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Abstract

Background: The major facilitator superfamily (MFS) is one of the two largest superfamilies of

membrane transporters present ubiquitously in bacteria, archaea, and eukarya and includes

members that function as uniporters, symporters or antiporters. We report here the complete

transportome of MFS proteins of a human pathogenic yeast Candida albicans.

Results: Computational analysis of C. albicans genome enabled us to identify 95 potential MFS

proteins which clustered into 17 families using Saier's Transport Commission (TC) system. Among

these SP, DHA1, DHA2 and ACS represented major families consisting of 22, 22, 9 and 16

members, respectively. Family designations in C. albicans were validated by subjecting Saccharomyces

cerevisiae genome to TC system. Based on the published available genomics/proteomics data, 87 of

the putative MFS genes of C. albicans were found to express either at mRNA or protein levels. We

checked the expression of the remaining 8 genes by using RT-PCR and observed that they are not

expressed under basal growth conditions implying that either these 8 genes are expressed under

specific growth conditions or they may be candidates for pseudogenes.

Conclusion: The in silico characterisation of MFS transporters in Candida albicans genome revealed

a large complement of MFS transporters with most of them showing expression. Considering the

clinical relevance of C. albicans and role of MFS members in antifungal resistance and nutrient

transport, this analysis would pave way for identifying their physiological relevance.

Background
Current evidence suggests that Candida albicans acquires
azole resistance by employing multiple mechanisms that
include (a) alterations in the azole-target protein Erg11p
(b) upregulation of the ERG11 gene [1-4] as well as (c)
failure of drug accumulation mediated by efflux pumps.

Most commonly, genes encoding drug efflux pumps
belonging to ATP binding cassette (ABC) and Major facil-
itator (MFS) superfamilies of proteins are overexpressed
in azole resistant Candida isolates [5-9]. ABC family per-
meases are in general multicomponent primary active
transporters, capable of transporting both small mole-
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cules and macromolecules which is coupled to ATP
hydrolysis while the MFS transporters are single-polypep-
tide secondary carriers capable only of transporting small
solutes in response to chemiosmotic ion gradients. We
have earlier annotated and classified ABC transporters in
C. albicans [10], however, clinically relevant MFS super-
family in C. albicans largely remains uncharacterized.

MFS superfamily is ubiquitously present in all kingdoms
of life and includes members of direct medical and phar-
maceutical significance. They are involved in the symport,
antiport or uniport of various substrates [11,12] and are
known to exhibit specificity for sugars, polyols, drugs,
neurotransmitters, Krebs cycle metabolites, phosphor-
ylated glycolytic intermediates, amino acids, peptides,
osmolites, siderophores (efflux), iron-siderophores
(uptake), nucleosides, organic and inorganic anions, etc
[11,12]. Most MFS proteins vary between 400 and 600
amino acid residues in length and possess either 12 or 14
putative transmembrane segments (TMS). The MFS super-
family consists of 61 families according to the Transport
Commission (TC) system given by Saier and group http:/
/www.tcdb.org/. TC is a comprehensive classification sys-
tem for membrane transport proteins and is analogous to
the Enzyme Commission (EC) system, except that it
incorporates both functional and phylogenetic informa-
tion [13-15]. This system allocates five digits to each phy-
logenetic cluster of transporters. The first two digits
("class" and "subclass") identify the transport mode and
energy-coupling mechanism. The third digit characterizes
phylogenetic "families" or "superfamilies." The fourth
digit identifies phylogenetic "subfamilies." The fifth digit
("clusters") corresponds to the substrate specificity, as pre-
sumed by experimental data or stringent sequence iden-
tity [13]. In TC, the designation 2.A.1 represents MFS and
the next digit denotes the family, for instance, 2.A.1.1 rep-
resents sugar transporters and so on. Any two transport
systems in the same subfamily of a transporter family that
transport the same substrate(s) are given the same TC
number, regardless of whether they are orthologues or
paralogues.

Till date only a few MFS transporters namely MDR1,
FLU1, NAG3, NAG4, JEN1, ARN1 and NGT1 [16-22], have
been identified and characterized in C. albicans. Addition-
ally, over 20 hexose transporters and glucose sensors are
known to exist in C. albicans that reflect the varied niches
in which this pathogen thrives [23]. However, very lim-
ited knowledge about other MFS transporters is available
in C. albicans. Out of all the known MFS in C. albicans
MDR1, its alleles and FLU1 are shown to be the only drug
efflux pumps transporters. MDR1 was initially identified
as a gene, which conferred resistance to the tubulin bind-
ing agent benomyl and tetrahydrofolate reductase inhibi-
tor methotrexate [24,25]. MDR1 expression in S. cerevisiae

confers resistance to several unrelated drugs and its over-
expression has been linked to azole resistance in C. albi-
cans. The expression of MDR1 in C. albicans cells is
enhanced by benomyl, methotrexate and several other
unrelated drugs, and is found to be more pronounced in
some of the azole resistant clinical isolates [26,27]. Keep-
ing in view, the relevance of the MFS multidrug transport-
ers in general and in multidrug resistance (MDR) in
particular, in the present study, we have examined MFS
superfamily of proteins in C. albicans. Although, earlier
annotation of the previous Candida genome assembly
(version 19) predicted 71 MFS genes, no systematic classi-
fication was given [28]. To address this question, we have
applied a comprehensive bioinformatics approach to
identify and annotate all MFS transporter genes in the
Candida genome from assembly version 21 and systemat-
ically searched for evidence of their expression. It is hoped
that these findings will provide the scientific community
with the necessary framework needed for the functional
characterization of the MFS proteins and a better under-
standing of this medically and pharmaceutically signifi-
cant superfamily.

Results
Identification and sequence-based functional grouping of 

C. albicans putative MFS genes

To identify gene loci encoding MFS proteins, multiple
TBLASTN searches were performed on assembly (version
21) of the C. albicans genome http://www.candidagen
ome.org using well known MFS proteins as queries. The
ORFs thus identified were subjected to domain analysis
followed by sequence-based functional grouping, result-
ing in clustering of putative Candida proteins into various
MFS families as described by Saier's TC system. Using this
strategy, we identified a total of 95 loci of putative MFS
genes in the Candida genome containing the domains
characteristic of MFS proteins and were found to be either
12 or 14 transmembrane spanners (Figure 1). By using TC
system, all the putative MFS identified were assigned to 17
TC families (Additional file 1). The family assignment
obtained by this approach was validated by applying the
same strategy to S. cerevisiae MFS transportome (data not
shown). S. cerevisiae homologues of C. albicans MFS pro-
teins were found to take up the same TC cluster thereby
addressing the evolutionary relationship between the two
yeasts. A summary of the previously known Candida genes
together with the new genes is presented in Additional file
1, where, TC family, CGD ORF, gene, alias, TCDB
homolog and expression confirmation are listed. In addi-
tion, the closest S. cerevisiae member within the family is
also presented in Additional file 1.

The Sugar Porter (SP) Family (TC # 2.A.1.1)

The SP family is widespread and have members from all
of the major groups of living organisms: bacteria, archaea,

http://www.tcdb.org/
http://www.tcdb.org/
http://www.candidagenome.org
http://www.candidagenome.org
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eukaryotic protists, fungi, animals and plants [11]. It
forms one of the largest families with 22 members in C.
albicans. We have previously characterized HGT1 [29] and
many studies since then have also reported other SP mem-
bers namely HGT2-HGT20 [23,30]. Apart from identify-
ing HGT1-HGT20, in the present study, we have also
identified two previously unidentified members, namely
MAL31 (orf19.3981) and orf19.4923 (Additional file 1)
both having homologues in S. cerevisiae, MAL31 and
YFL040W, respectively. Further, based on the homology,
the 22 SP members show significant similarity with vari-
ous sugars, namely arabinose, quinate, myoinositol, mal-
tose, fructose, glycerol, monosaccharide, glucose,
hexoseand xylose (Additional file 1).

The Drug: H+ Antiporter-1 (DHA1) Family (TC # 2.A.1.2)

DHA1 family like the SP is widely distributed and the
members include both drug-specific and MDR efflux
pumps. Like SP it also forms one of the largest families
having 22 members in Candida (Additional file 1). MDR1
gene in C. albicans is one of the best characterized mem-
bers, originally known to confer resistance to benomyl
and methotrexate [19,20,24,25]. Subsequent studies indi-
cated that MDR1 also encodes resistance to cyclohex-
imide, benztriazoles, 4-nitroquinolone-N-oxide and
sulfometuron methyl [24,31]. Disruption of the MDR1
gene reduced the virulence of C. albicans [26]. Other char-
acterized members of this family include FLU1, NAG3
and NAG4. Disruption of FLU1 in C. albicans hyper-sus-

Predicted topology of putative MFS proteins of C. albicansFigure 1
Predicted topology of putative MFS proteins of C. albicans. The topology of the putative MFS proteins was predicted 
using TMHMM program http://www.cbs.dtu.dk/services/TMHMM/. The transmembrane domains were found to be either 12 or 
14 transmembrane spanners.
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ceptibility to mycophenolic acid thus suggesting that it
could be a preferred substrate for the transporter [17]. On
the other hand, NAG3 (TMP1) and NAG4 (TMP2) show
susceptibility to a number of unrelated compounds such
as cycloheximide, 4-nitroquinoline-N-oxide and 1,10-
phenanthroline and are upregulated in response to these
drugs, suggesting that they function as multiple drug
efflux pumps [21]. Apart from MDR1, which is known as
a clinically relevant efflux pump protein, none of the
other characterized members have been directly linked to
MDR of C. albicans.

The Drug: H+ Antiporter-2 (DHA2) Family (TC # 2.A.1.3)

The DHA2 family of drug:H+ antiporters with 14 predicted
transmembrane-spanning segments, consists of nine
members in C. albicans which show significant similarity
to transporters, namely aminotriazole, 4-nitroquinoline-
N-oxide, Me2+-tetracycline antiporter, vacuolar basic
amino acid (Arg, Lys, His) transporter and metal:tetracy-
cline/oxytetracycline efflux pump (Additional file 1). In
C. albicans no member of this family has yet been charac-
terized whereas in S. cerevisiae two DHA2 proteins, SGE1
and ATR1 are well studied. ATR1 has been shown to con-
fer resistance to the structurally unrelated compounds
aminotriazole and 4-nitroquinolone-N-oxide and expres-
sion of ATR1 is inducible by the former but not the latter
[32,33]. SGE1 appears to confer resistance to crystal violet
[34] and ethidium bromide [35,36].

The Fucose: H+ Symporter (FHS) Family (TC # 2.A.1.7)

FHS is a small family with two ORFs identified in Candida
namely: orf19.4090 and orf19.7490 (Additional file 1).
They are homologous to S. cerevisiae BSC6, which encodes
a protein of unknown function exhibiting genomic organ-
ization compatible with a translational read through-
dependent mode of expression [37].

The Phosphate: H+ Symporter (PHS) Family (TC # 2.A.1.9)

PHS family is unusual in that it has representatives only in
yeast, fungi and plants but none in bacteria, animals and
other eukaryotes [11]. The occurrence of distant homo-
logues in both the plant and fungal kingdoms suggests
that they possess isoforms that diverged from each other
well before plants diverged from fungi [11]. Two well
characterized members of the PHS family are the Pho84
inorganic phosphate transporter of S. cerevisiae [38] and
the GvPT phosphate transporter of Glomus versiforme [39].
In this study, we have identified five ORFs belonging to
PHS family in C. albicans with homology to phosphate:
H+ symporters (Additional file 1). However, none of the
members identified in Candida has yet been characterized.

The Oxalate: Formate Antiporter (OFA) Family (TC # 

2.A.1.11)

OFA family members are widely distributed in nature,
being present in the bacterial, archaeal and eukaryotic

kingdoms [11]. In C. albicans, our searches revealed two
members (Additional file 1). OxlT, the oxalate:formate
antiporter from Oxalobacter formigenes, is the hallmark
protein and provides the basis for naming the OFA family
[40,41]. This protein has been purified, reconstituted in
an artificial membrane system as well as structurally and
functionally characterized [42,43].

The Sialate: H+ Symporter (SHS) Family (TC # 2.A.1.12)

SHS family, like the PHS family, is very small with only
two members namely JEN1 and JEN2, identified in the
present as well as a previous study [44]. JEN1 has been
described as the first monocarboxylate transporter of C.
albicans showing loss of all measurable lactate permease
activity upon its disruption. Further, lactate uptake by
JEN1 was competitively inhibited by pyruvic and propi-
onic acids while acetic acid behaved as a non-competitive
substrate [22].

The Monocarboxylate Porter (MCP) Family (TC # 

2.A.1.13)

MCP family is exclusively present in yeasts and animals.
In mammals, these permeases are known to transport
monocarboxylates, namely pyruvate, lactate and meval-
onate with inwardly-directed polarity and presumably
function as proton symporter [11] while it is reported that
the yeast monocarboxylate transporter proteins perform
functions other than their mammalian counterparts [45].
This family has six members identified in Candida.

The Anion: Cation Symporter (ACS) Family (TC # 2.A.1.14)

ACS is a relatively large family having representation in
bacteria, yeasts and animals comprising mainly of sym-
porters that are known to accumulate their substrates in
symport with either Na+ or H+, depending on the system.
They may transport either inorganic (e.g. phosphate) or
organic anions (e.g. glucarate, hexuronate, tartrate, allan-
toate or 4-hydroxylphenyl acetate) [11]. In Candida, we
have identified 16 members showing significant similarity
to transporters having prefered substrates, namely tartrate,
allantoate, nicotinate, biotin and pantothenate (Addi-
tional file 1).

The Aromatic Acid: H+ Symporter (AAHS) Family (TC # 

2.A.1.15)

The members of AAHS family occur exclusively in gram-
negative bacteria where they are known to transport a vari-
ety of aromatic acids like benzoate, 4-hydroxybenzoate, 3-
hydroxyphenylpropionate, 2,4-dichlorophenoxyacetate
as well as niacin and cis, cis-muconate [11]. In Candida, a
single member of AAHS family has been identified,
namely orf19.6952 showing significant similarity to puta-
tive niacin uptake porter (Additional file 1). This family
has no representation in S. cerevisiae and thus unique to
Candida.
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The Siderophore-Iron Transporter Family (TC # 2.A.1.16)

All the known members of this family are from yeast spe-
cies. In C. albicans this family is represented by a single
protein known as siderophore transporter, SIT1/ARN1
(orf19.2179) which is required in ferrichrome-iron
uptake. Previous reports suggest that deletion of ARN1
leads to reduced ability of C. albicans to use iron bound to
the hydroxamate-type siderophore ferrichrome and upon
deletion of the two high-affinity iron permease C. albicans
genes (FTR1 and FTR2), the activity was completely abol-
ished [18,46]. According to another study, siderophore
uptake by Sit1p/Arn1p is required in a specific process of
C. albicans infection, namely epithelial invasion and pen-
etration, while in the blood or within organs other sources
of iron, including heme, may be used [47].

The Organic Cation Transporter (OCT) Family (TC # 

2.A.1.19)

In C. albicans this family is represented by a single unchar-
acterized member FGR2 (orf19.7071) showing similarity
to organic anion: dicarboxylate transporter. These pro-
teins are known to transport organic cations and/or ani-
ons and catalyze uptake of cationic drugs such as
tetramethyl ammonium, cimetidine, procainamide, qui-
nidine and some endogenous metabolites such as N-
methyl-nicotinamide [48-51].

The Vesicular Neurotransmitter Transporter (VNT) Family 

(TC # 2.A.1.22)

These proteins are more closely related to SP family than
to other MFS families. The better characterized members
of the VNT family are synaptic vesicle proteins from mam-
mals, the electric eel and insects [52-55]. In C. albicans this
family is represented by a single member orf19.6578 with
significant similarity to dopamine transporter.

The Peptide-Acetyl-Coenzyme A (PAT) Transporter Family 

(TC # 2.A.1.25)

Members of the PAT family are present across bacteria,
yeast and animals [11]. Amongst the well characterized
proteins of this family include acetyl-CoA transporter
localized in the endoplasmic reticulum and Golgi mem-
branes of humans [56]. AmpG protein of E. coli belonging
to PAT family, brings into the cell peptides, including cell
wall degradative peptides and glycopeptides, to act as
inducers of β-lactamase synthesis [57]. The acetyl-CoA
transporter is expected to function by acetyl-CoA:CoA ant-
iport while the AmpG protein is most likely energized by
substrate:H+ symport. In C. albicans this family is repre-
sented by a single member orf19.3782 with significant
homology to acetyl-CoA:CoA antiporter.

The L-Amino Acid Transporter-3 (LAT3) Family (TC # 

2.A.1.44) (also called the SLC43 family)

LAT3 transports neutral amino acids such as L-leucine, L-
isoleucine, L-valine and L-phenylalanine by a Na+-inde-

pendent, electroneutral, facilitated diffusion process and
also transports amino acid alcohols. In C. albicans, this
family is represented by two ORFs: orf19.6654 and
orf19.6316.

The Proton Coupled Folate Transporter/Heme Carrier 

Protein (PCFT/HCP) Family (TC # 2.A.1.50)

In C. albicans, this family is represented by a single mem-
ber orf19.6976 showing homology to high-affinity folate
transporter. PCFT from human has been shown to act
both as an intestinal proton-coupled high-affinity folate
transporter and as an intestinal heme transporter which
mediates heme uptake from the gut lumen into duodenal
epithelial cells. The iron is then released from heme and
may be transported into the bloodstream [58,59].

The N-Acetylglucosamine Transporter Family (TC # 

2.A.1.58)

NGT1 from C. albicans represents the first eukaryotic N-
acetylglucosamine (GlcNAc) transporter and is the only
known member of this family. It is required for efficient
GlcNAc uptake and for inducing hyphae development at
low GlcNAc concentrations [16]. High concentrations of
GlcNAc could bypass the need for NGT1 to induce
hyphae, indicating that elevated intracellular levels of Glc-
NAc induce hyphal formation. Expression of NGT1 in S.
cerevisiae promoted GlcNAc uptake, indicating that NGT1
acts directly as a GlcNAc transporter [16]. No homologue
of NGT1 was detected in S.cerevisiae.

Most of the identified members of MFS superfamily are 

expressed

To assess which of the identified Candida MFS transporter
genes are transcribed or translated, we analyzed all 95
MFS transporter loci by extensive mining of the data avail-
able from the genome or proteome-wide studies in C. albi-
cans. Using this approach, we found that out of the 95
ORFs, 87 were shown to express either at mRNA or pro-
tein level under different experimental conditions (see
Additional file 1). To validate the expression of the
remaining 8 putative MFS genes (orf19.1582, orf19.7336,
orf19.4090, orf19.6180, orf19.1424, orf19.6520,
orf19.6654 and orf19.6976), we employed reverse tran-
scriptase PCR (RT-PCR) approach taking a well character-
ized C. albicans MFS transporter, MDR1 as a positive
control. The primers utilized for expression analysis are
shown in Table 1. Interestingly, no expression was
detected in any of the 8 putative genes tested under the
basal condition (Figure 2).

Discussion and conclusion
In this study, we report the complete transportome of MFS
superfamily of C. albicans. Computational analysis of the
C. albicans genome assembly (version 21) from CGD ena-
bled us to identify 95 potential MFS permeases. The latter
were classified according to both phylogeny and function
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based TC system earlier developed by Saier [13,15]. This
approach enabled us to cluster these 95 MFS proteins into
17 distinct families. Indeed each of the predictions must
be tested experimentally before final conclusions are
reached with reference to the expression and function of
the proteins analyzed.

The comparison between C. albicans and S. cerevisiae MFS
genes revealed that predominantly most of the families
are present in both the organisms (Figure 3A). Notably,
there were few families that were present only in C. albi-

cans: OFA, AAHS, OCT, VNT, PCFT/HCP and NAG-T (Fig-
ure 3B). Interestingly, in OFA family, the S. cerevisiae MFS
genes, MHC1 and YMR155W, although orthologues of C.
albicans orf19.6180 and orf19.1424, respectively, yet do
not conform to the same TC family designation as Cand-
ida, rather these genes were found to be more similar to
OxlT of Oxalobacter formigenes, a bacterial oxalate: formate
antiporter (Additional file 1). Similar was the case with C.
albicans orf19.6976, where the S. cerevisiae orthologue,
YJL163C, belong to DHA1 family instead of PCFT/HCP
family (Additional file 1). It was also observed in the

Expression analysis of putative MFS genes by RT-PCRFigure 2
Expression analysis of putative MFS genes by RT-PCR. The expression of 8 putative MFS genes, which were not vali-
dated by the mRNA/protein profiling data mining, was checked by RT-PCR. Purified poly(A)+ enriched mRNA fractionated 
from C. albicans isolate SC5314 were amplified by RT-PCR, as described in the Methods. Following electrophoresis through 
1.2% agarose gel, the amplified PCR products were visualized by staining with ethidium bromide. Lane M, nucleotide size 
marker (PCR Marker); lane 1, without RT (negative control); lane 2, MDR1 (positive control, 330 base pairs); lane 3, 
orf19.1582; lane 4, orf19.7336; lane 5, orf19.4090; lane 6, orf19.6180; lane 7, orf19.1424; lane 8, orf19.6520; lane 9, orf19.6654 
and lane 10, orf19.6976.
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AAHS family, Candida genes are more closely related to
gram-negative bacteria (Additional file 1) as compared to
S. cerevisiae which probably explains the absence of
homologues of this family in S. cerevisiae. On a similar
pattern, the MFS genes of C. albicans belonging to OCT
and VNT families are closely related to animals and no sig-
nificant homologies were detected in S. cerevisiae genome.
The NAG-T family also did not find any representation in
S. cerevisiae genome. Taken together, these findings point
out that probably these genes had diverged during the
course of evolution. Interestingly, vacuolar basic amino
acid (V-BAAT) family present in S. cerevisiae has no repre-
sentation in C. albicans (Figure 3B). Although the C. albi-
cans ORFs, orf19.1308 and orf19.7554 show significant
homology to S. cerevisiae V-BAAT family members, VBA1
and VBA2, respectively, they belong to DHA2 family sup-
porting the fact that V-BAAT family is most similar to the
DHA2 family.

Our expression analysis of the published work revealed
that out of 95 MFS genes, 87 are expressed under either
basal (uninduced) or in different specific experimental
conditions (Additional file 1). Most of the genes identi-
fied in the present investigation are expressed either at
mRNA or protein level thus validating our analysis. The
expression of the remaining 8 genes was not detected. This
would imply that either these genes are expressed under
specific growth condition or that they may be candidate
pseudogenes. To dissect the role of each putative member
of MFS superfamily, an essential part of the process will
now involve construction of multiple knockout mutants,
which will enable to unravel their role in drug or nutrient
transport.

Methods
Media chemicals were obtained from HiMedia (Mumbai,
India). Luria Bertani broth and agar media was purchased
from Difco, BD Biosciences, NJ, USA. Taq DNA polymer-
ase, ultra pure deoxyribonucleotides (dATP, dGTP, dCTP
and dTTP) were obtained from New England Biolabs
(NEB Inc.), USA. Moloney murine leukemia virus (M-
MuLV) reverse transcriptases (RT) and RNase inhibitor
were obtained from MBI Fermentas. Oligotex mRNA Mini
Kit was purchased from Qiagen. Oligonucleotides used
were commercially synthesized from Sigma-Aldrich. All
Molecular Biology (MB) grade chemicals used in this
study were obtained from Sigma Chemical Co. (St. Louis,
USA).

Identification of C. albicans MFS transporter genes

C. albicans genome assembly version 21 http://www.can
didagenome.org was searched for MFS genes using well
known MFS proteins from Swiss-Prot database http://
www.expasy.ch/sprot as queries in TBLASTN searches
[60]. Our initial query dataset had 230 MFS proteins
which were used individually to BLAST Candida genome.
Out of 230 sequences, 38 were chosen which gave signifi-
cant E-values and were maximally dissimilar among
themselves covering diversity of MFS from plants, fungi
and mammals. It should also be noted that although a
rather relaxed E-value (0.0001) cut-off was used, the
observed E-values between the test sequence and the clos-
est query sequence were much below this threshold indi-
cating that the hits obtained were highly significant. The
high-scoring segment pairs (HSPs) returned from
TBLASTN searches were checked for duplications using an
in-house written Perl script and only those that gave the
lowest E-value with one or the other sequences from the

Table 1: Oligomers used for RT-PCR

Oligomer Sequence (5'-3') Expected amplicon length (bp)

MDR1-F CACCGTTATGGAACCAGTTG 330

MDR1-R CAGCACCAAACAATGGACCAACCCAATGAG

orf19.1582-F GAAACTTTGGTATCCTGGAAC 380

orf19.1582-R CAACAAAATGGCAAAACCACC

orf19.7336-F CGCTTTCCAACCATCAATGG 464

orf19.7336-R CAGTCATTGAAGAAGCAGAAG

orf19.4090-F GAGAAGGGGCGTTTTTATTG 301

orf19.4090-R CACAATGAAAACCGGTAACAC

orf19.6180-F GGTTGTTGTTAGGTGTGTTG 394

orf19.6180-R CAAAATCTCGTAAACCCACG

orf19.1424-F CAGTACAAACATTACAAGCCC 476

orf19.1424-R CACCACAAATGTCATACCAC

orf19.6520-F GCCTTACATCCACGCAATTTG 339

orf19.6520-R CTAAAATCTAACCTCTTGGCGC

orf19.6654-F CTATTGGGTTGTTGGGTTTG 286

orf19.6654-R GTCGAGCCTCCAATAATACCTG

orf19.6976-F CTCCCCCTTGGTTATATTAAC 603

orf19.6976-R CCAGGCCAACCATTTTTCAAAG

http://www.candidagenome.org
http://www.candidagenome.org
http://www.expasy.ch/sprot
http://www.expasy.ch/sprot
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Distribution of MFS families in C. albicans as per transport commission (TC) system and comparison with S. cerevisiaeFigure 3
Distribution of MFS families in C. albicans as per transport commission (TC) system and comparison with S. 
cerevisiae. (A) Family designations were according to TC system as mentioned in the Methods. Ca and Sc stand for C. albicans 
and S. cerevisiae, respectively. Out of 61 reported MFS families in TC database http://www.tcdb.org/, 17 were identified in C. 
albicans as compared to 12 known in S. cerevisiae. (B) A comparison of MFS families between C. albicans and S. cerevisiae 
revealed that the members of the same family were almost equal in number in both the yeasts. Interestingly, 6 families that 
were present in C. albicans had no representation in S. cerevisiae whereas there was only one such family in S. cerevisiae which 
had no counterpart in C. albicans.

A.

B.

http://www.tcdb.org/
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query set were kept for further analysis. The overlapping
HSPs were merged so as to obtain the largest contiguous
stretch of nucleotides in the C. albicans genome, which
had strong sequence homology with the MFS proteins in
the query dataset. Since the test sequences always gave sig-
nificant hits with a number of query sequences the best
individual alignments were merged using overlaps. The
availability of multiple TBLASTN matches (on account of
the large number of query sequences used) made the
merging step relatively easy and unambiguous. It also
greatly increased the reliability of identifying a true hit
and distinguishing it from false positives. The protein
sequences were obtained by a six frame translation of the
HSPs, using the tool "transeq" from the EMBOSS package
http://www.ebi.ac.uk/emboss/transeq and taking the larg-
est open reading frame (ORF). 95 ORFs identified from C.
albicans after the initial TBLASTN searches were then
pooled with the query dataset of 38 sequences to form a
new query dataset and used iteratively for subsequent
searches until no new ORFs were obtained. Subsequently,
all potential genes were analyzed for MFS domains using
the programs ExPASY PROSITE [61], InterPro [62] and
Conserved Domain Database at NCBI [63]. Transmem-
brane domains were predicted using TMHMM http://
www.cbs.dtu.dk/services/TMHMM/.

Sequence-based functional grouping of C. albicans MFS 

genes

C. albicans MFS genes, as identified above, were further
subjected to sequence-based classification according to TC
system which is based on both functional and phyloge-
netic information [13,14,64]. Each putative MFS was indi-
vidually searched against the TCDB. For this purpose the
BLAST server at the transporter database http://
www.tcdb.org was used with the default settings and E-
value cut-off of 1.0 from the given choices of E-values
(1000 to 0.0001). It should be noted that here also we
chose a rather relaxed E-value cut-off and the potential
MFS identified in Candida returned much lower E-values
with the MFS sequences in the transporter database. To
validate the family designations obtained for C. albicans
using TC system all the known S. cerevisiae MFS proteins
were also searched against the TC database using the same
method as described for C. albicans.

Phylogenetic relationship with S. cerevisiae

A systematic search for S. cerevisiae homologues of the
proteins was done with each C. albicans MFS gene by using
SGD BLASTP tool http://www.yeastgenome.org/.

Expression analysis of the putative MFS genes

In order to validate the existence of the putative MFS genes
in C. albicans, expression analysis was done by extensive
mining of the data available from the previous genome
and proteome-wide studies (Additional file 1) as well as
experimentally by RT-PCR.

Total RNA isolation

Total RNA from C. albicans isolate SC5314 was prepared
from mid-logarithmically grown phase cells. In a standard
preparation, 10 ml of cells, optical density at 600 nm
(OD600) of 1.0, were pelleted and washed with 10 ml of
ice-cold H2O and spun at 5000 rpm. The pellet was resus-
pended in 1.0 ml of TRI® Reagent (Sigma) and 0.3 ml of
ice-cold, acid-washed 0.4–0.6 mm diameter glass beads
(Sigma, St. Louis, MO, USA) were added and vortexed for
5 min. Chloroform (0.2 ml) without isoamyl alcohol was
added and the tubes were shaken vigorously for 15 s. The
samples were incubated at room temperature for 15 min,
centrifuged at 12,000 × g for 15 min at 4°C. The upper
colourless aqueous phase was transferred to a new tube
and 0.5 ml of isopropanol was added. The tubes were
incubated at room temperature for 10 min, centrifuged at
12,000 × g for 10 min and the pellet washed with 75%
ethanol and recentrifuged. The pellet was air dried and
resuspended in 100 μl of H2O. All the experiments were
done with diethyl pyrocarbonate (DEPC) treated H2O.
DNA free RNA was prepared by treating total RNA with
DNase RQ1 (Promega). The OD260 and OD280 were meas-
ured and the integrity of the total RNA was visualized by
subjecting 2–5 μl of the sample to electrophoresis through
a denaturing 1% agarose/2.2 M formaldehyde gel. The
total RNA preparation isolated was stored at -80°C till fur-
ther use.

Reverse transcription PCR (RT-PCR)

The nucleotide sequence of the oligonucleotide primers
used for the RT-PCR was taken from CGD http://
www.candidagenome.org. Total RNA isolated from
SC5314 (as described above) was enriched with poly(A)+

(polyadenylated) mRNA using the Oligotex mRNA Mini
Kit protocol (Qiagen) and used subsequently for perform-
ing the reverse transcription reaction as described else-
where [65]. To synthesize cDNA, ca. 0.1 μg of poly(A)+

RNA was placed in a 0.5 ml reaction tube with 1 μM of
oligo(dT)18 anchor primer stock and the volume was
adjusted to 11 μl with DEPC treated water. The mixture
was incubated for 10 min at 70°C and chilled on ice for 1
min, after which the remainder of the reaction mixture
was added from a master mix to the reaction tube in order
for each reaction to contain a 1 mM concentration each of
dATP, dCTP, dGTP and dTTP; 40 U of RNase inhibitor in
a buffer consisting of 50 mM Tris-HCl (pH 8.3), 50 mM
KCl, 4 mM MgCl2 and 10 mM DTT. After brief mixing, the
reaction was incubated for 10 min at 37°C followed by
addition of 40U of M-MuLV reverse transcriptase. Finally,
the reaction was incubated at 37°C for 60 min and then
stopped by heating at 70°C for 10 min followed by chill-
ing it on ice for 1 min. The synthesized cDNA was purified
from unincorporated dNTPs, oligo(dT)18 anchor primer
and proteins by using Oligotex mRNA Mini Kit. Amplifi-
cation of specific mRNA of each gene was performed
using corresponding appropriate dilution of cDNA as

http://www.ebi.ac.uk/emboss/transeq
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.tcdb.org
http://www.tcdb.org
http://www.yeastgenome.org/
http://www.candidagenome.org
http://www.candidagenome.org
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template (generally 1:4) and 1 μM of each specific forward
and reverse PCR primer as mentioned in Table 1. (param-
eters: initial denaturation of 95°C for 5 min followed by
35 cycles denaturation at 95°C for 15 s, annealing at 55°C
for 30 s, elongation at 72°C for 30 s and final extension at
72°C for 10 min). As a positive control, MDR1 specific
forward MDR1-F and reverse MDR1-R primer (corre-
sponding to positions 1038–1396 in the MDR1 genomic
sequence) was also used. The negative control (without
RT) established that the PCR products generated in the
RT-PCR were not due to genomic DNA contamination
(data not shown). Resulting RT-PCR products were elec-
trophoresed on a 1.2% agarose gel in 1× TAE.
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