′ to the end of the list J . If no V ′ exists, append all
j ∈ V to J in any order.

Remove V from the active tree Tactive.

end

Return J

Algorithm 2 is valid in that when a node is removed, no j ∈ J remains in any node in Tactive.
e

eThis simple fact follows from the running intersection property; we refer the reader to Lemma 1 in Appendix A.
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From now on we assume that the variables are numbered according to this ordering. Our second
consideration is to create proposals that do not add unnecessary complexity. No matter which
proposal distribution we choose, P(Xj = zj | X-j , X̃1:(j−1), X

∗
1:(j−1)) will still depend on some Xℓ

for ℓ > j due to dependencies among coordinates of X; we however restrict ourselves to proposal
distributions that do not add any additional dependencies.

Definition 2 (Compatible proposal distributions). Let Vj be the node of the junction tree when j
is appended to J from Algorithm 2. Set V̄j = {1, . . . , j − 1} ∪ Vj. We say that proposal distributions
qj are compatible with a junction tree T if they depend only on XV̄j

, X̃1:(j−1), and X∗
1:(j−1).

This definition is motivated by the property

X1:j ⊥⊥ XV̄ c
j
| XV̄j\{1,...,j},

since V̄j \ {1, . . . , j} separates {1, . . . , j} from V̄ c
j in the graph G. Thus, a proposal distribution

at step j that violates the compatibility property and relies on Xℓ for some ℓ /∈ V̄j will result in
additional non-one terms in the product in (10) at step ℓ, so V̄j is the largest set that the proposal
can be allowed to depend on without increasing the number of function calls/runtime. Although
not all proposals are compatible, it is a rich enough class to handle a broad range of knockoff
distributions, including the distribution induced by SCIP.

With these two conditions in place, we now state our main result about the efficiency of knockoff
sampling, giving an upper bound on the number of evaluations of the unnormalized density function
Φ that is required by Metro when the graphical structure is known. Assuming the variable ordering
from Algorithm 2 and faithful proposal distributions compatible for T such that sampling from and
evaluating the proposal distributions does not require evaluating Φ, we reach the following result:

Theorem 2 (Computational efficiency of Metro). Let X be a random vector with a density which
factors over a graph G as in (12). Let T be a junction tree of width w for the graph G. Under the
conditions above, Metro uses O(p2w) queries of Φ.

This result means that we can efficiently implement Metropolized knockoff sampling for many
interesting distributions, and it shows precisely how the complexity of the conditional independence
structure of X affects the complexity of the sampling algorithm. Furthermore, in the next section
we will prove that this is the optimal complexity in some cases.

4.3 Time complexity of general knockoff sampling

In the previous section we analyzed the runtime of Metro and showed that it will be tractable for
graphs of sufficiently low treewidth. Now, we investigate the computational complexity of knockoff
sampling in general. To formalize our investigation, we discuss a model of computation in which
we have no information about the distribution of X beyond its graphical structure and the ability
to query its (possibly unnormalized) density at any given point.

Oracle model. In this model, we are given as inputs (a) a p-dimensional vector X drawn from
a density λΦ, where λ is a (possibly unknown) positive scalar so that we can think of Φ as an
unnormalized density, (b) the support of Φ, and (c) a black box capable of evaluating Φ at arbitrary
query points, and (d) a graph G for which the density is known to have the form (12). No other
information about Φ is available.

We show that in the oracle model with the complete graph, i.e., when there is no graphical
structure, knockoff sampling requires exponential time in the number of covariates, p. Please note
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that any complexity bound must take into account the quality of the generated knockoffs since
X̃ = X is a trivial knockoff that can be sampled in no time.

Theorem 3 (Complexity lower bound for knockoff sampling). Consider a procedure operating in
the oracle model which makes a finite number of calls to the black box Φ and returns X̃, thereby
inducing a joint distribution (X, X̃) obeying the pairwise exchangeability (1) for all Φ. If G is the
complete graph so that the procedure generates valid knockoffs for any input density, then the total
number N of queries of Φ must obey N ≥ 2#{j:Xj 6=X̃j} − 1 a.s..

This result means that for any knockoff sampler, we cannot have both full generality and time
efficiency. Put differently, in order to efficiently generate nontrivial knockoffs, we will need to restrict
our attention to a subset of distributions for which we have structure. This fact justifies our decision
to focus on distributions with graphical structure. We also derive a lower bound for the complexity
of knockoff sampling for graphical models, stated next.

Corollary 2 (Complexity lower bound for graphical models). Consider the setting of Theorem 3.
Fix a graph G with maximal cliques C. Suppose that for all Φ of the form Φ(x) =

∏

c∈C φc(xc),

the procedure induces a joint distribution (X, X̃) obeying pairwise exchangeability (1). Then N ≥
maxc∈C 2#{j∈c:Xj 6=X̃j} − 1 a.s..

This proposition shows that even after making some useful structural assumptions, there is still
a trade-off between knockoff quality and computation. We next derive a byproduct, which proves
that Metro is achieving a good runtime.

Proposition 2 (Optimality of Metro for chordal Gaussian graphical models). Consider continuous
distributions of the form Φ(x) =

∏

c∈C φc(xc) over a chordal graph G.f On the one hand, for any
input, Metro can be run with O(p2+p2w) queries of Φ. Furthermore, in the case where the distribu-
tion is Gaussian with zero mean and positive definite covariance (i.e., Φ(x) ∝ exp

(
−xΣ−1x⊤/2

)
),

Metro can produce knockoffs with Xj 6= X̃j for all j with probability 1. On the other hand, any
general procedure that samples knockoffs such that Xj 6= X̃j for all j with probability ǫ > 0 will
require at least 2w − 1 queries of Φ with probability at least ǫ.

Proposition 2 means that for chordal graphs, any general knockoff sampling algorithm such that
P(Xj 6= X̃j for all j) is bounded away from zero needs, in expectation, the same exponential order
of queries as Metro (with the proviso that p is negligible compared to 2w).

4.4 Divide-and-conquer to reduce treewidth

Theorem 2 shows that Metro enables efficient computations for random vectors whose densities
factor over a graph G of low treewidth. Not all graphs corresponding to random vectors of interest
have low treewidth, however. A d1× d2 grid, for example, has treewidth min(d1, d2) (Diestel 2018).
This section develops a mechanism for simplifying the graphical structure of a random vector X,
allowing for faster computation of exact knockoffs at the cost of reduced knockoff quality.

To simplify graphical structure, we fix a set of variables C that separates the graph G into two
subgraphs A and B. After fixing the variables in C, knockoffs can be constructed for the variables
in A and B independently.

Proposition 3 (Validity of divide-and-conquer knockoffs). Suppose the sets A,B,C form a partition
of {1, . . . , p} such that C separates A and B in the graph G, i.e., there is no path from some j ∈ A

fA chordal graph is a graph such that any cycle of length 4 or larger has a chord.
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A C B A C B

Figure 3: Two examples of conditioning to reduce the treewidth of a 6× 6 grid from 6 to 3.

to some k ∈ B in G that does not contain some ℓ ∈ C. Suppose X̃ is a random vector such that
XC = X̃C a.s. and for all jA ∈ A and jB ∈ B,

(XD, X̃D)
d
= (XD, X̃D)swap(jD) | XC for D = A,B.

Furthermore, assume we construct the knockoffs for A and B separately, i.e. (XA, X̃A) ⊥⊥ (XB, X̃B) |
XC . Then X̃ is a valid knockoff.

The divide-and-conquer technique can be applied recursively to split the graph into components
of low treewidth until the junction-tree algorithm for constructing knockoffs can be used on each
component. For example, for an arbitrary planar graph with p nodes, the planar separator theorem
gives the existence of a subset of nodes C of size O(

√
p) that separates the graph into components

A and B with max(|A|, |B|) ≤ 2p/3 (Lipton and Tarjan 1979), suggesting that this technique will
apply to many cases of interest. Figure 3 illustrates this technique for a d1 × d1 grid. We split the
grid into rectangular ribbons of size d1 × d2 for small d2; each resulting ribbon has treewidth d2.

The drawback of this approach is that for j ∈ C, we shall have Xj = X̃j . When we think
of deploying the knockoff framework in statistical applications, one should remember that we will
work with multiple copies of X corresponding to distinct observations. We can then choose different
separator sets for each observation so that in the end, Xj 6= X̃j for most of the observations. For
example, in the setting of Figure 3, one would randomly choose between the two choices of C for
each observation. This technique is explored numerically in Section 5.2.3.

4.5 Discrete distributions

For discrete distributions with a small number of states for each coordinate Xj , the junction tree
techniques from Section 4.2 can be directly applied without using Metropolized knockoff sam-
pling. When each variable Xj can take on at most K values, the probability mass function
P(Xj | X-j , X̃1:(j−1)) can be represented as a vector in RK , so at step j of the algorithm we

simply need to evaluate P(Xj = zj , X-j , X̃1:(j−1)) for zj in the support of Xj . This is the same
quantity we computed in Section 4.2; see, e.g., (10). Once these probabilities have been computed,
sampling from the resulting multinomial probability gives the SCIP procedure. In principle, this
can be viewed as a special case of Metro, but for a practical implementation it is simpler to work
directly with the probability vectors. A similar analysis to the proof of Theorem 2 then shows that
the procedure requires O(pKw) queries of the density Φ; see Appendix C.5 for details. For discrete
distributions with infinite or large K, this is not tractable. However, Metro still applies and is much
faster.
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Figure 4: An illustration of sampling knockoffs for an Ising model on a grid from Section 4.6. The
blue dashed nodes represent the active variables of the junction tree when variable X3,3 (shown
in green) is being sampled. Gray nodes indicate variables that have already been sampled, and
white nodes indicate variables that have not been sampled yet and are not in the active node of the
junction tree.

4.6 Knockoffs for the Ising model

The tools from this section have the power to generate knockoffs for the Ising model on a grid (3). To
construct an efficient knockoff sampler for this distribution, we need to find a junction tree of minimal
width for the d1×d2 grid so that we can apply the technique from Section 4.5. A junction tree for the
2×3 grid of width 2 is shown in Figure 2, and the construction immediately generalizes to a junction
tree of width min(d1, d2) for the d1 × d2 grid, which is the optimal width. When d1 ≥ d2, this leads
to a knockoff sampler that proceeds from left to right, top to bottom; when variable Xi,j is sampled,
the other variables in the active node of the junction tree are Xi,j+1:p and Xi+1,1:j ; see Figure 4. Per
our upper bound, this knockoff sampler will have runtime O(d1d22

min(d1,d2)). If min(d1, d2) is large,
this runtime may still be prohibitively long, but the divide-and-conquer technique from Section 4.4
greatly increases speed at the cost of slightly worse knockoffs than the impractical full procedure.
We conduct a simulation experiment of both the small-grid and large-grid setting in Section 5.2.3.

5 Numerical experiments

We now empirically examine the Metropolized knockoff sampler, beginning with the few models
where previously known samplers are available as a baseline, and then continuing on to cases
with no previously known samplers. Condensed plots are presented in the main text, while more
comprehensive versions can be found in Appendix F. We provide approximate runtimes with a single-
coreg implementation in either R or Python. All source code is available from https://github.

com/wenshuow/metro with interactive computing notebooks at http://web.stanford.edu/group/
candes/metro demonstrating the usage of the code and presenting further experimental results.

Measuring knockoff quality

The mean absolute correlation (MAC) is a useful measure of knockoff quality for a joint distribution
of (X, X̃):

MAC(L(X, X̃)) :=
1

p

p
∑

j=1

|cor(Xj , X̃j)|. (13)

We will use this as our measure of knockoff quality in our simulation experiments. Lower values of
MAC are preferred. Let Γ be the correlation matrix of (X, X̃); pairwise exchangeability implies Γ

gThe hardware varies across simulations, but each CPU is between 2.5Ghz and 3.3Ghz.
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is of the form (2). The MAC is then 1
p

∑p
j=1 |1−sj |. Since Γ = Γ(s) has to be positive semidefinite,

a lower bound on the MAC achievable by any knockoff-generation algorithm for a given distribution
is the optimal value of the program

min
s

p
∑

j=1

|1− sj |, subject to Γ(s) � 0. (14)

This minimization problem can be solved efficiently with semidefinite programming (Barber and
Candès 2015); we call the solution the SDP lower bound for the MAC. This lower bound can be
achieved for Gaussian distributions (Candès et al. 2018). Valid knockoffs, however, must match all
moments, not just the second moments, so this lower bound is not expected to be achievable in
general; still it provides a useful goalpost in our simulations.

5.1 Models with previously known knockoff samplers

5.1.1 Gaussian Markov chains

We first apply our algorithm to Gaussian Markov chains and compare with the SDP Gaussian
knockoffs, whose MAC achieves the SDP lower bound exactly, and SCIP knockoffs, both from Candès
et al. (2018). We take p = 500 features such that X1 ∼ N (0, 1) and Xj+1 | X1:j ∼ N (ρjXj , 1− ρ2j ).
First, since the model is multivariate Gaussian, the covariance-guided proposal with s computed
by the SDP method (14) will be identical to the SDP Gaussian knockoffs, so already a clever
implementation of Metro is as good as a method specifically designed for Gaussian distributions,
and since both achieve the SDP lower bound, one cannot do better in terms of MAC. Thus, we
only investigate the MTM-proposals for implementing Metro. Note that the Gaussian knockoffs
from Candès et al. (2018) do not use the Markovian structure of this problem, but instead rely on
operations on 2p× 2p matrices, whereas the MTM knockoffs from this work utilize the Markovian
structure to achieve time complexity linear in p.

The results are presented in Figure 5. Following Section 3.3, we vary the number of proposals
and the step size. We find that choosing the step size for Xj to be proportional to

√

1/(Σ−1)jj
gives consistent results across different sets of ρj ’s. The MTM consistently outperforms the SCIP
procedure, and is reasonably close to the SDP procedure. It is observed that the defaults from
Section 3.3 of eight proposals (m = 4) and tj = 1.5

√

1/(Σ−1)jj performs nearly the best in all
settings. Confirming our reasoning in Section 3.3, we find that the performance stabilizes as m
grows and the step size should not be too large or too small, although for sufficiently large m the
MAC is fairly stable to the choice of t. In this setting, it takes around 1 second for MTM to sample
one knockoff vector with m = 4 and tj = 1.5

√

1/(Σ−1)jj .

5.1.2 Discrete Markov chains

For discrete Markov Chains there is one previously-known knockoff sampler, which is an implemen-
tation of the SCIP procedure (Sesia et al. 2018). We consider here Metro with MTM proposals.
(The covariance-guided proposals would require ad-hoc rounding so we do not consider this here.)
We take a simple Markov Chain with K ∈ {5, 10} states with uniform initial distribution and
transition probabilities Q(j, j′) defined as

Q(j, j′) =
(1− α)|j−j′|

∑K
ℓ=1(1− α)|j−ℓ|

. (15)
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Figure 5: Simulation results for Gaussian Markov chains. The unit of step sizes is
√

1/(Σ−1)jj . All
standard errors are below 0.001. In this case, the lower bound is achieved by the SDP Gaussian
knockoffs, or equivalently, the covariance-guided proposal with an s given by the SDP (14).
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Figure 6: A comparison of the MTM procedure for discrete Markov chains with SCIP and the SDP
lower bound. All standard errors are below 0.002.

We examine α from 0 (independent coordinates) to 0.5 (strong dependence between adjacent coor-
dinates), with p = 500 features.

We examine the MTM methods across a range of values of the tuning parameters, and the
results are presented in Figure 6. Full simulation results are given in Appendix F. Note that the
cases with K = 5 and α ≤ 0.15 are tuned with the additional parameter γ from (9), as detailed
in Appendix F.2. We find that the best-tuned MTM method outperforms the SCIP method and
achieves MAC near the lower bound for all dependence levels α. It takes around 0.5 seconds and
0.7 seconds respectively, to run MTM (m = 4 and t = 1) for K = 5 and K = 10.
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5.2 Models with no previously-known knockoff sampler

5.2.1 Heavy-tailed Markov chains

As an example of a heavy-tailed distribution, we consider a Markov chain with t-distributed tails.

X1 =

√

ν − 2

ν
Z1, Xj+1 = ρjXj +

√

1− ρ2j

√

ν − 2

ν
Zj+1, Zj

i.i.d.∼ tν , (16)

for j = 1, . . . , p = 500 where tν represents the Student’s t-distribution with ν > 2 degrees of freedom
(note this is not a multivariate t-distribution). We try both the covariance-guided proposal with
s provided by the SDP method (14) and the MTM proposals. We set ν = 5 and use the same
ρj ’s as in the Gaussian setting. As in Section 5.1.1, a step size of 1.5

√

1/(Σ−1)jj again performs
well. The covariance-guided proposals also perform well, although unlike the Gaussian case, there
is now a gap between the lower bound and the performance of the covariance-guided proposals.
In this setting, it takes around 1.6 seconds for MTM to sample one knockoff vector with m = 4
(eight proposals) and tj = 1.5

√

1/(Σ−1)jj . For the covariance-guided proposals, it takes around
12.5 seconds for the one-time computation of the parameters (excluding time used for computing
s, which varies depending on the method) and then 0.3 seconds to sample each knockoff vector.

●

●

● ●
●

                    

                    

●

●

●

● ●

                    

                    

●

●

●
● ●

                    

                    

ρi = 0.6 ρi iid Unif(−0.6, 0.6) ρi iid Unif(−0.8, 0.8)

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

Step size (t)

M
A

C

●

 

 

2 proposals

4 proposals

8 proposals

16 proposals

cov−guided

lower bound

Figure 7: Simulation results for the t-distributed Markov chains. The unit of step sizes is
√

1/(Σ−1)jj . All standard errors are below 0.001.

5.2.2 Asymmetric Markov chains

As an example of asymmetric, continuous distributions, we take a standardized equal mixture of
Gaussian and exponential random variables and then form a Markov chain. Explicitly,

Zj
i.i.d.∼ I· | YG | −(1− I) · YE − µ

σ
for j = 1, . . . , p = 500,

where YG ∼ N (0, 1), YE ∼ Expo(1) and I ∼ Bern(1/2) are independent. The parameters µ and σ
are chosen so that Zj has mean 0 and variance 1. We then take

X1 = Z1, Xj+1 = ρjXj +
√

1− ρ2jZj+1 for j = 2, . . . , p.

We examine both the covariance-guided proposal with s provided by the SDP (14) and the multiple-
try proposals. We use the same ρj ’s as in the Gaussian setting. As in the previous case, m = 4
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Figure 8: Simulation results for the asymmetric Markov chains. The unit of step sizes is
√

1/(Σ−1)jj . All standard errors are below 0.001.

(eight proposals) and tj = 1.5
√

1/(Σ−1)jj performs essentially as well as any other MTM parameter
choices, and significantly outperforms the covariance-guided proposals. The timing results are the
same as in the heavy-tailed Markov chains.

5.2.3 Ising model

In this section, we consider an Ising model over a square grid (3). We generate knockoffs with
the method for discrete random variables from Section 4.5 combined with the divide-and-conquer
technique, the combination of which was described for Ising models in Section 4.6; no other exact
knockoff samplers are known for the Ising model. Although our sampling procedures for the Ising
model do not explicitly use the Metropolis–Hastings step, as explained in Section 4.5, we will refer
to the sampler as “Metro” in this section for simplicity.

First, we take a 10× 10 grid and set all βi,j,i′,j′ = β0 and all αi,j = 0. The results are presented
in Figure 9. The left panel shows how the MAC increases—or, the quality decreases— as the
dependence between adjacent variables—β0—increases. We see that the procedure is close to the
lower bound for large β0. In the middle panel, we plot cor(Xj,k, X̃j,k) across different coordinates
(j, k). We see that on the edges of the grid, especially on the corners, knockoffs have lower correlation
with their original counterparts. These variables are less determined by the values of the rest of the
grid, so this is expected. In this setting, it takes about 12 seconds to sample a knockoff.

Next, we demonstrate the divide-and-conquer technique from Section 4.4. Here we consider the
Ising model from above on a 100×100 grid, for a total dimension of 10, 000. The 100×100 grid has
treewidth 100, so Metro would not be tractable without the the divide-and-conquer technique. We
divide the graph into subgraphs of width w, by fixing entire columns as in Figure 3. To measure the
effect of the slicing, we compute the MAC on the interior points and compare this to the MAC of
the interior points of a smaller grid for a procedure without slicing, see Appendix F.3 for details. We
find that the quality of the knockoffs increases as we take larger slices, as expected. Furthermore,
even modest values of w such as w = 5 result in a procedure that achieves a MAC close to that of
the baseline. Recall that the complexity of Metro scales as 2w, so fixing w = 5 dramatically reduces
the computation time compared to w = 100. With w = 5, it takes about 2.5 minutes to generate
one knockoff for the 100× 100 grid.
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Figure 9: Results of the Ising model experiments. All standard errors in the line plots are less than
0.005.

5.2.4 Gibbs measure on a grid

Lastly, we demonstrate the MTM proposals simultaneously with the junction tree techniques for
complex dependence structure. Consider a Gibbs measure on {1, . . . ,K}d×d, with a probability
mass function

P(X) =
1

Z(β0)
exp






−β0

∑

s,t∈I
‖s−t‖1=1

(xs − xt)
2







, I = {(i1, i2) : 1 ≤ i1, i2 ≤ d},

and note that like the Ising model, this density factors over the grid. For our experiment, we take
a 10 × 10 grid and examine different dependence levels β0 with K = 20 possible states for each
variable. We apply Metro with the MTM proposals and the divide-and-conquer technique on the
grid, tuning the procedure across a range of parameters as detailed in Appendix F. The condensed
results are given in Figure 10. We do not know of another knockoff sampler in this setting. Having
said this, we observe that our procedure has MAC close to the lower bound. We also observe that
in the case where w = 3, with as few as two proposals, our procedure performs well and takes about
half a second to generate a knockoff copy; when we increase the number of proposals to ten, the
compute time is around 2 minutes. When w is set to 5, the slowest setting is m = t = 1, which
takes less than 4 minutes.

6 Discussion

This paper introduced a sequential characterization of all valid knockoff-generating procedures and
used it along with ideas from MCMC and graphical models to create Metropolized knockoff sam-
pling, an algorithm which generates valid knockoffs in complete generality with access only to X’s
unnormalized density. Although we proved in Theorem 3 that no algorithm (including Metro) can
sample exact knockoffs efficiently for arbitrary X distributions, we characterized one way out of
this impossibility result: conditional independence structure in X. An interesting future direction
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Figure 10: Results of the Gibbs measure experiments. All standard errors are below 0.002. In the
left panel, β0 is shown in logarithmic scale.

would be to establish other sufficient conditions on a model family that would allow one to sample
knockoffs efficiently. Another way out of the lower bound in Theorem 3 is to forgo exact knockoffs
and settle for approximations. Although this arguably is a tall order, it would be interesting to es-
tablish theoretical guarantees on the approximation quality of these or other approximate knockoff
constructions, and better understand the tradeoff between knockoff approximation quality and time
complexity.
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A Junction tree lemmas

This section includes several important lemmas which will be used in some proofs in the appendix.

Lemma 1. If the variables are ordered by Algorithm 2, then for each 1 ≤ j ≤ p, any node in the
junction tree that contains j is an element of the set {V1, V2, . . . , Vj}. In addition, if j ∈ Vk for
some k > j, then Vk = Vj.

Proof of Lemma 1. According to Algorithm 2, when a node V is selected, all variables in V \ V ′—
here, V ′ is the unique neighbor of V in the remaining junction tree—are sampled before the next
node is selected. Recall that Vj is the selected node when j is sampled; let k ≥ j be the last sampled
variable when Vj is selected (in this case, we have Vj = Vj+1 = · · · = Vk by definition). After k is
sampled, Vj is removed, and by Algorithm 2, this means j, j + 1, . . . , k do not appear in Vj ’s only
remaining neighbor. Now we claim no remaining node contains j. Otherwise, if there is a node V ∗

j

which contains j and still remains, by the running intersection property, all nodes on the unique
path between Vj and V ∗

j contain j. This would imply that Vj ’s remaining neighbor in the junction
tree also contains j since the unique path must pass through Vj ’s only remaining neighbor. This
is a contradiction. Now we know that any node that contains j is some Vℓ with 1 ≤ ℓ ≤ k. Since
Vj = Vj+1 = · · · = Vk, the lemma follows.

Lemma 2. If the variables are ordered by Algorithm 2, then for any j > ℓ such that j ∈ V̄ℓ, we
have V̄ℓ ⊆ V̄j.

Proof of Lemma 2. Consider any k ∈ V̄ℓ. Now we show such a k must be in V̄j . The case k ≤ j
is trivial, since k ∈ V̄j by definition. If k > j, then j, k ∈ Vℓ. Assume Vℓ 6= Vj ; otherwise there is
nothing to prove. Before j—and, therefore, k—are sampled, each time a node V containing j and k
(e.g., Vℓ) is selected, j and k appear in V ’s neighbor. By a recursive argument, before Vj is selected,
each time the node containing j and k is selected, j does not get sampled and neither does k (k
is sampled after j). Hence, before Vj is selected, there is always at least one remaining node that
contains both j and k. By Algorithm 2 and Lemma 1, Vj is the last selected node j appears in, so
it has to contain both j and k (otherwise no node contains both j and k at this point). This means
that k ∈ Vj ⊆ V̄j .

Lemma 3. If the variables are ordered by Algorithm 2, then for any j 6= k, if j and k are connected
in G, we have j ∈ V̄k and k ∈ V̄j.

Proof of Lemma 3. Without loss of generality, we assume k > j, so j ∈ V̄k by definition. Now we
show k ∈ V̄j also holds. By the second property of the junction tree, k co-appears with j at least
once in some node Vℓ. But j does not appear in any node after Vj by Lemma 1, so there is some
ℓ ≤ j such that {j, k} ⊆ Vℓ. If j = ℓ, then we already have k ∈ Vℓ = Vj ⊆ V̄j ; otherwise, j > ℓ, so
by Lemma 2, k ∈ Vℓ ⊆ V̄ℓ ⊆ V̄j .
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B Covariance-guided proposals

This section includes details on the covariance-guided proposal introduced in Section 3.2, and proofs
of its faithfulness and compatibility. See Appendix D for details on how to do the necessary linear
algebra computations for the covariance-guided proposals efficiently.

We first recall the definition of the covariance-guided proposals. Let Z be a 2p-dimensional vector
drawn from N ((µ, µ),Γ(s)), where Γ(s) is as in (2). Let qj be the probability density function of
Zp+j conditional on Z1:(p+j−1). The proposal distribution at the jth step qj(x

∗
j | x1:p, x∗1:(j−1)), is

defined to be the conditional density of Zp+j given Z1:(p+j−1) = (x1:p, x
∗
1:(j−1)).

h

Proposition 4. The covariance-guided proposals are faithful (see Section 3.1) in that the proposal
distribution at the jth step depends on (Xk, X̃k) in a symmetric way for 1 ≤ k < j.

Proof of Proposition 4. Consider the proposal at step j. To see how the proposal distribution
depends on (Xk, X̃k) for k < j, note that we are using the distribution of Zj+p conditional on

Z1:(p+j−1) = (x1, x2, . . . , xp,1x1=x̃1x
∗
1 + 1x1 6=x̃1 x̃1, . . . ,1xj−1=x̃j−1x

∗
j−1 + 1xj−1 6=x̃j−1

x̃j−1). (17)

We only need to check if the proposal density changes when swapping xk and x̃k for k ≤ j−1. Note
that if we rejected at the kth step, xk = x̃k, so there is no effect of swapping the two; if we accepted
at the kth step, the dependence is symmetric in (xk, x̃k) because of the structure of the covariance
matrix.

Proposition 5. If (Σ−1)ij = 0 whenever i 6= j and (i, j) is not an edge in the graph G, then the
covariance-guided proposals are compatible with G (see Definition 2).

Proof of Proposition 5. We wish to show, L(X∗
j | X,X∗

1:j−1) only depends on Xk if k ∈ V̄j . To do
this, we use induction over j. For j = 1, since X∗

1 | X is a Gaussian distribution whose conditional
variance does not depend on X, it suffices to show that E[X∗

1 | X] depends on Xk only if k ∈ V̄1.
Note that

(X1, X
∗
1 ) | X-1 ∼ N

(
(µcond, µcond),Σcond

)
, µcond = E[X1 | X-1], Σ

cond = Cov ((X1, X
∗
1 ) | X-1) ,

Since Σ
cond does not depend on X, E[X∗

1 | X1, X-1] is a linear function of X1 and µcond. It is easy to
see that µcond = E[X1 | X-1] depends on Xk only if k and 1 co-appear in some node of the junction
tree. By Lemma 1, this node can only be V1 and, therefore, k ∈ V1. Thus the base case j = 1 holds.

Suppose the claim is true up to j − 1. By the same argument on the conditional distribution
(Xj , X

∗
j ) | X-j , X

∗
1:(j−1), it suffices to show that E[Xj | X-j , X

∗
1:(j−1)] only depends on Xk if k ∈ V̄j .

We have

P(xj | x-j , x
∗
1:(j−1)) =

P(xj , x-j , x
∗
1:(j−1))

∫

R
P(x′j , x-j , x∗1:(j−1)) dx

′
j

=
P(xj , x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | xj , x-j , x

∗
1:(ℓ−1))

∫

R
P(x′j , x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | x′j , x-j , x∗1:(ℓ−1)) dx

′
j

=
P(x-j)P(xj | x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | xj , x-j , x

∗
1:(ℓ−1))

∫

R
P(x-j)P(x′j | x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | x′j , x-j , x∗1:(ℓ−1)) dx

′
j

=
P(xj | x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | xj , x-j , x

∗
1:(ℓ−1))

∫

R
P(x′j | x-j)

∏j−1
ℓ=1 P(x

∗
ℓ | x′j , x-j , x∗1:(ℓ−1)) dx

′
j

.

hIt seems equally plausible to use x1:p and x̃1:(j−1) (i.e., (x1, x2, . . . , xp, x̃1, x̃2, . . . , x̃j−1) instead of equation (17)).
However, we find that its empirical performance is not as good as the version presented in the main text.
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By the induction hypothesis, for ℓ < j, P(x∗ℓ | xj , x-j , x
∗
1:(ℓ−1)) does not depend on xj unless j ∈ V̄ℓ

(which implies j ∈ Vℓ since j > ℓ), so the ℓth term in the product can be removed from the
numerator and the denominator if j /∈ Vℓ. Thus, we now have

P(xj | x-j , x
∗
1:(j−1)) =

P(xj | x-j)
∏

ℓ:ℓ<j, j∈Vℓ
P(x∗ℓ | xj , x-j , x

∗
1:(ℓ−1))

∫

R
P(x′j | x-j)

∏

ℓ:ℓ<j, j∈Vℓ
P(x∗ℓ | x′j , x-j , x∗1:(ℓ−1)) dx

′
j

.

Now we will prove that P(xj | x-j)
∏

ℓ:ℓ<j, j∈Vℓ
P(x∗ℓ | xj , x-j , x

∗
1:(ℓ−1)) depends on xk only if k ∈ V̄j ,

which will conclude case j. Consider first the terms P(x∗ℓ | xj , x-j , x
∗
1:(ℓ−1)) in the product: such a

term depends on xk only if k ∈ V̄ℓ by the induction hypothesis, and by Lemma 2, V̄ℓ ⊆ V̄j . Next,
the term P(xj | x-j) only depends on xk if k = j or k is connected to j in G. If k = j, k ∈ V̄j by
definition; otherwise, k ∈ V̄j follows from Lemma 3.

We have established that as long as Σ reflects the structure of G, i.e., for i 6= j,
(
Σ

−1
)

ij
6= 0 only

if i and j are connected in G, the covariance-guided proposals are compatible. For these proposals,
sampling and evaluating the proposal density can be done without without querying the density Φ,
so Theorem 2 implies that Metro with covariance-guided proposals requires O(p2w) queries of Φ.

It is easy to see that if X is Gaussian and γ = 1, we always accept because the acceptance ratio
is always 1.

C Proofs

C.1 Necessity of the knockoff symmetry condition

At first glance, it might not be directly clear why we need the symmetry condition (5) in Theorem
1. To illustrate why this is necessary, consider the following example: let p be the density function

p(x, x̃) = 1 + sin



2π
(

xp + x̃p +

p−1
∑

j=1

(xj − x̃j)
)



 , (x, x̃) ∈ [0, 1]2p.

Each pair (Xj , X̃j) is unexchangeable unless j = p. However, marginalizing out any coordinate
would yield the uniform distribution. In other words, in any sequential construction, we would have
that Xj and X̃j are conditionally independent and, therefore, exchangeable up until the last step.
Since Xp and X̃p are exchangeable conditionally on everything else, conditional exchangeability
would hold. This example shows that if we require conditional exchangeability only, we would not
necessarily end up with valid knockoffs. To press this point further, imagine that in the SCIP algo-
rithm, we change the last step: instead of conditional independence we simply require conditional
exchangeability. Then we are not guaranteed to get valid knockoffs. Violation of the symmetry
condition in just one step is, in general, not allowed.

C.2 Section 2 proofs

Proof of Theorem 1. When condition 1 is met, we have

(X1, . . . , Xp, X̃1, . . . , X̃j)
d
= (X1, . . . , Xp, X̃1, . . . , X̃j)swap(k), 1 ≤ k ≤ j, (18)

for each j = 1, . . . , p by marginalizing out X̃(j+1):p in (1). This implies both (4) and (5).
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Assume now that (4) and (5) hold. We prove by induction that (18) holds for j = 1, 2, . . . , p;
when j = p, we achieve pairwise exchangeability (1). When j = 0, there is nothing to prove. Assume
(18) holds up until j − 1. The distribution of (X1, . . . , Xp, X̃1, . . . , X̃j) can be decomposed into the
marginal distribution of (X-j , X̃1:(j−1)) and the conditional distribution (Xj , X̃j) | X-j , X̃1:(j−1).

The former is symmetric in Xk and X̃k, 1 ≤ k ≤ j − 1 as seen by taking the induction hypothesis
and marginalizing out Xj . The latter is symmetric in Xj and X̃j because of (4), and symmetric in
Xk and X̃k for 1 ≤ k ≤ j − 1 because of (5).

Proof of Proposition 1. Let Z1 ∼ π, and the Markov kernel be given by the law L(Z̃ | Z). Then

the chain has π as a stationary distribution. Also, (Z1, Z2)
d
= (Z, Z̃). Time reversibility also holds

since
(Zt, Zt+1)

d
= (Z, Z̃)

d
= (Z̃, Z)

d
= (Zt+1, Zt).

The converse is a direct consequence of time reversibility.

C.3 Proof of Theorem 3

Proof. Suppose we are given a procedure K that always generates valid knockoffs for X given
an unnormalized density function Φ for X and (implicitly) the support of Φ (or the dominating
measure). Below, the symbols PΦ, LΦ, etc., indicate that we are working in the probability space
defined by Φ (together with its support) and, implicitly, the procedure K; (X, X̃,N) are jointly
defined on this space. Let π be the normalized density, which is defined by Φ through

π(x) = λΦΦ(x), x ∈ Rp.

We abuse notation slightly and for a Borel set M write Φ(X ∈ M) for PΦ(X ∈ M)/λΦ.

We will consider the conditional probability PΦ(N ≥ 2#{j:Xj 6=X̃j} − 1 | X, X̃) and prove it is
almost surely one. Conditioning on (X, X̃) makes the probability easier to analyze because it fixes

the exponent #{j : Xj 6= X̃j}. We will basically identify which 2#{j:Xj 6=X̃j} − 1 points have to be
queried: any point obtained by changing xj to x̃j for j in any non-empty subset of {j : xj 6= x̃j}. We
will prove the theorem for both discrete and continuous distributions. Analysis of the conditional
probability can be done directly in the discrete case, while in the continuous case we cover the
possible values of (X, X̃) by a countable union of sets, and then prove the conditional probability
of interest is one on each of the sets. Although more technical, the proof for the continuous case
shares the same structure as that for the discrete case.

Discrete case. Let (x, x̃) be some pair of input and output, respectively, of K. For any S ⊆
{1, 2, . . . , p}, define xch(S) as x except with xj changed to x̃j for all j ∈ S, and vice versa for x̃ch(S),
so that

(x, x̃)swap(S) = (xch(S), x̃ch(S)).

We will prove that as long as xch(S) 6= x, then K must have queried the oracle at xch(S); now assume

xch(S) 6= x. We also assume PΦ(X = x, X̃ = x̃) > 0 (otherwise (x, x̃) is not a possible pair of input
and output), which implies π(xch(S)) > 0 for any S ⊆ {1, 2, . . . , p} by pairwise exchangeability. Let

qΦ(x̃ | x) = PΦ(X̃ = x̃ | X = x). Also by pairwise exchangeability,

π(x)qΦ(x̃ | x) = π(xch(S))qΦ(x̃ch(S) | xch(S)) ≤ π(xch(S)). (19)

Let Ax be the event that the input vector is x, so

PΦ(Ax) = π(x) = λΦΦ(x).
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Let Bx̃ be the event that the output of K is x̃, so

PΦ(Bx̃ | Ax) = qΦ(x̃ | x).

Let CS be the event that K does not query the oracle at xch(S). Dividing (19) by λΦ gives

Φ(xch(S)) ≥ Φ(x)qΦ(x̃ | x) = Φ(x)PΦ(Bx̃ | Ax) ≥ Φ(x)PΦ(Bx̃ ∩ CS | Ax). (20)

Equation (20) holds for any Φ such that Φ(x),Φ(x̃) > 0. Consider a new unnormalized density

ΦS
η (y) =

{

ηΦ(y), y = xch(S),

Φ(y), otherwise,

where η ∈ (0, 1]. This new density has the same support as Φ, so ΦS
η (xch(S′)) > 0 for any

S′ ⊆ {1, 2, . . . , p}, and thus (20) also holds for ΦS
η . Now consider PΦS

η
(Bx̃ ∩ CS | Ax) = PΦS

η
(Bx̃ |

CS , Ax)PΦS
η
(CS | Ax). The first probability does not depend on η because the conditioning on CS

means changing the oracle only at xch(S) does not affect the procedure K in any way. The second
probability does not depend on η either, for the points that K queries can only depend on η after
K queries the oracle at xch(S). Therefore, PΦS

η
(Bx̃ ∩CS | Ax) = PΦ(Bx̃ ∩CS | Ax) for any η ∈ (0, 1].

Thus, we get from equation (20) that (recall we are assuming x 6= xch(S))

ηΦ(xch(S)) = ΦS
η (xch(S)) ≥ ΦS

η (x)PΦS
η
(Bx̃ ∩ CS | Ax) = Φ(x)PΦ(Bx̃ ∩ CS | Ax).

Since Φ(x) > 0 (i.e., x is a possible input), we conclude by letting η → 0 that PΦ(Bx̃∩CS | Ax) = 0.
Combining this with PΦ(Bx̃ | Ax) > 0 (i.e., given x as an input, x̃ is a possible output), we conclude
PΦ(CS | Ax, Bx̃) = 0. That is, if K generates x̃ from input x, it must have queried xch(S). Thus,
combining the results for all the S’s that make x 6= xch(S), we can claim that given x as input, K
outputs x̃ only if it has queried the oracle at least at the set of points

H(x,x̃) = {xch(S) : S ⊆ {j : xj 6= x̃j}, S 6= ∅}.

Mathematically, when PΦ(Ax, Bx̃) > 0,

PΦ(K queried Φ at z for all z ∈ H(x,x̃) | Ax, Bx̃) = 1. (21)

Since there are 2#{j:xj 6=x̃j} − 1 points in H(x,x̃), we have

PΦ(N ≥ 2#{j:xj 6=x̃j} − 1 | Ax, Bx̃) = 1.

After marginalizing out x and x̃, this leads to the claimed a.s. inequality:

N ≥ 2#{j:Xj 6=X̃j} − 1.

Continuous case. The proof works similarly for the continuous case. Loosely speaking, we will
construct non-overlapping hypercubes around the points in H(x,x̃) defined previously, and show they
all contain points of query with probability one. Concretely, consider a hypercube around z, defined
as

F(z,z̃) = {x : |xk − zk| ≤ g(zk, z̃k), 1 ≤ k ≤ p},
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where

g(zk, z̃k) =







|zk − z̃k|
3

, zk 6= z̃k,

1, zk = z̃k.

The denominator 3 in the definition of g is not essential, as long as it is large enough so F(z,z̃)

does not overlap with F(z,z̃)swap(j)
if zj 6= z̃j . Let E(z,z̃) be a joint hypercube around (z, z̃), which is

defined through F(z,z̃) and F(z̃,z) as

E(z,z̃) = {(x, x̃) : x ∈ F(z,z̃), x̃ ∈ F(z̃,z)} = {(x, x̃) : |xk − zk|, |x̃k − z̃k| < g(zk, z̃k), 1 ≤ k ≤ p}.

We use the fact that the rational points are dense in R2p to cover the entire space using a countable
collection of sets. Hence, if we can prove the conditional probability PΦ(N ≥ 2#{j:Xj 6=X̃j} − 1 |
X, X̃) = 1 on every set in this collection, we can claim the corresponding equality holds uncon-
ditionally. Formally, we first consider E(r,r̃), where (r, r̃) ∈ Q2p and rk 6= r̃k, 1 ≤ k ≤ q for some

positive integer q ≤ p. We will show PΦ(N ≥ 2q − 1 | (X, X̃) ∈ E(r,r̃)) = 1 as long as PΦ((X, X̃) ∈
E(r,r̃)) > 0. Now suppose PΦ((X, X̃) ∈ E(r,r̃)) > 0, which implies PΦ(X ∈ F(r,r̃)swap(S)

) > 0 for any

S ⊆ {1, 2, . . . , p}. Define

A(r,r̃) = {X ∈ F(r,r̃)}, B(r̃,r) = {X̃ ∈ F(r̃,r)}.

Let S be any non-empty subset of {1, 2, . . . , q}, so (r, r̃)swap(S) 6= (r, r̃). Now we have

PΦ((X, X̃) ∈ E(r,r̃)) = PΦ(A(r,r̃) ∩B(r̃,r)) = PΦ(A(r,r̃))PΦ(B(r̃,r) | A(r,r̃)),

and
PΦ((X, X̃) ∈ E(r,r̃)) = PΦ((X, X̃)swap(S) ∈ E(r,r̃))

= PΦ((X, X̃) ∈ E(r,r̃)swap(S)
)

= PΦ(X ∈ F(r,r̃)swap(S)
, X̃ ∈ F(r̃,r)swap(S)

)

= PΦ(X ∈ F(r,r̃)swap(S)
)PΦ(X̃ ∈ F(r̃,r)swap(S)

| X ∈ F(r,r̃)swap(S)
)

≤ PΦ(X ∈ F(r,r̃)swap(S)
).

Hence, by dividing by the common normalizing constant λΦ in the above two equations and com-
bining them, we get

Φ(X ∈ F(r,r̃)swap(S)
) ≥ Φ(X ∈ F(r,r̃))PΦ(B(r̃,r) | A(r,r̃)). (22)

Now, similar to the discrete case, we consider a new unnormalized density

ΦS
η (x) =

{

ηΦ(x) x ∈ F(r,r̃)swap(S)
,

Φ(x) otherwise,

for η ∈ (0, 1], which has the same support/dominating measure as Φ. It is easy to check that
equation (22) also holds for ΦS

η . Let CS be the event that K does not query Φ at any point in
F(r,r̃)swap(S)

. To use the same trick as in the discrete case, we next prove PΦS
η
(CS ∩ B(r̃,r) | A(r,r̃))

does not depend on η. We have ΦS
η (X ∈ F(r,r̃)) = Φ(X ∈ F(r,r̃)) because F(r,r̃)∩F(r,r̃)swap(S)

is empty

(so ΦS
η = Φ on F(r,r̃)). Note that by definition,

PΦ(CS ∩B(r̃,r) | A(r,r̃)) = EΦ[PΦ(CS ∩B(r̃,r) | X) | A(r,r̃)],

PΦS
η
(CS ∩B(r̃,r) | A(r,r̃)) = EΦS

η
[PΦS

η
(CS ∩B(r̃,r) | X) | A(r,r̃)],

(23)
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and PΦS
η
(CS ∩ B(r̃,r) | X), as a function of X, does not depend on η; this holds since all ΦS

η ’s for

η ∈ (0, 1] have the same support, and we can follow the same argument as in the discrete case.
Specifically,

PΦS
η
(CS ∩B(r̃,r) | X) = PΦ(CS ∩B(r̃,r) | X).

In addition, since the unnormalized density is the same on the set F(r,r̃), we have

LΦ(X | A(r,r̃)) = LΦS
η
(X | A(r,r̃)).

The last two equations together with equations (23) imply PΦ(CS∩B(r̃,r) | A(r,r̃)) = PΦS
η
(CS∩B(r̃,r) |

A(r,r̃)). By (22),

ηΦ(X ∈ F(r,r̃)swap(S)
) = ΦS

η (X ∈ F(r,r̃)swap(S)
)

≥ ΦS
η (A(r,r̃))PΦS

η
(B(r̃,r) | A(r,r̃))

≥ ΦS
η (A(r,r̃))PΦS

η
(CS ∩B(r̃,r) | A(r,r̃))

= Φ(A(r,r̃))PΦ(CS ∩B(r̃,r) | A(r,r̃)).

(24)

The left hand side of (24) goes to 0 as η → 0. Thus, recall that we are assuming PΦ((X, X̃) ∈
E(r,r̃)) > 0 and Φ(X ∈ F(r,r̃)) > 0, and so we get PΦ(CS ∩B(r̃,r) | A(r,r̃)) = 0. By Bayes’ rule, since
PΦ(A(r,r̃) ∩B(r̃,r)) > 0, we have

PΦ(CS | A(r,r̃), B(r̃,r)) =
PΦ(CS ∩A(r,r̃) ∩B(r̃,r))

PΦ(A(r,r̃) ∩B(r̃,r))

=
PΦ(A(r,r̃))PΦ(CS ∩B(r̃,r) | A(r,r̃))

PΦ(A(r,r̃) ∩B(r̃,r))
= 0.

That is, unless (X, X̃) ∈ E(r,r̃) happens with zero probability, with probability one at least one point

in F(r,r̃)swap(S)
is queried conditional on (X, X̃) ∈ E(r,r̃). Combining the results for all the S’s that

make (r, r̃)swap(S) 6= (r, r̃), we get 2q − 1 disjoint sets, each of which must contain at least one point
of query. Hence, now we can claim that for any E(r,r̃), where (r, r̃) ∈ Q2p and rk 6= r̃k, 1 ≤ k ≤ q,
either

PΦ((X, X̃) ∈ E(r,r̃)) = 0

or
PΦ(N ≥ 2q − 1 | (X, X̃) ∈ E(r,r̃)) = 1.

Note that this is equivalent to PΦ(N ≥ 2q − 1 | X, X̃) = 1 almost surely on E(r,r̃).
i These two

equations imply that, as a function of (X, X̃), the conditional probability satisfies

PΦ(N ≥ 2q − 1 | X, X̃) = 1, a.s. on
⋃

(r,r̃)∈Q2p

rk 6=r̃k,1≤k≤q

E(r,r̃),

because the union is over a countable index set. There is nothing special about choosing the rk 6= r̃k
on first q coordinates, so we have

PΦ(N ≥ 2|D| − 1 | X, X̃) = 1, a.s. on
⋃

(r,r̃)∈Q2p

rk 6=r̃k,k∈D

E(r,r̃), D ⊆ {1, 2, . . . , p}. (25)

iThe conditional probability PΦ(N ≥ 2q − 1 | X, X̃) = 1 is almost surely one on a set U means PΦ(N ≥ 2q − 1 |
(X, X̃) = (x, x̃)) = 1 for (x, x̃) ∈ U \ V , where V is some set satisfying PΦ((X, X̃) ∈ V ) = 0.
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Note the case D = ∅ does not follow the exact same proof, but no proof is needed in this case, since
N ≥ 2|∅| − 1 = 0 holds trivially. We shall thus keep in mind that (25) holds for any Φ.

Now we go back to the conditional probability we are interested in, mathematically defined as

fΦ(X, X̃) = PΦ(N ≥ 2#{j:Xj 6=X̃j} − 1 | X, X̃) = EΦ[1
N≥2#{j:Xj 6=X̃j}−1

| X, X̃].

We want to show fΦ(X, X̃) = 1, a.s. Let

Tn,D = {(x, x̃) : |xk − x̃k| > 1/n, k ∈ D and xk = x̃k, k /∈ D};

therefore, D is the set of coordinates where x and x̃ could differ, and 1/n measures the minimum
difference between these original and knockoff coordinates. Since any point (x, x̃) ∈ R2p is contained
in

T⌊

1/ min
j,xj 6=x̃j

|xj−x̃j |

⌋

+1,{j:xj 6=x̃j}

if x 6= x̃, and in T1,∅ if x = x̃, we have

R2p =
∞⋃

n=1

⋃

D⊆{1,2,...,p}

Tn,D.

This is also a countable union, so in order to show fΦ(X, X̃) = 1 a.s., we only have to show that
fΦ(X, X̃) = 1 a.s. for any Tn,D that has positive probability of containing (X, X̃). Note that since
there are exactly |D| coordinates that differ for x and x̃ in the set Tn,D,

fΦ(X, X̃) = PΦ(N ≥ 2#{j:Xj 6=X̃j} − 1 | X, X̃) = PΦ(N ≥ 2|D| − 1 | X, X̃) on Tn,D.

So now we only need to show

PΦ(N ≥ 2|D| − 1 | X, X̃) = 1, a.s. on Tn,D,

which would be implied by (25) if we can show that

⋃

(r,r̃)∈Q2p

rk 6=r̃k,k∈D

E(r,r̃) ⊇ Tn,D.

To see this, take any point (x, x̃) from Tn,D. Find rational numbers rk ∈ (xk − 1/5n, xk + 1/5n)
and r̃k ∈ (x̃k − 1/5n, x̃k + 1/5n), 1 ≤ k ≤ p. We have |rk − r̃k| > 3/5n (hence also rk 6= r̃k) for
k ∈ D, since |xk − x̃k| > 1/n for k ∈ D. We can now check that (x, x̃) ∈ E(r,r̃). For k ∈ D (if any),
|xk − rk|, |x̃k − r̃k| < 1/5n < |rk − r̃k|/3, and for k /∈ D (if any), |rk − xk|, |r̃k − x̃k| < 1/5n < 1.

C.4 Divide-and-conquer knockoffs

Proof of Proposition 3. Consider the distribution of X conditional on XC = xC . Since C separates
A and B in the graph G, we have

XA ⊥⊥ XB | XC .

The assumptions of the proposition then imply that

(XA, XB, X̃A, X̃B)
d
= (XA, XB, X̃A, X̃B)swap(j) | XC , j ∈ A ∪B
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and since X̃C = XC a.s.,

(X, X̃)
d
= (X, X̃)swap(j) | XC , j ∈ A ∪B ∪ C.

Lastly, we note that conditional exchangeability implies marginal exchangeability, so

(X, X̃)
d
= (X, X̃)swap(j), j ∈ A ∪B ∪ C

as claimed.

C.5 Complexity proofs for Metropolized knockoff sampling

Lemma 4. When the proposal distributions are compatible for the junction tree T , for 1 ≤ j ≤ p,
P(X̃j , X

∗
j | X, X̃1:(j−1), X

∗
1:(j−1)), depends on Xk only if k ∈ V̄j.

Proof of Lemma 4. We use induction over j. For the base case j = 1, P(X∗
1 | X) depends on Xk

only if k ∈ V̄1 by our assumption of compatible proposals. And P(X̃1 | X,X∗
1 ) is a function of the

acceptance probability
P(X∗

1 = x∗1 | X1 = x1, X-1)

P(X∗
1 = x1 | X1 = x∗1, X-1)

P(X1 = x∗1, X-1)

P(X1 = x1, X-1)
.

The first term depends only on Xk ∈ V̄1 by assumption of compatible proposals. The second term
depends on Xk if k is connected to 1 in G (or k = 1). Since the variables are ordered by Algorithm 2,
1 only appears in V1 by Lemma 1, so k has to appear in V1 if 1 and k are connected. The base case
is thus proved.

Suppose the claim is true for 1, . . . , j−1. First we have P(X∗
j | X, X̃1:(j−1), X

∗
1:(j−1)) depends on

Xk only if k ∈ V̄j by our assumption of compatible proposals. Now P(X̃j = x̃j | X, X̃1:(j−1), X
∗
1:j) is

a function of the acceptance probability, which is computed from the ratio of the proposal densities
(which depends only on Xk for k ∈ V̄j by assumption of compatible proposals) and the following
ratio

P(Xj = x∗j , X-j , X̃1:(j−1), X
∗
1:(j−1))

P(Xj = xj , X-j , X̃1:(j−1), X
∗
1:(j−1))

=
P(Xj = x∗j | X-j)

P(Xj = xj | X-j)

P(X̃1:(j−1), X
∗
1:(j−1) | Xj = x∗j , X-j)

P(X̃1:(j−1), X
∗
1:(j−1) | Xj = xj , X-j)

. (26)

We first consider the second term in the right hand side of the above. Consider the decomposition

P(X̃1:(j−1), X
∗
1:(j−1) | Xj = zj , X-j) =

j−1
∏

ℓ=1

P(X̃ℓ, X
∗
ℓ | Xj = zj , X-jX̃1:(ℓ−1), X

∗
1:(ℓ−1)).

The ℓth term in this product depends on Xj only if j ∈ V̄ℓ, by the induction hypothesis. Lemma 2
then implies that for such ℓ, V̄ℓ ⊆ V̄j . Any term in the product that does not depend on Xj will be
identical in the numerator and denominator of (26) and so will cancel. Together, this shows that
the second term on the right hand side of (26) depends only on k for k ∈ V̄j .

Next, the numerator and denominator of the first term of the right hand side of (26) only
depends on Xk if k = j or k is connected to j in G. If k = j, then k ∈ V̄j by definition; otherwise
k ∈ V̄j by Lemma 3. Now we have showed (26) depends only on Xk for k ∈ V̄j and the proof of the
lemma is complete.
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Proof of Theorem 2. Take γ = 1 for simplicitly, and take a proposal distribution qj that can be
sampled from and evaluated without an evaluation of Φ (e.g., an independent Gaussian proposal in
the continuous setting). We will show how Algorithm 2 uses the conditional dependence structure
encoded in the graph G to make computations of (10) simpler.

Define
Fj(XVj

= zVj
) := P(X̃j , X

∗
j | XVj

= zVj
, XV c

j
, X̃1:(j−1), X

∗
1:(j−1)).

By the definition of Metro, we can write Fj as the product of the proposal density and the accep-
tance/rejection probability:

Fj(XVj
= zVj

) = P(X̃j , X
∗
j | XVj

= zVj
, XV c

j
, X̃1:(j−1), X

∗
1:(j−1))

= P(X∗
j | XVj

= zVj
, XV c

j
, X̃1:(j−1), X

∗
1:(j−1))P(X̃j | XVj

= zVj
, XV c

j
, X̃1:(j−1), X

∗
1:j)

= q(2)α1accept(1− α)1reject ;

where

q(1) = P(X∗
j = zj | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(j−1), X

∗
1:(j−1))

q(2) = P(X∗
j = x∗j | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(j−1), X

∗
1:(j−1)).

are the proposal terms and

α = min

(

1,
q(1)P(Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(j−1), X

∗
1:(j−1))

q(2)P(Xj = zj , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

)

is the acceptance probability. Sequentially decomposing the ratio of probabilities in the term α, we
get

P(Xj = x∗j , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

P(Xj = zj , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

=
P(Xj = x∗j , XVj\j = zVj\j , XV c

j
)

P(Xj = zj , XVj\j = zVj\j , XV c
j
)
×

j−1
∏

k=1

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

P(X̃k, X
∗
k | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

=
Φ(Xj = x∗j , XVj\j = zVj\j , XV c

j
)

Φ(Xj = zj , XVj\j = zVj\j , XV c
j
)
×

j−1
∏

k=1

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

P(X̃k, X
∗
k | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

,

(27)
where all we did in the second equality was cancel the normalizing constants in the first ratio. In
light of Lemma 4, the ratio

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

P(X̃k, X
∗
k | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

is one unless j ∈ V̄k, since the value of Xj is the only one that differs between the numerator and
denominator. Recall that V̄k = Vk ∪ {1, 2, . . . , k} and note j > k, so j ∈ V̄k is equivalent to j ∈ Vk.
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Thus, (27) gives

P(Xj = x∗j , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

P(Xj = zj , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

=
Φ(Xj = x∗j , XVj\j = zVj\j , XV c

j
)

Φ(Xj = zj , XVj\j = zVj\j , XV c
j
)
×

∏

k:k<j, j∈Vk

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

P(X̃k, X
∗
k | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

.

Now we will show that the numerators in the product satisfy

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

= Fk(Xj = x∗j , XVk∩Vj\j = zVk∩Vj\j , XVk\Vj
= xVk\Vj

).

By the definition of Fk, we need to show that

P(X̃k, X
∗
k | Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

= P(X̃k, X
∗
k | Xj = x∗j , XVk∩Vj\j = zVk∩Vj\j , XVk\Vj

= xVk\Vj
, XV c

k
, X̃1:(k−1), X

∗
1:(k−1)).

Inspecting the equation, we note that the only difference between the two quantities is the value of
the variables that are being conditioned on, and only the values of XVj\Vk

are are different. Thus,
we only need to show this set of values do not affect the conditional density. By Lemma 4, we just
have to show that Vj \Vk does not overlap with V̄k. To see this, take any ℓ ∈ V̄k = Vk∪{1, 2, . . . , k}.
If ℓ ∈ Vk, then certainly ℓ /∈ Vj \ Vk. Now we consider the case where ℓ ∈ {1, 2, . . . , k} and thus
less than j. If ℓ ∈ Vj \ Vk, then it must be in Vj . By Lemma 1, we have Vj = Vℓ, which means
variables ℓ, . . . , j are all sampled when Vℓ is selected; specifically, k is sampled when Vℓ is selected,
so Vk = Vℓ = Vj . But in this case certainly Vj \ Vk = ∅, which is a contradiction.

Similarly, we also have that the corresponding denominators in the product satisfy

P(X̃k, X
∗
k | Xj = zj , XVj\j = zVj\j , XV c

j
, X̃1:(k−1), X

∗
1:(k−1))

= Fk(Xj = zj , XVk∩Vj\j = zVk∩Vj\j , XVk\Vj
= xVk\Vj

).

Combining all these together, the acceptance probability becomes

α = min

(

1,
q(1)P(Xj = x∗j , XVj\j = zVj\j , XV c

j
, X̃1:(j−1), X

∗
1:(j−1))

q(2)P(Xj = zj , XVj\j = zVj\j , XV c
j
, X̃1:(j−1), X

∗
1:(j−1))

)

= min

(

1,
q(1)c(1)Φ(Xj = x∗j , XVj\j = zVj\j , XV c

j
)

q(2)c(2)Φ(Xj = zj , XVj\j = zVj\j , XV c
j
)

)

,

where

c(1) =
∏

k:k<j, j∈Vk

Fk(Xj = x∗j , XVk∩Vj\j = zVk∩Vj\j , XVk\Vj
= xVk\Vj

),

c(2) =
∏

k:k<j, j∈Vk

Fk(Xj = zj , XVk∩Vj\j = zVk∩Vj\j , XVk\Vj
= xVk\Vj

).

Note that the only difference between c(1) and c(2) is changing x∗j to zj . From this expression, we

see that
{
Fj(XVj

= zVj
) : zℓ ∈ {xℓ, x∗ℓ} for all ℓ ∈ Vj

}
can be computed in terms of
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1. Fk(XVk
= zVk

) for all k < j with zVk
such that zℓ ∈ {xℓ, x∗ℓ} for all ℓ ∈ Vk,

2. Φ(XVj
= zVj

, XV c
j
= xV c

j
) for all zVj

with zℓ ∈ {xℓ, x∗ℓ} for all ℓ ∈ Vj .

Thus, it requires 2|Vj | evaluations of Φ to compute
{
Fj(XVj

= zVj
) : zℓ ∈ {xℓ, x∗ℓ} for all ℓ ∈ Vj

}

from the previously computed values of Fk(XVk
= zVk

) for k < j. Since |Vj | ≤ w + 1, 1 ≤ j ≤ p,
we have that the total number of queries of Φ is O(p2w). Having access to the Fk(XVk

= zVk
)’s is

sufficient to run the algorithm, because at each step of the algorithm, it is clear that the acceptance
ratio α can be computed from these Fk(XVk

= zVk
)’s, so the proof is complete.

More generally, if an evaluation of Φ costs a units of computation and a floating point operation
requires 1 unit, then the same proof shows that the algorithm takes O(p(p+ a)2w) since computing
the Fj(XVj

= zVj
) requires a total of O(p2w) evaluations of Φ and each Fj(XVj

= zVj
) requires O(p)

floating point operations to compute c(1) and c(2).

MTM

For the MTM method of Section 3.3, the proposal distribution requires evaluations of Φ, so the
requirements of Theorem 2 do not hold. The proof of Theorem 2 can easily be adapted to apply to
MTM, however. Instead, for the MTM method we see that at step j we need access to

P(Xj = zj , X-j = x-j , X̃1:(j−1) = X̃1:(j−1), X
∗
1:(j−1) = x∗1:(j−1))

up to a common constant for zj ∈ Cm,t
xj ∪ Cm,t

x∗
j

. By an analysis similar to the proof of Theorem 2,

it suffices to have access to

1. Fk(XVk
= zVk

) for all k < j for zVk
such that zℓ ∈ Cm,t

xℓ
∪ Cm,t

x∗
ℓ

for all k ∈ Vk,

2. Φ(Xj = zj , X-j = x-j) for all zj ∈ Cm,t
xj ∪ Cm,t

x∗
j

.

In order to compute Fj(XVj
= zVj

) for all zVj
such that zℓ ∈ Cm,t

xℓ
∪ Cm,t

x∗
ℓ

for all ℓ ∈ Vj for use in

later steps, we additionally need to compute

Φ(XVj
= zVj

, XV c
j
= xV c

j
) for all zVj

such that zℓ ∈ Cm,t
xℓ

∪ Cm,t
x∗
ℓ

for all ℓ ∈ Vj .

Thus, MTM requires O(p(3m+1)w) queries of Φ, where 3m+1 is an upper bound on |Cm,t
xℓ

∪Cm,t
x∗
ℓ
|

for all ℓ.

Discrete distributions with small support

Consider the direct methods for discrete distributions with small support in Section 4.5, which can
be viewed as a Metro algorithm that never rejects. The proof of Theorem 2 can easily be adapted
to apply to the this case. Note that since the procedure never rejects, we have X∗ = X̃ and we can
omit writing terms of X∗ in all of the following discussion.

Let Cj be the support of Xj and suppose that |Cj | ≤ K for all j. Then at step j, the method
requires access to

P(Xj = zj , X-j = x-j , X̃1:(j−1) = x̃1:(j−1))

for all zj ∈ Cj . By an analysis similar to the proof of Theorem 2, it suffices to have access to

1. Fk(XVk
= zVk

) for all k < j for zVk
such that zℓ ∈ Ck for all ℓ ∈ Vj .
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2. Φ(Xj = zj , X-j = x-j) for all zj ∈ Cj .

In order to compute Fj(XVj
= zVj

) for all zVj
such that zℓ ∈ Cℓ for all ℓ ∈ Vj for use in later steps,

we additionally need to compute

Φ(XVj
= zVj

, XV c
j
= xV c

j
) for all zVj

such that zℓ ∈ Cℓ for all ℓ ∈ Vj .

Thus, the rejection-free procedure requires O(pKw) queries of Φ.

C.6 Lower bounds for graphical models

Proof of Proposition 2. We only have to prove that we can design a Metro algorithm that meets the
requirement in the proposition. The rest of the proposition is implied by Corollary 2, proved next.
We focus on the continuous case (and when the support is all of Rp), because we are interested
in the Gaussian case. Since Metro can only learn about the distribution by making queries to the
oracle, we describe an algorithm which first makes about p2/2 queries to attempt to recover the
covariance matrix. This can be done in such a way that if the model is Gaussian as described in
Proposition 2, we recover the correct covariance matrix. Thus, covariance-guided proposals will
accept at every step and get us a knockoff vector that differs with the input original vector at every
coordinate (with probability one).

Let ej be the jth vector of the canonical basis. Assume the model is N (0,Σ) let Φ be the
unnormalized density. Then

Φ(0) = W · exp
(

−1

2
0Σ−10⊤

)

= W,

Φ(ej) = W · exp
(

−1

2
ejΣ

−1e⊤j

)

= W · exp
(

−1

2

(
Σ

−1
)

jj

)

, 1 ≤ j ≤ p,

Φ(ej + ek) = W · exp
(

−1

2

((
Σ

−1
)

jj
+
(
Σ

−1
)

kk
+ 2

(
Σ

−1
)

jk

))

, j 6= k,

where W is an unknown positive constant. Hence, if we query the oracle at the above 1+p(p+1)/2
points, we can always solve for a potential precision matrix. The algorithm’s next step depends on
the solution to these equations.

• If the matrix formed by the solution to this system of equations is positive definite, and reflects
the structure of the graph G, i.e., the (i, j)th entry is non-zero only if i = j or i and j are
connected by an edge in G, then the algorithm inverts this solution matrix to get Σ, and
then proceeds with covariance-guided proposals with any positive s which makes Γ(s) in (2)
positive definite.

• Otherwise, the model must not be a multivariate Gaussian distribution with zero mean, pos-
itive definite covariance matrix and have the required conditional independence structure. In
that case, the algorithm will just choose any proposal distribution (e.g., independent Gaussian
proposals).

Since running Metro with the covariance-guided proposal requires O(p2w) queries of Φ, this
algorithm in total requires O(p2 + p2w) queries of Φ. If indeed Φ(x) ∝ exp

(
−xΣ−1x⊤/2

)
, the

algorithm will recover the right covariance matrix Σ, and therefore will never reject, and produce a
knockoff X̃ such that Xj 6= X̃j for all j (with probability one).

36



Proof of Corollary 2. Call the procedure K. We argue by contradiction and show that if the Corol-
lary did not hold, we would be able to exploit K and construct an algorithm that contradicts
Theorem 3. Loosely speaking, if there is one clique c0 for which, with positive probability, the
inequality fails to hold, then we can design an algorithm that generates knockoffs for any |c0|-
dimensional random vector Xc0 by inferring the “missing” variables X{1:p}\c0 , applying K to get

(X̃c0 , X̃{1:p}\c0), and keeping only X̃c0 , which is a valid knockoff of Xc0 .
Formally, if there exists a Φ0 =

∏

c∈C φc(xc) such that with positive probability

N < max
c∈C

2#{j∈c:Xj 6=X̃j} − 1,

then there must exist some clique c0 ∈ C such that simultaneously #{j ∈ c0 : Xj 6= X̃j} =

maxc∈C #{j ∈ c : Xj 6= X̃j} and N < 2#{j∈c0:Xj 6=X̃j} − 1 with positive probability. Note that
such a c0 must not be empty (|c0| ≥ 1), since we cannot have N < 0 with positive probability. Fix
this distribution Φ0 and this clique c0. For each xc0 in the domain, use Φ0(· | xc0) to denote the
normalized density of X{1:p}\c0 | Xc0 = xc0 when X ∼ Φ0, and consider any sampler Sxc0

for this
conditional distribution. This sampler takes a |c0|-dimensional vector xc0 and produces a sample
from Φ0(· | xc0). Now consider the following generic procedure for knockoff sampling:

1. The user inputs unnormalized density Ψc0 and vector Xc0 , where Xc0 follows the distribution
induced by the unnormalized density Ψc0 .

2. Sample X{1:p}\c0 from the conditional distribution Φc0(· | Xc0) using the sampler SXc0
.

3. Provide Φ′(z) := Ψc0(zc0)Φc0(z{1:p}\c0 | zc0) as a function of z and the realization (Xc0 , X{1:p}\c0)

as an input to procedure K, which then returns (X̃c0 , X̃{1:p}\c0). Let N bet the number of
queries of Φ′ required by K.

4. Return X̃c0 .

This procedure queries Ψc0 exactly N times, since step 2 uses Sxc0
, which does not rely on Ψc0 and

does not query it. Furthermore, step 3 queries Φ′ and hence Ψc0 exactly N times. We now show
that the procedure is also guaranteed to produce valid knockoffs for any Ψc0 . To do this, we only
need to show that Φ′(z) factors over G; note that

Φ′(z) = Ψc0(zc0)
Φ0(z)

∫
Φ0(zc0 , w{1:p}\c0) dw{1:p}\c0

=
Ψc0(zc0)φc0(zc0)∫

Φ0(zc0 , w{1:p}\c0) dw{1:p}\c0
︸ ︷︷ ︸

only depends on zc0

∏

c∈C
c 6=c0

φc(zc).

Since Φ′ has the assumed structure implied by G, by the assumption on the validity of K, (X̃c0 , X̃{1:p}\c0)
is a valid knockoff for the augmented random vector (Xc0 , X{1:p}\c0). Marginally, Xc0 ∼ Ψc0 , so we

simply marginalize out X{1:p}\c0 and X̃{1:p}\c0 which preserves pairwise exchangeability.
Finally, because c0 is the complete graph on |c0| coordinates, this is a generic knockoff sampler

for random vectors of dimension |c0|. Specifically, by our initial choice of Φ0, letting Ψc0 correspond

to Φc0 (the marginal density of Xc0 when X ∼ Φ0) we have N < 2#{j∈c0:Xj 6=X̃j} − 1 with positive
probability. This contradicts Theorem 3, which says the inequality must hold with zero probability
for any input density, including Φc0 .
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D Efficient matrix inversion for covariance-guided proposals

Let Σj be the matrix composed of the first (p+ j) rows and columns of

Γ =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]

.

We want to find the inverses of Σ0,Σ1, . . . ,Σp−1 (assuming Σp−1 is invertible). Note that

Σj+1 =

[
Σj γj+1

γ⊤j+1 σ2
j+1

]

,

where σ2
j+1 is the (j + 1)th diagonal element of Σ, and γj+1 is the truncated (p + j)th column of

Γ. We have

Σ
−1
j+1 =






(

Σj − 1
σ2
j+1

γj+1γ
⊤
j+1

)−1

− 1
σ2
j+1−γ⊤

j+1Σ
−1
j γj+1

Σ
−1
j γj+1

− 1
σ2
j+1−γ⊤

j+1Σ
−1
j γj+1

γ⊤j+1Σ
−1
j

1
σ2
j+1−γ⊤

j+1Σ
−1
j γj+1




 .

And by the Sherman–Morrison formula,

(

Σj −
1

σ2
j+1

γj+1γ
⊤
j+1

)−1

= Σ
−1
j −

Σ
−1
j γj+1

(

Σ
−1
j γj+1

)⊤

−σ2
j+1 + γ⊤j+1Σ

−1
j γj+1

.

With all the elements of recursion in place, we can invert Σ0 and recursively calculate the inverse
matrices of Σ1, . . . ,Σp−1. We have made code available that implements this recursion efficiently.

E Group knockoffs

We can easily generalize our work to the group knockoff filter first presented in Dai and Barber
(2016) to control the group false discovery rate. As in that work, let {I1, I2, . . . , Ik} be a partition
of {1, 2, . . . , p}, and suppose we want to construct X̃ such that for each j = 1, . . . , k,

(XI1 , XI2 , . . . , XIk , X̃I1 , X̃I2 , . . . , X̃Ik)
d
= (XI1 , XI2 , . . . , XIk , X̃I1 , X̃I2 , . . . , X̃Ik)swap(Ij).

At each step, we can draw a proposal X∗
Ij

= x∗Ij from a faithful multivariate distribution, and accept
it with probability

min



1,
qj(xIj | x∗Ij )P(X-Ij = x-Ij , XIj = x∗Ij , X̃I1:(j−1)

= x̃I1:(j−1)
, X∗

I1:(j−1)
= x∗I1:(j−1)

)

qj(x∗Ij | xIj )P(X-Ij = x-Ij , XIj = xIj , X̃I1:(j−1)
= x̃I1:(j−1)

, X∗
I1:(j−1)

= x∗I1:(j−1)
)



 .

F Extended simulation results

F.1 Discrete Markov chains simulation details

In Figure 6, the best MTM specification is taken from {(γ,m, t) : γ = 0.999, 1 ≤ m ≤ 10, 1 ≤ t ≤ 5}
for α = 0.2, 0.3, 0.4, 0.5, and from {(γ,m, t) : γ = 0.999, 1 ≤ m ≤ 10, 1 ≤ t ≤ 5} ∪ {(γ,m, t) : m =
4, t = 1, γ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.999} for α = 0, 0.05, 0.1, 0.15. Plots showing the
the individual performance of each of these methods are included below.
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Figure 11: Simulation results for the discrete Markov chains with MTM, K = 5, γ = 0.999. All
standard errors are below 0.001.
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Figure 12: Simulation results for the discrete Markov chains with MTM, K = 10, γ = 0.999. All
standard errors are below 0.001.
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F.2 Effect of γ

The tuning parameter γ for the MTM procedure introduced in Section 3.3 may appear mysterious
to the reader and warrants an explanation. In most of our MTM simulations, γ is set to be 0.999,
but there are cases where it is necessary to tune γ for improved performance. For example, in the
discrete Markov chain experiment in Figure 11, we sometimes observe that MAC increases with
the number of proposals. This is surprising, and upon closer inspection, we find that the reason is
that many pairs (Xj , X̃j) have negative correlations, which leads to increased MAC. In this case,
what is happening is that we are proposing and accepting points that are so far away from Xj that
they become negatively correlated with Xj , which is undesirable. To shift the negative correlations
toward zero, γ can be decreased so that Xj = X̃j more frequently. We illustrate this in Figure 13.
For example, in the setting where have independent coordinates taking on K = 5 possible states,
the best performance is obtained with γ = 4/5, since with this value of γ there will be a probability
1 − γ = 1/5 of rejection, which makes Xj and X̃j independent. Tuning γ may also enable fewer
rejections at later stages of the algorithms, since the knockoffs at later coordinates will be less
constrained.j Based on our simulation results, we only recommend tuning γ when the variables are
discrete with small support and the dependence between variables is weak.

F.3 Ising model simulation details

Sampling Ising variables X is done with a Metroplis–Hastings sampler implemented in the bayess

R package.

F.3.1 Divide-and-conquer simulation details

We set X̃i1,i2 := Xi1,i2 for all (i1, i2) such that i1 belongs to the set C of columns defined as
C = {1 ≤ i ≤ 100 : i = a0 + b(w − 1), b ∈ N}; the spacing w is a fixed constant (see Figure 3 for
an illustration) and the offset a0 is chosen uniformly from {2, . . . , w + 1}. This implies that for all
sites i1, i2), P(Xi1,i2 = X̃i1,i2) < 1.

The SDP lower bound is not available in this case, because it would require computing a 10000×
10000 covariance matrix and then solving the SDP, which is intractable. Instead, to evaluate the
quality of the knockoffs, we compare to Ising model knockoffs on a smaller grid that does not
require the divide-and-conquer technique. Our baseline is thus the MAC evaluated at interior nodes
1 < i1, i2 < 10 achieved by the SCIP procedure. We consider interior nodes because we recall that
correlations on the edges of the grid are smaller. We compare this figure of merit to the MAC of
the interior variables of the 100× 100 grid. Without the divide-and-conquer strategy, the MAC of
the two procedures would be very similar—hence, this is a sensible baseline.

F.4 Gibbs model simulation details

In Figure 10, the best MTM specification is taken from {(γ,m, t, w) : γ = 0.999, 1 ≤ m ≤ 5, 1 ≤
t ≤ 7, w = 3} ∪ {(γ,m, t, w) : γ = 0.999,m = 1, 1 ≤ t ≤ 10, w = 5} for β = 0.07, 0.1, 0.3, and from
{(γ,m, t, w) : γ = 0.999, 1 ≤ m ≤ 5, 1 ≤ t ≤ 7, w = 3} ∪ {(γ,m, t, w) : γ = 0.999,m = 1, 1 ≤ t ≤

jChoosing γ less than 1 means that no matter what the proposal X∗
j is, it will be rejected with positive probability.

While we typically want to avoid rejections, rejecting at early stages in the algorithm my lead to better performance
by enabling higher quality knockoffs at later steps in the algorithm. In particular, with γ = 1, at some step k > j,
it might be the case that none of the points in the proposal set have positive probability, because any point in the
proposal set is inconsistent with a rejection that occurred previously in step j. When γ < 1, however, any proposed
value at step k is consistent with a rejection at step j, because there is always at least a 1− γ chance of rejecting at
step j, so we avoid the undesirable situation described above.
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Figure 13: Simulation results showing the effect of the parameter γ for the discrete Markov chains
with the MTM method. Here, K = 5, α = 0, 0.05, 0.1, 0.15, m = 4 and t = 1. All standard errors
are below 0.001.

10, w = 3, 5} for β = 0.003, 0.01, 0.02, 0.05. The best m = 1, w = 3 MTM for each β is taken from
the same set intersecting {(γ,m, t, w) : m = 1, w = 3}.
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