
Received January 6, 2021, accepted January 20, 2021, date of publication February 1, 2021, date of current version February 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055775

Mez: An Adaptive Messaging System for
Latency-Sensitive Multi-Camera
Machine Vision at the IoT Edge

ANJUS GEORGE , (Graduate Student Member, IEEE), ARUN RAVINDRAN ,
MATÍAS MENDIETA , (Graduate Student Member, IEEE),
AND HAMED TABKHI , (Member, IEEE)
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Corresponding author: Anjus George (ageorg28@uncc.edu)

This work was supported in part by the National Science Foundation (NSF) under Award 1831795.

ABSTRACT Mez is a novel publish-subscribe messaging system for latency sensitive multi-camera machine

vision applications at the IoT Edge. The unlicensed wireless communication in IoT Edge systems are

characterized by large latency variations due to intermittent channel interference. To achieve user specified

latency in the presence of wireless channel interference, Mez takes advantage of the ability of machine

vision applications to temporarily tolerate lower quality video frames if overall application accuracy is

not too adversely affected. Control knobs that involve lossy image transformation techniques that modify

the frame size, and thereby the video frame transfer latency, are identified. Mez implements a network

latency feedback controller that adapts to channel conditions by dynamically adjusting the video frame

quality using the image transformation control knobs, so as to simultaneously satisfy latency and application

accuracy requirements. Additionally, Mez uses an application domain specific design of the storage layer to

provide low latency operations. Experimental evaluation on an IoT Edge testbed with a pedestrian detection

machine vision application indicates that Mez is able to tolerate latency variations of up to 10x with a

worst-case reduction of 4.2% of the application accuracy F1 score metric. The performance of Mez is also

experimentally evaluated against state-of-the-art low latency NATS messaging system.

INDEX TERMS Distributed systems, edge computing, IoT, machine vision, approximate computing,

messaging systems, adaptive computing.

I. INTRODUCTION

The recent emergence of powerful machine vision algo-

rithms based on Deep Learning has made possible Internet-

of-Things (IoT) applications that utilize machine vision for a

variety of challenging tasks including autonomous driving,

pedestrian safety, public security, and occupational health

and safety. Such applications involve computationally inten-

sive processing of streaming videos from cameras operating

24× 7× 365. Assuming a modest frame rate of 5 fps, and a

500 kB frame size, 216 GB of data is generated per camera

per day (19.5 Mbps per camera). Often, multiple cameras

are needed to provide adequate area coverage for subject

tracking and overcoming occlusions [1], [2]. Additionally, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhui Yuan .

aforementioned applications tend to be latency sensitive -

that is, the processing of video frames needs to be done

within a short time window for the results to be useful. The

duration of the time window depends on the speed of the

event (for example, tracking a high speed vehicle vs. track-

ing a pedestrian), and the response time needed for useful

actions (for example, sounding an alert before vs. after event).

Furthermore, while many of these applications enable

broader smart city initiatives, and social good, significant

privacy concerns exist regarding the potential misuse of the

collected video data [3].

Despite the considerable computing power available in the

Cloud, the use of Cloud computing for IoT machine vision

applications is hindered by the high network latency to access

a remote data center (typically hundreds of milliseconds) [4],

and constraints in the upload bandwidth (typically tens
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of Mbps). Moreover, privacy and legal concerns place limita-

tions on sharing of sensitive data to remote servers controlled

by external entities. IoT machine vision applications are thus

an ideal candidate for the Edge computing paradigm [5]–[9],

where most of the processing of the video streams happen

in the vicinity of the camera. The Cloud may still play a

role in aggregating detected events from multiple IoT Edge

deployments, both for performing batch analytics, and for

archival purposes. The localized processing of video streams

at the Edge potentially allows for low latency operation,

overcomes bandwidth limitations by reducing the size of the

data that needs to be sent to the Cloud, and helps addresses

privacy and legal concerns by eliminating the need to share

raw video frames with Cloud vendors.

FIGURE 1. System architecture for machine vision at the IoT Edge. IoT
nodes equipped with cameras record and transmit video frames to an
Edge server through a WiFi (802.11ac) wireless router. The Edge server
runs machine vision algorithms on the received video frames for object
detection, tracking and event prediction.

Figure 1 shows the system architecture for machine vision

at the IoT Edge. Low power IoT nodes equipped with cam-

eras, stream live videos of the area under observation to an

Edge server equipped with GPUs through a wireless network.

The Edge server aggregates the individual video streams from

multiple cameras, and runs machine vision applications for

object detection, tracking, and event prediction. For an appli-

cation such as pedestrian safety (see Figure 2), the cameras

are mounted on traffic signal posts at street intersections, and

the Edge server is housed in a traffic signal box.

The Edge differs from the Cloud in some significant ways -

unlike high speed wired networks in data centers, wireless

networks at the Edge allow flexible installation of cameras at

a lower cost. Also, cost reasons motivate the use of wireless

technologies such as WiFi (802.11ac) and Bluetooth (BLE)

that operate in the free unlicensed bands. In contrast 4G

and 5G wireless technologies operate in the licensed bands,

and requires paid subscriptions to cellular network vendors.

Additionally, space, cost, and power supply constraints limit

the hardware redundancy available at the Edge. Moreover,

ensuring the physical security of the hardware is potentially

challenging at the Edge due to deployments in unsecured

environments.

In this paper, we investigate the characteristics of an IoT

Edge middleware layer that provides a suitable abstraction

for machine vision application developers to deploy vision

applications that consume video streams from one or more

cameras. Since the applications are latency sensitive, the mid-

dleware layer should provide a means for applications to

specify the latency requirements. Themiddleware thenmakes

the best-effort to guarantee the specified latency. The use of

wireless technologies such as WiFi makes this particularly

challenging, due to the large latency variations in the wireless

channel.

We hypothesize that an adaptive publish-subscribe (pub-

sub) messaging system that takes advantage of the ability

of machine vision applications to temporarily tolerate lower

quality video frames, is a potential approach for designing

middleware that satisfies latency constraints in the pres-

ence of intermittent wireless channel interference. A pub-

sub system decouples publishers (cameras) from subscribers

(machine vision applications). IoT camera nodes publish

video frames to topics identified by a camera ID. Appli-

cations subscribe to one or more topics as needed. A stor-

age layer allows temporal decoupling of publishers and

subscribers, allowing subscriber applications to access past

video frames. In Cloud computing, such pub-sub systems are

widely deployed to handle real-time data feeds, and as mes-

sage brokers between microservices. Open source examples

of such messaging systems include Kafka [10], NATS [11],

and RabbitMQ [12]. Kafka is designed for high throughput,

NATS targets low latency, and RabbitMQ allows for com-

plex routing between publishers and subscribers. However,

the existing messaging systems are built for the Cloud, where

machines communicate over low latency wired networks

(Gigabit Ethernet, Infiniband), and as such do not provide

mechanisms to guarantee latency when operating in wireless

channels with large latency variations.

In this paper, we design and evaluate Mez [13], a novel

adaptive pub-submessaging system for machine vision appli-

cations at the IoT Edge. The key design themes investigated

in Mez are -

• Approximate computing - Mez exploits the trade off

between video frame transfer latency from the IoT cam-

era node to the Edge server, and video frame quality

(approximate computing) inherent in machine vision
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FIGURE 2. Multi-camera machine vision at the IoT Edge for pedestrian safety.

applications. A lower quality video frame has a smaller

size, and hence can be transferred with lower network

latency. If a lower quality frame can provide acceptable

accuracy, then a lower quality frame could be transferred

from the IoT camera node to the Edge server during

conditions of high channel interference. It should be

noted that the application developer has to determine

acceptable latency-accuracy tradeoffs. Mez provides a

means for applications to specify the upper bound on the

latency, and the lower bound on the accuracy require-

ments. The accuracy in turn translates to the quality of

the video frame that Mez has to deliver.

• Adaptive computing -Mez constantlymonitors the oper-

ating conditions of the wireless channel. When channel

interference is high, Mez automatically adapts the qual-

ity of the video frames such that both the frame transfer

latency and accuracy specifications are met.

• Domain specific design - Mez employs an on-demand

video frame transfer from the IoT camera node to the

Edge server to minimize wireless channel interference.

Furthermore, Mez uses an in-memory log based storage

that exploits application domain specific characteristics

such as the lack of need to support delete operations,

to implement a simple low latency storage.

We have implemented Mez on an IoT Edge testbed with

multiple IoT camera nodes, and a single GPU equipped

Edge server. The source code is available from our

GitHub repository.1 Experimental results indicate that for

pedestrian detection application with the OpenPose multi-

person 2D pose detection benchmark [14]–[17], Mez is able

to achieve the target latency in the presence of up to 10x

increase in channel interference with an application accuracy

degradation of at most 4.2%. In contrast, the state-of-the-art

NATS messaging framework suffers from latency degrada-

tion as the number of IoT camera nodes scale.

The rest of this paper is organized as follows - In Section II

we experimentally characterize the latency issues on an IoT

Edge testbed for vision applications. Section III presents the

Mez API and architecture. Section IV describes the detailed

design of Mez including the adaptive latency controller, and

the low latency storage layer. Section V presents the experi-

mental results and evaluation ofMez on the IoT Edge testbed.

In Section VI we discuss the different design decisions made

in Mez, and explore alternative approaches. Section VII pro-

vides a brief review of related work in Edge computing,

approximate computing, and distributed messaging systems.

Section VIII concludes the paper.

II. CHARACTERIZATION OF WI-FI LATENCY AT THE EDGE

In this section, we present the study of the impact on the

latency of video frames transferred over WiFi from IoT

camera nodes to the Edge server (referred to henceforth as

1https://github.com/Ann-Geo/Mez
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FIGURE 3. Sample images from JAAD and DukeMTMC dataset with
simple (S), medium (M) and complex (C) scene dynamics (SD) showing
pedestrians at public spaces such as traffic intersections, parking lots,
and public buildings.

network latency for brevity) due to multiple factors - (1) inter-

ference by peer IoT camera nodes, (2) video scene dynamics,

(3) video frame rate, and (4) video frame quality.

A. IoT EDGE TEST BED

We set up an Edge testbed similar to the IoT Edge machine

vision system shown in Figure 1. Our Edge test bed

consists of five IoT camera nodes equipped with 8-core

ARMv8.2 based embedded Nvidia Jetson AGX Xavier [18]

boards, and an Edge server. A workstation equipped with an

Nvidia Titan VGPU serves as the Edge server. The embedded

boards and the workstation run Linux. The wireless link

consists of a NETGEARNighthawk XR700 access point that

uses 802.11ac (5 GHz) WiFi standard. The Edge server is

connected to the access point through Ethernet, while the

IoT camera nodes connect to the access point through the

802.11ac WiFi link. The IoT camera nodes are placed at 6m

from the access point.

We use two publicly available video datasets - JAAD [19]

and DukeMTMC [20] for latency characterization. The

JAAD dataset consists of videos of pedestrian movement

in public spaces captured under various camera types

and qualities in different weather/lighting conditions. The

DukeMTMC data set consists of 1080p videos recorded at

60 fps from 8 static cameras deployed on the Duke Uni-

versity campus. To perform the Edge latency measurements,

we chose video clips with three different scene dynam-

ics - simple, medium, and complex, from both JAAD and

DukeMTMC datasets.

In order to cluster the video frames in the two data sets as

simple, medium and complex, a k-means clustering approach

was implemented. For DukeMTMC, all frames from two of

the cameras (cameras 5 and 6) were k-means clustered using

the mean and standard deviation of the bounding box areas in

a scene. A frame sequence of 100 frames was then randomly

selected from each cluster for network latencymeasurements.

A similar approach was followed for the JAAD dataset. Fig-

ure 3 shows a representational sample of images from JAAD

and DukeMTMC datasets.

A Golang gRPC [21] based client and multi-threaded

server was deployed at the IoT camera node and the Edge

server respectively to facilitate video frame transfer, and per-

form network latency measurements. The wireless network

latency of video frame transfer is measured by sending times-

tamped images from IoT camera node to the Edge server. The

latency is calculated as time difference tReceived − tSend . The

IoT camera nodes are time synchronized to the Edge server

before starting the network latency measurements using the

PTP network level time synchronization protocol capable of

microsecond accuracy [22].

B. EVALUATING THE IMPACT OF PEER IoT NODES, SCENE

DYNAMICS, AND VIDEO FRAME RATE ON

NETWORK LATENCY

In the measurements described below, we measure the

network latency experienced by IoT camera node 1

(see Figure 1) due to the 4 peer IoT camera nodes. All latency

measurements are at the 95th percentile with video frames

transmitted at 5 fps.

Figure 4 shows the per frame network latency measured

at the test Edge node as the number of IoT camera nodes

transmitting video frames (with simple, medium and complex

scene dynamics) is increased from 1 to 5. Table 1 summarizes

the latency measurements. ONELat is the per frame network

latency to the Edge server when only the test node is active.

FIVELat is the per frame network latencywhen the node under

test and the 4 peer Edge nodes transmit video frames to the

Edge server. We note that for video frames with complex

scene dynamics, the ratio FIVELat/ONELat is 5.6x for the

JAAD dataset, and 8.4x for the DukeMTMC dataset.

We also investigate the impact of peer node interference

at higher video frame rates and with increasing distance of

IoT camera nodes from the Edge server. Table 2 compares

the network latencies between 5 and 15 fps for complex scene

dynamics video frames from the DukeMTMC dataset at both

6m and 12m. We note that the FIVELat at 15 fps is 1.02x

higher for DukeMTMC compared to 5 fps, and at 12m is

1.06x higher compared to 6m.

The measurement results indicate that in an IoT machine

vision application with multiple cameras transmitting video

frames to the Edge server, a significant rise in network latency

is observed at each IoT node as the number of peer nodes

scale. Additionally, factors affecting latency include scene

dynamics; frame rate, and distance of IoT camera nodes from

the Edge server are less significant. In a real-world deploy-

ment, additional external interference effects from unrelated

transmitters in the neighborhood of the deployment worsen

the latency. Moreover, the network latency is dynamic due
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TABLE 1. Summary of the impact of video frame size on network latency for JAAD and DukeMTMC workloads with simple (S), medium (M) and
complex (C) scene dynamics (SD) video frames. All latency measurements are at the 95th percentile with video frames transmitted at 5 fps. ONELat is the
per frame network latency to the Edge server when only the test node is active. FIVELat is the per frame network latency when the node under test and
the 4 peer Edge nodes transmit video frames to the Edge server.

FIGURE 4. Characterization of the impact of peer interference on the
video frame transfer latency for frames with different scene dynamics
from (a) JAAD and (b) DukeMTMC datasets. For complex scene dynamics
a 5.6x and 8.4x increase in latency is observed for the JAAD and
DukeMTMC dataset respectively.

to scene changes (simple to complex), and the intermittent

nature of external interference.

C. EVALUATING THE IMPACT OF VIDEO FRAME

QUALITY ON NETWORK LATENCY

We investigate the impact on network latency when video

frames with degraded quality are transferred from the IoT

camera node to the Edge server. The degradation is caused

due to discarding of information from the the video frame,

resulting in a lower video frame size that can be potentially

transmitted at reduced network latency. However, the lower

frame size could adversely impact the accuracy of the

TABLE 2. Summary of network latency vs. frame rates (5 and 15 fps) and
distance from Edge server (6m and 12m) for DukeMTMC complex scene
dynamic video frames.

machine vision application as well. The impact on the accu-

racy is application specific and will be evaluated in the con-

text of a specific application in Section II-D.

1) VIDEO FRAME QUALITY TUNING KNOBS

We use the open source computer vision library OpenCV [23]

to explore different lossy image transformation techniques

that can be applied to video frames to modify the frame size.

We choose 5 such transformation techniques (which we call

tuning knobs [24]). These are described below:

1) Knob1 - Resolution: Video frame size can be reduced

by decreasing its resolution while keeping the aspect

ratio constant. The cv2.resize() function from OpenCV

downscales an image to the specified resolution.

We choose the resolutions 1312 × 736, 960 × 528,

640 × 352, and 480 × 256 as possible knob settings.

Modifying resolution can reduce the video frame size

by as much as 84%.

2) Knob2 - Colorspace modifications:Video frames can

be converted from one colorspace to another (using

cv2.cvtColor() function from OpenCV) resulting in

total size reduction. There are more than 150 color-

space conversion methods available in OpenCV.

We choose BGR↔Gray, BGR↔HSV, BGR↔LAB

and BGR↔LUV colorspace modifications as possible

knob settings. Our choice of color space modifications

can reduce the video frame size by as much as 62%.

3) Knob3 - Blurring: Video frames can be blurred

by passing them through various low pass filters.

The cv2.blur() method from OpenCV blurs an image

using normalized box filter. We choose filter kernel

sizes of (5,5), (8,8), (10,10) and (15,15) as possible
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knob settings. Blurring the video frames can reduce the

video frame size by as much as 46%.

4) Knob4 - Artifact removal: For cameras mounted

at fixed positions, the background of recorded video

stream is largely static over consecutive frames in

the video. Thus video frame size can be reduced by

removing the static background with stationary arti-

facts in it. First setting of this knob uses motion

detection to detect and preserve moving objects in

video frames, as well as to perform background sub-

traction to remove all the stationary objects from the

video frames. In the second setting of this knob,

we detect moving objects in the video frames and

retain only their contours. Knob4 uses a combination of

the OpenCV functions cv2.absdiff(), cv2.threshold(),

cv2.dilate(), cv2.findContours() to perform the above

video frame modifications. Removing artifact informa-

tion can reduce the video frame size by asmuch as 98%.

5) Knob5 - Frame differencing: We applied frame dif-

ferencing (using cv2.absdiff() function from OpenCV)

on pixel values between pairs of consecutive video

frames to selectively drop frames. We hypothesize that

dropping video frames with similar content (within a

threshold) will not adversely affect the machine vision

task. We choose 5 knob values ranging from 0 to 0.72,

where 0 represents pixel wise identical frames, and

1 represents completely dissimilar frames. For a stream

of 100 simple dynamics images from the JAAD data

set, this knob reduces the median image size by

up to 40%.

FIGURE 5. Network latency vs. video frame size. Video frame sizes are
obtained by the application of different combinations of the 5 tuning
knobs that modify the image quality.

The application of combinations of the 5 tuning knobs

identified above result in different sizes of video frames,

all lower than the original. Figure 5 shows the resulting

impact on the network latency (95th percentile) from the IoT

camera node to the Edge server. The measurements were

done by applying multiple tuning knob combinations (935 in

all) to video frames drawn from the JAAD and DukeMTMC

dataset. From Figure 5 we note that the Wi-Fi transmis-

sion latency shows an approximately linear variation with

video frame size. A 4x reduction in video frame size could

potentially yield a 4x reduction in wireless network latency.

We also note that multiple knob combinations map to the

same video frame size (and hence network latency). However,

these knob combinations could result in different application

accuracy - which we characterize in the next section.

D. EVALUATING IMPACT OF VIDEO FRAME QUALITY ON

THE ACCURACY OF PEDESTRIAN DETECTION MACHINE

VISION APPLICATION

While we note the ability of image tuning knobs to reduce

network latency by reducing the size of the video frames,

the question remains as to the impact of the lower sized

video frames on the accuracy of the machine vision task.

In general, the impact is dependent on the particular machine

vision application. We evaluate the impact on pedestrian

detection application accuracy using OpenPose with video

frames drawn from the JAAD and DukeMTMC datasets. The

OpenPose project from CMU [14]–[17] is an open source

real-timemulti person system to detect human body, hand and

facial keypoints ((x,y) coordinates of different body parts) on

individual images. We input the original and modified video

frames from JAAD and DukeMTMC dataset with simple,

medium and complex scene dynamics to OpenPose to gen-

erate the pose detected video frames and keypoint locations.

From these keypoints, bounding boxes are created for each

detection with the top-left and bottom-right most coordinates.

A set of resulting bounding boxes is presented as the final

output. In order to evaluate these detections, each ground

truth bounding box for that frame (available for the two

datasets) is matched exclusively to the outputted bounding

box based on highest Intersection over Union (IoU) overlap.

Positive matches with an IoU greater than a threshold are

considered True Positives; result bounding boxes without

ground truthmatches are considered False Positives; and each

unmatched ground truth box is considered a False Negative.

These records are utilized for the F1 score calculation.

For pedestrian detection, we utilize the F1-score metric

with an Intersection-over-Union (IoU) threshold of 0.5 as

the application accuracy metric. Equation 1 defines the cal-

culation for F1. Precision is TP
(TP+FP)

and Recall is TP
(TP+FN )

,

where TP,FP, andFN are the number of True Positives, False

Positives, and False Negatives respectively.

F1 = 2×
Precision× Recall

Precision+ Recall
(1)

We evaluate the impact of the tuning knobs on the video

frame size and pedestrian detection accuracy (F1) for JAAD

and DukeMTMC datasets. To do this, we first calculate

the F1 score for modified video frames (for all knob com-

binations) and normalize it with the baseline F1 score of

unmodified video frames. Figure 6 shows the plot of the

normalized F1 expressed as a percentage vs. video frame size

for JAAD and DukeMTMC datasets. The video frame size

buckets in Figure 6 corresponds to different combinations
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FIGURE 6. Normalized F1 expressed as a percentage for OpenPose pedestrian detection application from (a) JAAD and (b) DukeMTMC
datasets. Note that each video frame bucket corresponds to different combinations of the knob settings with different resulting accuracy.

FIGURE 7. A summary of the API provided by Mez.

of the knob settings with different resulting accuracy. Note

that higher F1 indicates higher accuracy. We have excluded

knob combinations with resulting accuracy of less than 90%.

This reduces the total knob combinations to 159 for JAAD

and 140 for DukeMTMC. Further, due to the computationally

intensive nature of knob 4, we exclude knob 4 to maintain

the image modification overheads to under 10 ms, bringing

the total knob combinations to 70 for JAAD and 92 for

DukeMTMC.

From the measurements in Sections II-C and Sections II-D

we note the possibility of compensating for the increased net-

work latency in the presence of channel interference through

reducing the video frame quality just sufficiently, such that

application accuracy demands are met (where feasible). This

is an example of the paradigm of approximate comput-

ing - where despite computational approximations (video

frame quality in our case) acceptable performance (appli-

cation accuracy) can be obtained while gaining on another

performance metric (network latency). Note that the limits

of the trade-off need to be determined and characterized

by the application developer for a particular application of

interest. We utilize the above observed trade-off between

network latency and application accuracy in designing

a network latency controller. Under dynamically varying net-

work latency conditions, Mez uses this latency controller

to automatically adjust video frame quality such that the

application specified network latency, and accuracy bounds

are met.

III. MEZ API AND ARCHITECTURE

In this section we present the Mez API that publishers and

subscribers use to interact with Mez. We then provide an

overview of the data model supported by Mez, and describe

the architecture of Mez.

A. MEZ API

Mez has a simple API interface consisting of 5 API calls.

As shown in Figure 7 - the APIs are Connect, Publish,

GetCameraInfo, Subscribe, and Unsubscribe.

Connect API is used by publishers (IoT camera nodes)

and subscribers (machine vision applications) to connect to

Mez. Publishers and subscribers are assigned a unique ID

by Mez. Publish API allows publishers to push a stream

of time stamped video frames to Mez. The GetCameraInfo

API is used by subscribers to discover publishers. Subscribe

API is used by subscribers to receive streaming video frames

VOLUME 9, 2021 21463



A. George et al.: Mez: An Adaptive Messaging System for Latency-Sensitive Multi-Camera Machine Vision at the IoT Edge

FIGURE 8. Detailed architecture of Mez. Two separate message brokers are designed for the Edge server, and the IoT
camera node, which also houses the latency controller. Both message brokers employ an in-memory storage layer, with
on-disk persistence for fault tolerance.

generated by a specific publisher. Additionally, the sub-

scribers can specify begin and end times for the subscription,

along with the desired latency and accuracy bounds for the

video stream. Note that the end time could be in the future,

in which case Mez delivers video frames as they become

available. The Unsubscribe API is used by subscribers to

terminate an ongoing subscription.

B. DATA MODEL

Mez’s data model is a simple key-value pair. The keys are

the timestamps of a video frame, and the values are indi-

vidual video frames. Video frames are stored in Mez in the

same chronological order in which they are received from

the publisher. Mez supports at-most-once delivery of video

frames to the subscriber to limit the bandwidth consumption

on the wireless channel. Any resend requests need to be

done by the subscriber at the application level, since only the

application can determine if a resend is needed considering

task deadlines, and redundancy in the video frames.

C. MEZ SYSTEM ARCHITECTURE

The Mez system model consists of multiple IoT camera

nodes, and an Edge server connected by a wireless network.

The machine vision applications run on the Edge server,

which has considerably more processing power than the IoT

camera node.

As shown in Figure 8, Mez consists of 3 components -

a message broker, an in-memory log, and a network latency

controller. The message broker implements the Mez API,

the in-memory log is used to store video frames, and the net-

work latency controller monitors wireless channel conditions,

automatically adjusting the video frame quality to meet the

application specified latency, and accuracy requirements.

A key architectural feature of Mez is the replication of

the in-memory logs between the IoT camera nodes and

the Edge server. The timestamped video frames generated

by the publisher are initially stored in the in-memory log

associated with the camera node. Maintaining the log at

the IoT camera node allows buffering of video frames dur-

ing conditions of intermittent connectivity with the Edge

server. Upon a subscription request to the video stream by

the application, video frames are transferred from the IoT

camera node log to the Edge server log. The network latency

controller resides on the IoT camera nodes, and modifies

the video frames transmitted to the Edge server to satisfy

the latency-accuracy requirements of the subscriber. The on-

demand transfer of video frames reduces channel interference

by limiting unneeded transmission in the wireless channel.
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FIGURE 9. Block diagram of the network latency controller. The control is implemented in two steps - a Proportional-Integral
control between the observed and the specified latency is used to determine the largest video frame size that can potentially satisfy
latency requirements. The frame size is then used in a look-up table to determine the associated application accuracy. A secondary
look-up table uses the application accuracy obtained from the first lookup to determine the corresponding tuning knob settings.

Additionally, the reduced transmission also serves as a power

saving opportunity at the IoT camera node. The in-memory

logs are persisted on durable storage (SSD/disk) on both the

IoT camera nodes, and the Edge server. However, to min-

imize storage latency, all requests are served from the

in-memory log. The persistent storage is only used to recon-

struct the in-memory log during reboot after node failure

(see Section IV-D).

IV. MEZ DESIGN

In this section, we present the detailed design of the different

components of Mez - brokers, in-memory log, and the net-

work latency controller.

A. BROKERS

The brokers implement the Mez API, and interface with

the log storage. Independent brokers are present on the

Edge server and the IoT camera node. The broker on the

Edge server (EdgeBroker) implements all the APIs shown

in Figure 7 except Publish. Additionally, it implements two

internal APIs, Register, and Unregister for IoT camera nodes

to register/unregister with the Edge Server. The broker on

the IoT camera node (CamBroker) implements all the APIs

shown in Figure 7 except GetCameraInfo. The CamBroker

also interfaces with the network latency controller on the IoT

camera node. All APIs are implemented using gRPC [21]

with TLS for authentication and encryption of data in transit.

B. NETWORK LATENCY CONTROLLER

Figure 9 shows the block diagram of the latency controller.

The CamBroker sends the latency and accuracy demands

(target network latency and target accuracy) from the con-

sumer application to the latency controller through an internal

SetTarget API call.

Algorithm 1 Latency Control Algorithm

Result: Image quality knob setting

latencyTarget;

accuracyTarget;

errorThreshold;

nominalImageSize← RegressionModel(latencyTarget);

latencyError← latencySampled - latencyTarget;

while latencyError > errorThreshold do
imageSize = nominalImageSize + K1*latencyError

+ K2*latencyErrorIntegral;

accuracy← BinarySearchTree.search(imageSize);

knobSetting← HashTable.lookup(accuracy);

if accuracy > AccuracyTarget then

return knobSetting;

else

return(No feasible solution);

end if

latencyError← latencySampled - latencyTarget;

end while

The video frames published at the CamBroker are sent

to the latency controller through a Control API call. Note

that the latency controllers on each IoT camera node operate

independently of one another. The lack of centralized control

allows the scaling of the IoT camera nodes.

The control algorithm is outlined in the pseudo code shown

in Algorithm 1. The network latency for different video frame

sizes (see Section II-C) are assumed to be available from

prior characterization of the video frames in the targeted

deployment environment. The application accuracy for differ-

ent tuning knob settings is also assumed available for the tar-

geted application through prior characterization. The almost
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linear dependence of latency on image size observed in

Section II-C1 facilitates the use of linear regression model of

latency on video frame size.

The control is implemented in two steps - In Step 1,

the error (error and integral of error for Proportional-Integral

control) between the observed and the specified latency is

used to determine the largest video frame size that can poten-

tially satisfy latency requirements. K1 (proportional) and

K2 (integral) in Algorithm 1 are the PI controller tuning

parameters. In Step 2, the frame size is then used as a key

in a look-up table to determine the associated application

accuracy. A secondary look-up table uses the application

accuracy obtained from the first lookup as key to determine

the corresponding tuning knob settings. The lookup tables are

implemented with Binary Search Trees and Hash tables to

facilitate efficient queries. The video frames transmitted from

the IoT camera node to the Edge server are modified based on

the knob combinations using OpenCV libraries. The network

latency is measured again at the next sampling interval, and

if the error exceeds a preset threshold, Steps 1 and 2 are

repeated.

If the application requested latency and accuracy are infea-

sible, the application is notified. At this point, the application

has to decide whether to continue operation with relaxed

latency/accuracy requirements, or notify the system operator

of failure.

FIGURE 10. Mez in-memory log. The storage is an in-memory log, which
is an append-only, circular buffer. The log consists of <timestamp, video
frame> key-value pairs stored in increasing order of timestamps.
Concurrent read/write performance is improved through fine grained
locking by segmenting the log.

C. IN-MEMORY LOG

The design of Mez storage is targeted to provide low latency

read-write operations. We take advantage of the particular

features of machine vision at the IoT edge, both to ensure

high performance, and simplify the design of the storage.

As shown in Figure 10, the storage is an in-memory log,

which is an append-only, circular buffer. The log consists of

<timestamp, video frame> key-value pairs stored in increas-

ing order of timestamps. The log at the IoT camera node

stores video frames either generated from a single cam-

era, or those modified by the latency controller to satisfy

latency requirements. This log is in turn replicated on demand

at the Edge server. For N IoT camera nodes, the Edge server

thus holdsN replicated logs. Subscribermachine vision appli-

cations are served from the log at the Edge server. A machine

vision application subscribes to one or more such logs. Also,

one or more machine vision applications could subscribe to a

particular log. The logs are hence designed to support a single

writer, but multiple readers.

To ensure low latency, the logs only utilize the DRAM for

storage. Unlike general purpose storage, there is no require-

ment to delete arbitrary video frames from the log. Instead,

video frames with increasing time stamps are appended to the

log, which wraps back when the capacity is exceeded, over-

writing existing entries with older timestamps. An attempt

to append a video frame with a timestamp earlier than the

last entry in the log is rejected. The lack of a need to support

update and delete operations, and the sorted (by timestamps)

video frames in the log, simplify the design of the log and

prevent memory fragmentation. Point queries are done effi-

ciently with binary search. Range queries are also readily

supported by querying the starting and ending timestamp,

returning the video frames corresponding to an interval that

includes the requested time range.

A 1 GB of in-memory log at the IoT camera node holds

approximately 7 minutes worth of video frames (assuming

500 kB per frame, and 5 fps). The real-time machine vision

applications are assumed to consume the data within this time

frame. The log is persisted on the disk (in the background)

only for recovery from failure (described in Section IV-D).

Due to the possible physical insecurity of the hardware,

the video frames stored on disk are encrypted at rest. The

encryption/decryption, and disk accesses are relatively long

latency operations, motivating the avoidance of disk access

in the read/write critical path. For the short time duration the

video frames are held in the DRAM, the data is assumed to

be safe from illegal access due to the volatile nature of the

memory.

Although the log is replicated from the IoT camera node

to the Edge server, no attempt is made at the storage layer

to ensure consistency of the video frames between the IoT

node and the Edge server. Instead, we rely on the lower

layers of the network (TCP) for accurate replication. Also,

in practice we observe that the ability of machine vision

applications to tolerate errors in the video frame data, allows

the use of simpler transport protocols (UDP) that does not

support re-transmissions. Concurrent read/write performance

is improved through fine grained locking by segmenting the

log. Each segment is protected with read-write locks. Note

that reads can occur from many segments concurrently, while

only one segment is active for write.
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D. FAULT TOLERANCE

Mez is designed to recover from the following failures:

• Crashes of brokers - EdgeBroker and CamBroker

• Crash of the network latency controller at the IoT camera

node

• Corruption of log segments on disk

Fault detection: Mez uses RPC timeouts to detect fail-

ures. The EdgeBroker detects failed CamBrokers through

time outs on the Subscribe API call. The publisher detects

failed CamBrokers through timeouts on the Publish API call.

Subscriber applications detects a failed EdgeBroker through

time outs on the Subscribe API call. The Cambroker detects a

failed latency controller through time outs on the the internal

SetTarget API call. The time out duration for the Subscribe

RPC depends on the video frame rate (fps), baseline wireless

network latency, and if TCP is used - the re-transmit timeout.

The Publish timeout is typically small since the camera and

the CamBrokers are connected through a high speed interface

such as USB. The Control timeout is determined by the time

taken by the controller to modify the video frame. We thus

avoid use of explicit heartbeats, and instead take advantage of

the continuous streaming of video frames from the cameras

to detect component failures. For systems where the camera

transmissions may be intermittent, explicit heartbeats will

need to be added to monitor the health of individual com-

ponents.

Fault recovery: When the subscriber application detects

that the EdgeBroker has failed, it tries to reconnect with the

EdgeBroker a finite (configurable) number of times or until it

gets a response. As a part of the recovery process, the Edge-

Broker reconstructs the logs persisted on the disk. A CRC

is calculated and stored along with the on-disk log segments

to detect partially written segments, which are discarded

during the recovery process. The EdgeBroker then starts to

accept connections from retrying subscriber applications. The

CamBrokers follow a similar recovery process. Note thatMez

has no inherent mechanism to restart failed brokers. Instead,

Mez relies on an external service such as Kubernetes [25] to

restart failed brokers (see Section VI).

V. EVALUATION

We first evaluate the proposed network latency controller in

isolation, followed by the evaluation of Mez integrating the

controller. The IoT Edge test bed used in the evaluation is

described in Section II-A. It consists of one Edge server, and

five IoT camera nodes connected to the Edge server through

Wi-Fi (802.11ac). All latencies are measured between one

of the IoT camera nodes, and the Edge server. The work-

load used is the pedestrian detection application with Open-

Pose described in Section II-D using video frames from the

JAAD and DukeMTMC datasets described in Section II-A.

All latencies are measured at the 95th percentile with video

frames streamed from the IoT camera node to the Edge

server at 5 fps. The latency is calculated as time difference

tReceived − tSend . The Edge nodes and the Edge server are

synchronized using PTP synchronization protocol [22] before

the start of the measurements.

A. LATENCY CONTROLLER EVALUATION

To evaluate the latency controller, the desired latency thresh-

old is set under 100ms, and the desired application accuracy

(normalized F1 score) is set above 95%. Figure 11a shows the

step response of the controller for complex scene dynamics

video frames from the JAAD dataset.With no latency control,

the median latency is 260 ms due to interference from the

4 peer Edge nodes. With the controller enabled, the median

latency is less than the latency threshold of 100ms. The

controller is able to achieve an application accuracy of above

96%. Figure 11b shows the controller step response for the

DukeMTMC dataset with complex scene dynamics. With no

latency control, the median latency is 650 ms for complex

scene dynamics due to interference from the 4 peer Edge

nodes. With the controller enabled, the median latency is less

than the latency threshold of 100ms. In all cases, the con-

troller is able to achieve an application accuracy of above

95% with a settling time of less than one second. Table 3

summarizes the latency reduction and the resulting F1 score

for JAAD and DukeMTMC datasets for all scene dynamics

achieved using the proposed controller.

TABLE 3. Summary of median video frame size after modification by the
latency controller, (Sizemed ), Normalized F1 Score expressed as a
percentage, 95th percentile latency reduction with controller (Latred ) for
JAAD and DukeMTMC dataset for simple (S), medium (M) and complex (C)
scene dynamics (SD).

Figure 12 gives a qualitative illustration of the effect of

the accuracy loss with video frames from JAAD (Figure 12a)

and DukeMTMC (Figure 12b) datasets with complex scene

dynamics. Pedestrian detections for the unmodified video

frames (green), and after video frame modification (blue)

by the network latency controller are shown (accuracy loss

of 3.3% for JAAD and 4.2% for DukeMTMC). For the JAAD

video frame, a detection error occurs at the area indicated by

the red arrow. A group of two individuals are detected cor-

rectly in the unmodified video frame, but detected as a single

box in the modified video frame. For the DukeMTMC frame,

the detection boxes in the modified video frame are thinner

than those in the unmodified video frame. We note that for

both datasets, apart from the aforementioned detection errors,

the other detections in the modified frame are same as the

unmodified frame.
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FIGURE 11. Latency controller step response for JAAD (a) and DukeMTMC (b) complex scene dynamics video frames. The measurement is taken
with one test IoT node, and 4 peer IoT nodes.

FIGURE 12. The impact of accuracy reduction on video frame modification by the latency controller for JAAD (a) and DukeMTMC (b). Green and blue
bounding boxes indicate pedestrian detections on unmodified and modified video frames respectively. The video frames experience an accuracy
loss of ∼3% for JAAD and ∼4% for DukeMTMC respectively. The red arrows show the resulting detection errors.

B. MEZ EVALUATION

We evaluate the pub-sub latency performance of Mez both

with scaling of peer IoT camera nodes, and with scaling the

number of subscriber applications. We compare Mez with the

state-of-the-art low-latency NATS [11] pub-sub messaging

system. The pub-sub latency is the end-to-end time taken for

a video frame to be published by the camera and subscribed

by the application. The pub-sub latency includes the Publish

and Subscribe API completion times, network latency, video

frame modification times by controller (for Mez), and all

processing delays inside the messaging system. Note that the

pub-sub latency does not include the compute time for the

pedestrian detection application.

Figure 13a shows the per frame pub-sub latency for Mez

and NATS for the JAAD dataset as the number of IoT

camera nodes is scaled from 1 to 5. The latency and the

normalized F1 accuracy thresholds are set at 100 ms, and

96% respectively. This setup emulates a scenario where a

single subscriber (for example, a machine vision application

for object re-identification across multiple camera views)

requests video frames from multiple IoT camera nodes.

As seen from Figure 13a, when the number of IoT nodes

are increased, Mez is able to maintain the pub-sub latency

under 100ms. However, the pub-sub latency of NATS shows a

super-linear increase with IoT node scaling, since NATS does

not perform any type of network latency control. Figure 13b

shows the accuracy (normalized F1%) achieved by Mez and

NATS as the IoT camera nodes scale. Since NATS always

sends unmodified images, it maintains the maximum accu-

racy for all cases. Mez shows a worst case accuracy reduction

of 3.3%.

Similar evaluation is performed on the DukeMTMC

dataset with the latency threshold set at 100ms for video

frames with simple, medium and complex scene dynamics.

Since the median video frame size for DukeMTMC is greater

than 1 MB, we could not evaluate NATS due to its 1 MB

message size limit. When the number of IoT nodes is scaled

from 1 to 5,Mez is able to maintain the pub-sub latency under

100ms (Figure 14a) while maintaining the accuracy reduction

less than 4.2% (Figure 14b).

Figure 15 shows the pub-sub latency for Mez and NATS as

the number of subscribers are scaled. Poor subscriber scaling
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FIGURE 13. Pub-sub latency (95th percentile), and pedestrian detection accuracy with IoT node scaling for Mez and NATS for JAAD dataset with
simple, medium and complex scene dynamics video frames. In (a) Y axis shows the per frame Publish-Subscribe latency. In (b) Y axis shows the
accuracy in terms of the normalized F1 score percentage. X axis of both figures indicates the number of IoT camera nodes. Unlike NATS, Mez is able
to achieve the latency threshold of 100ms as the number of IoT camera nodes scale. The resulting loss of accuracy is less than 3.3%.

FIGURE 14. Pub-sub latency (95th percentile), and pedestrian detection accuracy with IoT node scaling for Mez for DukeMTMC dataset with simple,
medium and complex scene dynamics video frames. In (a) Y axis shows the per frame Publish-Subscribe latency. In (b) Y axis shows the accuracy in
terms of the normalized F1 score percentage. X axis of both figures indicates the number of IoT camera nodes. Mez is able to achieve the latency
threshold of 100ms as the number of IoT camera nodes scale. The resulting loss of accuracy is less than 4.2%. Since NATS has a 1MB message size
limit, DukeMTMC frames cannot be sent/received using NATS.

would indicate concurrency limitations. This set up emu-

lates the operational scenario at the IoT-Edge where multiple

vision applications (subscribers) request video frames from a

single camera. In this case, since only a single IoT camera

node (to which the producer is publishing video frames)

is operational, there is no channel interference due to peer

IoT camera nodes. Both Mez and NATS scale well as the

number of subscribers are increased from 1 to 8 with minimal

degradation in latency. However, Mez has a higher latency

than NATS due to controller overheads.

Figure 16 shows the breakdown for different components

of the pub-sub latency for Mez and NATS with all 5 IoT cam-

era nodes transferring video frames to the Edge server. The

measurements are taken for complex scene dynamics video

frames from the JAAD dataset. For NATS, the network

latency dominates the overall latency at 96.2%. For Mez,

the network latency is the dominant component at 65.7%,

with the controller overhead being the next highest at 20.5%.

About half the controller processing time is due to the video

frame modification, with the video frame copying between

the logs at IoT camera nodes accounting for the remaining

time. We are currently investigating the use of GPUs avail-

able on the Nvidia Xavier boards to lower the video frame

processing time. Integrating the controller as a part of the

CamBroker instead of the current approach of the controller

as a separate microservice, could result in lowering the video

frame copying overheads.

VI. DISCUSSION AND FUTURE WORK

In this section we review the different choices made in the

design of Mez, and discuss future research directions.

GPU computing at IoT nodes: In our work we have

only used the 8 core ARM CPU available on the Nvidia

Xavier board. By using the GPU available on the Nvidia

Xavier board, additional computationally intensive video

frame modifications including performing object detection at

the IoT camera node could be employed.

Video frame compression: The video frames that are

transferred from the IoT camera node to the Edge server

could be compressed (for example, using H.264) to reduce
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FIGURE 15. Subscriber scaling for Mez and NATS for (a) JAAD and (b) DukeMTMC datasets with simple, medium
and complex scene dynamics. Y axis shows the per frame Publish-Subscribe latency and X axis shows the number
of subscribers.

the data size. However, Canel et al. [26] suggest that a low

quality H.264-encoded 1080p (1920 × 1080 pixels) stream

is insufficient to perform accurate analysis for vision ana-

lytic applications such as traffic monitoring and pedestrian

tracking.

Availability: Regarding service availability, the current

version of Mez does not support replicated physical nodes

(neither IoT camera nodes, nor Edge sever). For hardware

failures, such as if an IoT node fails, the video frames from

the associated camera becomes unavailable. However, if the

Edge server fails, then entire system becomes unavailable.

The ability to support replicated Edge server components

(logs and the EdgeBroker) is part of future work. However,

we note that computational resources are constrained at the

Edge due to power, space, and cost considerations. Thus,

physical replication of resources may not be practical on the

Edge. An alternative worth investigating is the use of Cloud

for fail over of the Edge server so that the system is still

operational, albeit at a reduced performance.

For software failures, Mez could rely on container

orchestrators such as Kubernetes [25] for resurrecting

failed services. In this case, Mez needs to be container-

ized (for example, using Docker containers [27]), with

Kubernetes orchestrating the containers. The microservice

architecture of Mez allows ready containerization of the

brokers, and the latency controller. A Continuous Inte-

gration/Continuous Delivery framework (for example, with

Jenkins [28]) could also be used to ease the deployment

and updating of Mez without loss of service. Note that

Kubernetes itself will need hardware redundancy to guar-

antee its availability. With limited hardware, an interest-

ing possibility is to use the Cloud to ensure availability of

Kubernetes.

Security: Mez takes advantage of the security features of

gRPC to implement TLS based certificate authentication for

clients and servers, as well as TLS based encryption of video

frames in transit. Additionally, all sensitive video frames

at rest that are persisted on disk are encrypted. We leave

the implementation of additional security measures such as

Role Based Access Control (RBAC) for application access to

video frame data, and the verification of the authenticity of

container images to future work.

21470 VOLUME 9, 2021



A. George et al.: Mez: An Adaptive Messaging System for Latency-Sensitive Multi-Camera Machine Vision at the IoT Edge

FIGURE 16. End-to-end latency breakdown for (a) Mez and (b) NATS in
presence of 4 peer nodes. The measurements are taken for complex
scene dynamics video frames from the JAAD dataset with median image
size of 970KB, streamed at 5fps rate. For NATS, the network latency
dominates the overall latency at 96.2%. For Mez, the network latency is
the dominant component at 65.7%, with the controller overhead being
the next highest at 20.5% .

FIGURE 17. Compute latency for pedestrian detection with OpenPose
(on Nvidia Titan V GPU) vs. video frame size.

Compute latency: In Figure 17 we investigate the depen-

dence of the compute latency on the video frame size.We note

that, the compute latency is only dependent on the resolu-

tion of the images. Since one of the tuning knobs is image

resolution, with reduced resolution and with reduced image

size, OpenPose could achieve reduction in compute latency

as well.

Figure 17 shows that the pedestrian detection compute

latency increases with increase in resolution and image size.

The measurements are done on an Nvidia Titan V GPU.

In this paper we have only focused on the network latency.

However, due to the compute intensive nature of these appli-

cations, there exists a possibility of jointly optimizing com-

pute and network latency, so as to obtain the overall desired

latency. We leave the exploration of this topic to future work.

VII. RELATED WORK

In this Section, we describe previously reported work on

Edge computing, application of approximate computing, and

distributed messaging systems.

A. EDGE COMPUTING

The concept and motivation behind Edge computing

are described in a number of recent publications [5]–[9],

[29]–[32]. Regarding machine vision at the Edge, in the

Gabriel project [33], Ha et. al. describe a wearable cognitive

assistance system where the images captured by a mobile

device are processed by the Edge node to analyze what the

user is seeing, and provide the user with cues as to what is in

the scene (for example, recognizing a person). In the VisFlow

project, Lu et al. [34] describe a system that can analyze

feeds from multiple cameras for license plate recognition

and real-time traffic flow mapping. In [35], Neff et. al.

proposes REVAMP2T, an IoT system that tracks pedestrians

across multiple cameras by running custom-designed deep

learning based vision engines at the low power Edge nodes

close to the cameras. However, none of these works address

guaranteeing of latency requirements at the Edge for machine

vision applications.

In the Hetero-Edge project, Zhang et al. [36] describe

a system that can efficiently orchestrate real-time vision

applications on heterogeneous Edge servers. The new

resource orchestration platform developed, uses a set of

task scheduling schemes to make the Hetero-Edge system

latency-aware, but does not consider communication latency.

In [37], Pakha et. al. introduce the idea of control knobs such

as frame selection and area cropping to parametrize a custom

video protocol that streams videos from cameras to Cloud

servers to perform neural-network-based video analytics.

Ther work highlights opportunities to improve the tradeoffs

between bandwidth usage and inference accuracy, but does

not address Edge specific latency requirements demanded by

many IoT vision applications.

B. APPROXIMATE COMPUTING

In [38], Mittal provides a survey of approximate computing

techniques. Strategies for approximation at the code level

such as loop perforation, and at the architecture level such

as reduced precision operations are discussed. Regarding

applications of approximate computing to Deep Learning,

Chen et al. [39] use approximate computing to acceler-

ate network training, while Ibrahim et al. [40] explore the

use of approximate computing to realize Deep Learning
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networks on resource constrained embedded platforms.

Unlike our work, in these works approximate computing is

targeted towards reducing the computational load.

In [41], Betzel et. al. introduce the concept of approxi-

mate communication to reduce the communication between

processing elements in a high performance computing sys-

tem. They evaluate compression, reduced synchronization,

and value prediction as potential approximate communication

techniques. In contrast to Betzel et. al. we target latency varia-

tions due to interference in wireless communication channels,

and investigate the impact on application accuracy.

C. DISTRIBUTED MESSAGING FRAMEWORKS

RabbitMQ [12] is an open source messaging system that

supports the Advanced Message Queuing Protocol (AMQP),

Streaming Text Oriented Messaging Protocol (STOMP),

Message Queuing Telemetry Transport (MQTT), and other

protocols. It supports multiple messaging styles including

pub-sub, request-reply, and point-to-point communication

models. RabbitMQ’s design assumes a smart broker, dumb

consumermodel, with the broker consistently deliveringmes-

sages. Mez, in contrast, supports a dumb broker, smart con-

sumer model, and is designed specifically for machine vision

applications at the Edge.

Kafka proposed byKreps et al. in [10] is used for collecting

and delivering high volumes of data with high throughput.

It combines the benefits of traditional log aggregators and

messaging systems. Kafka is a pub-sub system in which

multiple producers and consumers can publish and retrieve

messages at the same time, and store streams of data in dis-

tributed, fault tolerant clusters usingmultiple brokers and par-

titions. Similar to Mez, Kafka supports a dumb broker, smart

consumer model. However, Kafka is focused on delivering

high throughput, and not necessarily on latency of individual

messages.

NATS [11] messaging system is a recent project that is

focused on providing low latency to cloud native applications.

Similar toMez, NATS supports a pub-sub system, and a dumb

broker, smart consumer model. However, unlike Mez, NATS

is a general purpose messaging system, and does not provide

latency guarantees.

VIII. CONCLUSION

In this paper we present an adaptive publisher-subscriber

messaging system (Mez), which allows machine vision appli-

cations at the IoT Edge to specify network latency upper

bound for the video frames transferred from the IoT camera

nodes to the Edge server, along with an accuracy lower bound

that the application can tolerate. Many machine vision appli-

cations support the approximate computing paradigm, where

useful enough results can be obtained despite reduced quality

input. Mez incorporates a novel latency controller that adapts

operation to the wireless channel condition using different

image transformations as tuning knobs, to transmit video

frames that simultaneously satisfies accuracy and latency

constraints. Additionally, Mez incorporates an in-memory

log based storage design that takes advantage of domain

specific features of machine vision applications to achieve

low latency operations. Our experimental evaluation of Mez

on an IoT Edge testbed with a pedestrian detection machine

vision application indicates thatMez is able to tolerate latency

variations of up to 10x with a modest drop in application

accuracy of less than 4.2%. Additionally, we experimentally

compare the performance of Mez to state-of-the-art NATS

messaging system. Unlike Mez, NATS is unable to adapt to

the dynamic environments of the IoT Edge. We review the

different choices made in the design of Mez, and discuss

future research directions.
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