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Abstract

Value function decomposition (VFD) methods
under the popular paradigm of centralized train-
ing and decentralized execution (CTDE) have
promoted multi-agent reinforcement learning
progress. However, existing VFD methods proceed
from a group’s value function decomposition to
only solve cooperative tasks. With the individ-
ual value function decomposition, we propose
MFVFD , a novel multi-agent Q-learning approach
for solving cooperative and non-cooperative tasks
based on mean-field theory. Our analysis on the
‘Hawk-Dove’ and ‘Nonmonotonic Cooperation’
matrix games evaluate MFVFD ’s convergent
solution. Empirical studies on the challenging
mixed cooperative-competitive tasks where hun-
dreds of agents coexist demonstrate that MFVFD
significantly outperforms existing baselines.

1 Introduction

Decision-making towards global optimization under a com-
plex and non-stationary multi-agent environment requires
each intelligent agent to perceive their environments as well
as the interactions between other agents. Multi-agent deep
reinforcement learning (MARL) holds considerable promise
to help address a variety of real-world problems, either in a
competitive setting, such as coordinating self-driving vehi-
cles [Shalev-Shwartz et al., 2016] or traffic signals in a trans-
portation system [Calvo and Dusparic, 2018] and investing in
financial markets [Schmid et al., 2018], or in a cooperative
setting, such as optimizing the utility of a smart grid [Dimeas
and Hatziargyriou, 2010] or Internet of Things (IoT) [Deng
et al., 2020].

However, pursuing effective MARL yields two major
challenges: partial observability and scalability limita-
tions [Buşoniu et al., 2010]. Particularly, the partial observ-
ability of the entire environment, though increasing the effi-
ciency of decision-making, may severely limit each agent’s
ability to find its optimal actions. On the other hand, optimiz-
ing using all information on the environment may lead to a
huge joint state-action space, which exponentially grows with
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the number of agents, causing scalability limitations. Many
recent research advances [Lowe et al., 2017; Sunehag et al.,
2018; Rashid et al., 2018; Son et al., 2019] have attempted to
address these two challenges from two directions. In one of
the directions, researchers have sought to address the partial
observability issue by proposing a centralized training with
decentralized execution (CTDE) MARL paradigm [Lowe et
al., 2017], where agents’ policies are trained with access to
global information in a centralized manner and executed only
based on local observations in a decentralized manner. To
further resolve the scalability limitation by CTDE, certain
value function decomposition algorithms based on the IGM
(Individual-Global-Max) principle are proposed, including
VDN [Sunehag et al., 2018], QMIX [Rashid et al., 2018] and
QTRAN [Son et al., 2019], where the IGM emphasizes that
optimal joint action should be equivalent to the collection of
individual optimal actions of agents. However, these value
function decomposition methods aim to factorize the value
function of the team to the collection of value functions of
team members, which limits their scope merely in coopera-
tive MARL. That is, none of them can be applied to widely
existing non-cooperative environments.

Another major approach takes advantage of the mean-
field theory to solve the scalability issue in stochastic games,
where the mean-field theory considers that the interactions
within the population of agents can be approximated by that
of a single agent played with the average effect from the
population [Domb, 2000; Lasry and Lions, 2007; Huang et
al., 2006]. That is, the joint state-action can be replaced by
the state-action distribution to reduce the dimension of the
joint state-action space. Yang [2018] uses the mean action
of neighbors as the empirical distribution of the actions to
approximate the joint action. However, it is only applicable
when all agents are of the same type under its assumption.
Using K-means algorithm, Subramanian [2020] extends it to
multiple types by approximating the joint action of N agents
to N mean actions. Unfortunately, this method could fail with
an increasing total number of agent classes. In addition, nei-
ther of the two methods carry out decentralized execution;
their strategies rely on the acquisition or estimation of the ac-
tions of neighbors, which work little in scenarios where com-
munication or observation is limited.

In this paper, we aim to tackle MARL to have it scalable
when many agents coexist under partial observability limita-
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tions and have it applicable to cooperative, competitive, or
mixed tasks. To this end, we propose a new approach by
combining the advantages of Mean-Field theory and Value
Function Decomposition, called MFVFD . MFVFD intro-
duces that each agent’s own efforts are affected by the pop-
ulation’s average effect. Thus, the standard individual Q-
function (based on global state and joint actions) of each
agent can be transformed into the sum of its local Q-function
(based on its local observation and action) and its mean-field
Q-function (based on its neighbors’ both observation and ac-
tion distribution). This way, MFVFD pioneers the decompo-
sition of the joint Q-function from the individual’s perspec-
tive rather than that of the team like previous value decompo-
sition works. Thus, not only can it be applied to cooperation
tasks but also non-cooperation tasks. To our best knowledge,
MFVFD is the first multi-agent Q-learning algorithm that ef-
fectively achieves high scalability at the individual level un-
der the partial observation constraint.

We assessed the performance of MFVFD by comparing
it against state-of-art MARL algorithms in four environ-
ments. First, we consider different types of single-state ma-
trix games, including the Hawk-Dove non-cooperation ma-
trix game and Nonmonotonic Cooperation Matrix Game. Re-
sults show that our proposed approach converges to the pure
Nash Equilibrium (NE) in non-cooperation game and suc-
cessfully finds the Pareto Optimal solution in the coopera-
tive game. We then observed its cooperation ability in the
Cooperative Navigation environment and further evaluated
its performance in a more challenging Mixed-Cooperation-
Competition game with 400 agents, MAgent [Zheng et al.,
2017]. Empirical results show that MFVFD significantly out-
performs other multi-agent baselines. To further understand
the efficacy of MFVFD , we evaluated MFVFD on a range
of tasks on FLOW, a traffic control benchmark [Wu et al.,
2017], and the results show that MFVFD can converge faster
than the baseline with a better final performance.

2 Background

2.1 Stochastic Game

We took the stochastic game (SG) [Littman, 1994] as the stan-
dard for modeling discrete-time and non-cooperative N-agent
multi-agent tasks. As in many previous work, an SG can
be defined as a tuple < S,A1, . . . ,AN , r1, . . . , rN , p, γ >,
where s ∈ S denotes the true state of the environment. Each
agent i ∈ N := {1, . . . , N} chooses an action ai ∈ Ai at
each time step. The reward function for agent i is defined as
ri : S ×A1×· · ·×AN → R, which determines the immedi-
ate reward. p : S ×A1× · · ·×AN → Ω(S) characterizes all
state transition dynamics. The constant γ ∈ [0, 1) is the dis-
count factor. When the state is not fully observed, the system
is called a partially observed Stochastic Game, where each
agent i has individual observation oi ∈ Oi, which is typically
some function of the state s.

An SG can be considered a sequence of normal-form
games, which are games that can be represented in a
matrix [Yang and Wang, 2020]. Take the Hawk-dove
game [Grafen, 1979] as an example (shown in Section 4.1).
Agents can be either aggressive like a hawk (action ‘A’) or

timid like a dove (action ‘B’). In this scenario, if both agents
care only about maximizing their own expected reward with-
out considering other agents (the solution concept in a single-
agent RL), both agents reaching the action of hawks resulting
in the destructive outcome. If both agents choose to cooperate
with others, acting like doves, then the outcome is peaceful.
However, one acting like a hawk can take advantage of the
other acting like a dove, which will break this ‘peaceful’ so-
lution. That is to say, strategies that only consider self-interest
will be ruined, and strategies that only consider the team will
be used.

2.2 Solving Stochastic Games

Nash equilibrium [Nash, 1951] is the baseline solution con-
cept for the stochastic game, which denotes the steady-state
where none of the agents will have a motivation to deviate
from their best response give others. The NE of the Hawk-
dove game are (hawk, dove) and (dove, hawk), representing
that the best response is when one agent acts like a dove and
the other acts like a hawk. Nash Q-learning [Hu and Wellman,
2003] introduced NE into Q-learning for solving stochastic
games, which estimate the Q-function according to the NE
value. However, like some traditional equilibrium-solving ap-
proaches [Bowling and Veloso, 2002], Nash Q-learning has
the problem of high computational complexity, so it cannot
be applied to scenarios where multiple agents coexists.

Mean-field theory [Domb, 2000], concerning the approxi-
mation of interactions between agents into the average effect
from the overall population, is a solution for solving scalabil-
ity to SG. The marriage of the mean-field theory and multi-
agent reinforcement learning gives to the framework of mean-
field reinforcement learning (MFRL), which has recently at-
tracted widespread attention. Yang [2018] approximated the
standard Q-function using the mean action of the neighbor
agents, which reduces the computational complexity of the
joint action. In their work, the joint Q function for each agent
is decomposed into local Q functions that capture pairwise
interactions:

Qi(s,a) =
1

N i

∑

k∈N (i)

Qi(s, ai, ak), (1)

where N i is the number of neighbors of the agent i and
N (i) is the index set of neighboring agents. Then, the joint
Q function is approximated by the mean field Q-function
Qi(s,a) ≈ Qi

MF(s, a
i, āi) under its assumptions. The mean

action āi = 1
Ni

∑

k∈N (i) a
k represents the neighbor action

distribution, where ak is the action of each neighbor k.
However, this method has three limitations: 1) all agents

should be homogeneous (same type), 2) insufficient expres-
sion ability, 3) unable to distributed execute with local infor-
mation. Subramanian [2020] used clustering approaches to
approximating M types of agents for solving the first limita-
tion, where Qi(s,a) ≈ Qi

MTMF(s, a
i, āi1, ..., ā

i
M ). Unfortu-

nately, the computation complexity of this method increases
as the types of agents increase. Besides, these two methods
cannot accurately estimate Q-function in some cases, such as
[Qi(s, 0, 1, 1) = 6, Qi(s, 0, 2, 2) = 0, Qi(s, 0, 1, 2) = 2].
Based on Qi(s, 0, 1, 1) = 1

2Q
i(s, 0, 1) + 1

2Q
i(s, 0, 1) =
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6, Qi(s, 0, 1) = 6. Similarly, based on Qi(s, 0, 2, 2) =
1
2Q

i(s, 0, 2) + 1
2Q

i(s, 0, 2) = 0, Qi(s, 0, 2) = 0. Then,

Qi(s, 0, 1, 2) = 1
2Q

i(s, 0, 1) + 1
2Q

i(s, 0, 2) = 3. However,

Qi(s, 0, 1, 2) should be 2. Thus, the oscillate will occur dur-
ing the learning process. In addition, they cannot carry out
decentralized execution from local exploration due to depen-
dence on the global state and action observation.

2.3 CTDE and VFD

Centralized training with decentralized execution (CTDE) is
a popular paradigm of MARL tasks. Through centralized
training, the action-observation of all agents and the full state
can be made accessible to all agents. In this manner, agents
can learn and construct individual action-value functions cor-
rectly while selecting actions based on their own local ob-
servation at the execution time without having to refer to the
joint one, which can solve the issue of partial observability in
some cases. However, during centralized training, CTDE re-
quires a joint action-value function Q(s,a) conditioned on
the global state and join action, which is difficult to learn
when there are many agents.

Value function decomposition (VFD) [Koller and Parr,
1999; Guestrin et al., 2001; Sunehag et al., 2018; Rashid
et al., 2018; Son et al., 2019] methods have been pro-
posed to handle a joint action-value function under the
CTDE paradigm, where VDN [Sunehag et al., 2018] has re-
ceived a great amount of attention and seen widespread ap-
plication with its simple ideas, described as Qjt(τ ,a) =
∑N

i=1 Qi(τi, ai), where τ represents an action-observation
history. QMIX [Sunehag et al., 2018], QTRAN [Son et al.,
2019], and QPLEX [Wang et al., 2020] improve the expres-
sive power of decomposition to perfect VDN. Although these
VFD methods can ensure the consistency of the optimal joint
action and the local optimal actions, all they factorize the
team Q-function with the shared reward into individual Q-
functions, which restricts them from solving SG.

3 MFVFD : Learn to Factorize with

Mean-Field

In this section, we will introduce the MFVFD , a novel fac-
torization solution taking advantage of mean-field theory for
multi-agent systems. The main idea behind our multi-agent
learning approach is to factorize the original individual joint
Q-function of each agent by considering the influence of the
neighbors. Figure 1 illustrates the main components of our
approach.

3.1 Factorization Approximation

As a generally simplified approach illustrated in Equation (1),
the global interactions can be factorized as the pairwise local
interactions between any pair of agents implicitly [Blume and
others, 1993], where the weight of each pairwise local inter-
action is equal ( 1

Ni ). Considering that different states and
actions may have different effects, we believe that each pair-
wise local interaction’s weight may differ. Thus, the pairwise
local interactions should satisfy

Qi(s,a) =
∑

k∈N (i)

λi(oi, ok, ai, ak)Qi(s, ai, ak), (2)
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Figure 1: MFVFD Architecture. (a) In the execution, each agent
chooses an action based on the individual network Qi

LOC with its
local observation oi; (b) then, all the observation-action pairwise
[(oi, ai)]Ni=1 are passed into a shared mean-field network with mul-
tiple heads attention to calculate the mean-field Q-function for each
agent Qi

MF; (c) lastly, based on the Qi := Qi
LOC +Qi

MF, each agent’s
strategy is updated in the training.

where λi(oi, ok, ai, ak) ∈ [0, 1], which is the weight func-
tion representing the correlation of agent k for agent i.
Thus,

∑

k∈N (i) λ
i(oi, ok, ai, ak) = 1. In this manner, when

λi(oi, o1, 0, 1) = 1
3 , the Q-functions in the above example

(Section 2.2) can be accurately estimated.
Then, under the CTDE paradigm, Equation (2) can be fur-

ther decomposed:

Q
i(s,a) =

∑

k

λ
i(oi, ok, ai

, a
k)Qi(s, ai

, a
k)

=
∑

k

λ
i
k · E[

∞∑

t=1

γ
t−1

r
i(st, a

i
t, a

k
t )|s1 = s, a1 = a]

=
∑

k

λ
i
k · E[

∞∑

t=1

γ
t−1(ri(oit, a

i
t) + r

i(okt , a
k
t ))|s1 = s, a1 = a]

:= Q̄
i
i (s,a) +

∑

k

λ
i
k · Q̄i

k(s,a),

(3)

where λi
k is short for λi(oi, ok, ai, ak), Q̄i

i (s,a) :=
E[
∑∞

t=1 γ
t−1ri(oi, ai)|s1 = s, a1 = a], Q̄i

k(s,a) :=
E[
∑∞

t=1 γ
t−1ri(okt , a

k
t )|s1 = s, a1 = a]. The key insight

of this decomposition is the reward ri(s, ai, ak) of agent i
from the pairwise local interaction with agent k can be con-
sidered as the sum of the agent i’s individual effort ri(oi, ai)
and the influence ri(ok, ak) to agent i caused by agent k, i.e.,
ri(s, ai, ak) = ri(oi, ai) + ri(ok, ak). Note that ri(oi, ai)
and ri(ok, ak) are dummy values for auxiliary factorization.
If the local observation and action are sufficient to model
Q̄i

i (s,a) and Q̄i
k(s,a), we could expect the following approx-

imation to be valid:

Qi(s,a) := Q̄i
i (s,a) +

∑

k

λi
k · Q̄

i
k(s,a)

≈ Qi
LOC(o

i, ai) +
∑

k∈N (i)

λi
kQ

i
NB(o

k, ak),
(4)

where agent i’s local Q-function Qi
LOC(o

i, ai) represents its
own efforts conditioned on local information, and its neigh-
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bor Q-function Qi
NB represents the influence to agent i caused

by its neighbors.

3.2 Mean Field Approximation

We utilize the mean-field theory [Domb, 2000] to approx-
imate

∑

k λ
i(oi, ok, ai, ak)Qi

NB(o
k, ak) for further solving

scalability. On the basis of the previous MFRL approaches
(described in Section 2.2) using the mean action āi =
1
N

∑

k a
k to represent agent i’s neighborhood action distribu-

tion, we calculate the weighted average to generalize it. As
for agent i, each neighbor k’s action (resp., observation) can
be calculated as the sum of the neighborhood action distri-
bution µa(a

−i) (resp., neighborhood observation distribution
µo(o

−i)) and a small fluctuation δaik (resp., δaik):

ok = µo(o
−i) + δoik, where µo(o

−i) =
∑

k∈N (i)

λi
ko

k

ak = µa(a
−i) + δaik, where µa(a

−i) =
∑

k∈N (i)

λi
ka

k.

(5)

By Taylor’s theorem, the neighbor Q-function Qi
NB(o

k, ak),
if twice-differentiable w.r.t the action ak and observation ok

taken by neighbor k, can be expanded and expressed as:

Qi(s,a) ≈ Qi
LOC(o

i, ai) +
∑

k

λi
kQ

i
NB(o

k, ak)

= Qi
LOC(o

i, ai) +
∑

k

λi
k

[

Qi
NB(µo(o

−i), µa(a
−i))

+ (δoik ▽µo
+δaik▽µa

)Qi
NB(µo(o

−i), µa(a
−i))) +R2

]

= Qi
LOC(o

i, ai) +Qi
NB(µo(o

−i), µa(a
−i)) +R2,

(6)

where the first-order term of the Taylor extension is dropped
since the

∑

k λ
i
kδo

i
k = 0 and the

∑

k λ
i
kδa

i
k = 0. In ad-

dition, the R2, which is the Taylor polynomial’s remainder,
can be seen as a small fluctuation (the proof refers to [Yang
et al., 2018]). Considering that µa(a

−i) =
∑

k λ
i
ko

k =
N×λ ·ā−i, where ā−i =

∑

k
1
N
ak can be seen as the empir-

ical distribution of neighborhood’s action [Yang et al., 2018;
Subramanian et al., 2020], Qi

NB conditioned on µo and µa can
be regarded as the mean field Q-function of agent i. There-
fore, Equation (6) can be remarked as:

Qi(s,a) ≈ Qi
LOC(o

i, ai) +Qi
MF(µo(o

−i), µa(a
−i)). (7)

3.3 The MFVFD Architecture

This section introduces the architecture of MFVFD which is
illustrated in Figure 1. The overall architecture of our pro-
posed method consists of two parts: local part and mean-field
part. The local part includes Local Action-Value Function
Qi

LOC for each agent i, which has the related local action-
value network with parameters αi. The network takes agent
i’s own observation and action (oi, ai) as input and produces
local Q value Qi

LOC(o
i, ai).

As for the mean-field part, we apply the attention method
with the ‘query-key’ mechanism [Vaswani et al., 2017] to
construct the observation and action distribution (µo and µa).

Specifically, for each agent i, we denote the local observation-
action (oi, ai) as Xi, then, Xi can be transformed into a
‘query’ by a matrix WQ. Similarly, the neighbor k’s local

information Xk can be transformed into a ‘key’ by a matrix
WK . Then, the query and the key is embedded into a Softmax
function to calculate the similarity between these two as λi

k:

λi
k =

exp(Xk⊺WK
⊺WQX

i)
∑

j exp(X
j⊺WK

⊺WQXi)
, (8)

which can be learned by a network with parameters ωi, where
WQ and WK are the networks parameters. The multi-heads
approach can be utilized for considering the correlation from
different angles, where each head corresponds to a separate
set of parameters (WK ,WQ). In this way, the µo and µa can
be described by:

(

µo(o
−i), µa(a

−i)
)

=
1

M

M
∑

m

∑

k

λi
ωm,kX

k, (9)

where M is the number of the head. Thus, the mean-field part
for each agent i includes Weight Vector Functions [λi

m]Mm=1
and Mean Field Value Function Qi

MF, which has two related
networks:

(i) weight vector network with parameters ωi takes local
observation and action pairwise (oi, ok, ai, ak) as input
and produces the credit λi(oi, ok, ai, ak) to calculate µo

and µa.

(ii) mean field network with parameters βi takes
(µo(o

−i), µa(a
−i)) as input and produces the mean

field value for each agent i as Qi
MF(µo(o

−i), µa(a
−i)).

In this manner, the structure of MFVFD can be described as:

Qi(s,a) ≈ Q
i,αi

LOC(o
i, ai) +Q

i,βi

MF (µo(o
−i), µa(a

−i)). (10)

The pseudocode of our method is shown in Algorithm 1.
All the networks are trained in the centralized training man-
ner, where the individual Q-function Qi is trained to mini-
mize:

JQi(αi, βi, [ωm]Mm=1) = Eot,at,ot+1,at+1

[(

(

Qi
LOC(o

i, ai)

+Qi
MF(µo(o

−i
t ), µa(a

−i
t ))

)

− yi
)2]

,

(11)
where yi is as:

yi = rit+γ
(

Q̂i
LOC(o

i
t+1, a

i
t+1)+Q̂i

MF(µo(o
−i
t+1), µa(a

−i
t+1))

)

.
(12)

The Q̂LOC and Q̂MF come from the target network with pa-

rameters α̂i and β̂i, respectively, which has been shown to
stabilize training [Van Hasselt et al., 2016]. Besides, to guar-
antee argmaxai Qi = argmaxai Qi

LOC, we define the lo-

cal optimal actions of neighbors as a−i,∗, which is calculated
based on the [argmaxak Qk

IND]k∈N (i). We also define the lo-

cal optimal action of agent i based on Qi
IND is ai,∗. Then, the

mean-field function is constraint by:

JQi
MF
(β) = Es∼D

[(

Q̂i
MF(µo, µa)|a

−i,∗, ai,∗

−max
ai,′

Qi
MF(µo, µa)|a

−i,∗, ai,
′

)2] (13)
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Algorithm 1 Mean field value decomposition

1: Initial Qαi

LOC, Q̂
α̂i

LOC, Q
βi

MF, Q̂
β̂i

MF for all agents.
2: while training not finished do
3: for each agent i do
4: Sample action ai from Qαi

LOC with ǫ-greedy policy.
5: end for
6: Take joint observations o = [oi]Ni=1, joint actions

a = [ai]Ni , joint reward r = [ri]Ni and joint next ob-

servations o′ = [o′i]Ni .
7: Store < o,a, r,o′ > in the replay buffer D.
8: Sample a mini-batch of K experiences from D.

9: Get next actions a′ = [a′i]Ni from [Q̂α̂i‘
LOC]

N
i .

10: for each agent i do
11: Set yi based on Equation (12).
12: Update the Q-networks based on Equation (11) and

Equation (13).
13: end for
14: Update the parameters of the target network for each

agent i with learning rate τ :
15: α′

i ← ταi + (1− τ)α′
i

16: β′
i ← τβ + (1− τ)β′

i

17: end while

4 Experiment

This section will first consider matrix games, including the
non-cooperative and cooperative types, to investigate the con-
vergent solution of MFVFD . Then, we will evaluate the per-
formance of MFVFD on the widely utilized testbeds includ-
ing the Cooperative Navigation [Mordatch and Abbeel, 2017]

and the Mixed Cooperative-Competitive MAgent [Zheng et
al., 2017]. Last, we chose the traffic environment Flow [Wu
et al., 2017] to show that MFVFD has the potential to solve
complex real-world problems. The structure of Qi

LOC, Qi
MF in

practice are simple fully connected networks with 2 hidden
layers, where each layer has 64 neurons with ReLU activa-
tion.

4.1 Matrix Games

To ensure sufficient data collection in the joint action space,
we adopted the ǫ−greedy for 50k steps.
Non-cooperative matrix game. We chose the ‘Hawk-dove’
matrix game, whose payoff matrix is shown in Table 1a. Ta-
ble 1c shows that MFVFD converges to one of the NE, (dove,
hawk). We repeated this experiment 50 times, of which 24
times it converged to (hawk, dove), and 26 times it converged
to (dove, hawk). We compared it with the single-RL method,
DQN, and the VFD method, VDN. DQN with the local in-
formation oscillated from (Hawk, Hawk) to (Hawk, dove) or
(dove, hawk) during training process. Because the ‘hawk’ ac-
tion with the maximum return and the maximum average re-
turn will produce destructive reward when all agents chose it.
DQN, which tends to maximize agent’s own reward without
considering the actions of other agents naturally oscillates.
The convergent solution of VDN is (dove, dove), which is the
maximum return of the team. However, in SG, such a coop-
erative strategy can be easily used by selfish agents, then the
payoff will reduce from 5 to 1.

a1

a2
A B

A 0,0 8,1

B 1,8 5,5

(a) Payoff of Hawk-dove

a1

a2
A B

A 0.6,-5.6 8.6,-1.6

B 0.7, 2.3 4.8,2.3

(b) MFVFD :Q1

mf, Q
2

mf

A B

Q1

LOC -0.6 0.3

Q2

LOC 5.7 2.7

(c) MFVFD :Q1

LOC, Q
2

LOC

Q1

Q2

A B

A 0.0,0.1 8.0,1.1

B 1.0,8.0 5.1,5.0

(d) MFVFD :Q1, Q2

Table 1: Payoff matrix of Hawk-dove matrix game and reconstructed
Q results on the game, where action ‘A’ represents ‘Hawk’, ‘B’ rep-
resents ‘Dove’. Boldface means optimal/greedy actions from the
state-action value, where (A,B) and (B,A) are pure NE.

a1

a2
A B C

A 8 -12 -12

B -12 0 0

C -12 0 0

(a) Payoff of cooperative game

a1

a2
A B C

A 3.2 -12.2 -12.1

B -13.6 3.0 3.1

C -13.7 2.9 3.0

(b) MFVFD :Q1

mf, Q
2

mf

Q1
LOC

Q2
LOC 3.1 -1.5 -1.6

1.7 4.8 0.2 0.1

-1.5 1.6 -3.0 -3.1

-1.4 1.7 -2.9 -3.0

(c) MFVFD :Q1

LOC, Q
2

LOC

a1

a2
A B C

A 8.0 -12.0 -12.0

B -12.0 0.0 0.0

C -12.0 0.0 0.0

(d) MFVFD :Q1, Q2

Table 2: Payoff matrix of Non-Monotonic cooperation game and re-
constructed Q results on the game. Boldface means optimal/greedy
actions from the state-action value, where (A,A) is the joint optima.

Cooperative matrix game. The cooperative game is a spe-
cial case of the SG when the reward of each agent ri is equal.
We chose the Non-Monotonic Cooperation Matrix [Son et al.,
2019] for evaluating the convergent solution in the coopera-
tive matrix game. As shown in Table 2c, with the assistance
of the mean-field value (Table 2b), MFVFD achieves the op-
timal joint actions, while QTRAN [Son et al., 2019] showed
that VDN and QMIX failed to learn this optimal joint actions.
Details are shown in Supplementary files.

4.2 Cooperative Navigation

As shown in Figure 2(A), the Cooperative Navigation task
makes agents cooperate through discrete actions to reach a
set of L landmarks [Mordatch and Abbeel, 2017]. In addi-
tion, during the move, agents must not collide with each other
or they will be punished. The SAC [Haarnoja et al., 2017],
MADDPG [Lowe et al., 2017], VDN and QMIX are chosen
as the baselines. Each algorithm repeats the experiment five
times under the same settings. The mean episode rewards
are shown in Figure 2(B). Results show that MFVFD outper-
forms the state-of-the-art baselines in both convergence speed
and value, which further illustrates our approach’s extensibil-
ity on the cooperative task. See the supplementary material
for details and related animations.
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Figure 2: (A) Cooperative Navigation scenario. (B) MFVFD (red)
outperforms baselines (SAC, MADDPG, VDN, QMIX) in both con-
vergence speed and final performance.

Start

Chasing

Cooperation

(A) (B)

MFVFD DQN AC MFQ MFAC

vs MFVFD vs DQN vs AC vs MFQ vs MFAC

Figure 3: (A) In the mixed cooperative-competitive Battle game,
there are two armies each with 400 agents, each agent should learn
to destroy the enemy by cooperating with teammates and compet-
ing with opponents. (B) After self-play training, MFVFD basically
completely defeated other baselines.

4.3 Mixed Cooperative-Competitive Game

Next, we chose the Battle task of MAgent [Zheng et al., 2017]

to further demonstrate the performance of MFVFD in the
challenging mixed cooperative-competitive game with hun-
dreds of agents. The Battle is a scenario with two armies
fighting against each other in a grid world, where each army
consists of 400 agents. Each agent has 23 valid actions to
move, attack, and turn, and the goal of each army is to destroy
the enemy and obtain more individual rewards. We chose
DQN, Actor-Critic, MFQ and MFAC [Yang et al., 2018], as
our baselines. We trained all algorithms through self-play un-
der the same settings. Then we let the different methods battle
each other for 100 episodes, and the winning rates are shown
in Figure 3(B). Noted that MFQ and MFAC using the global
information during execution are always defeated by MFVFD
with local information. See the supplementary material for
details and related animations.

4.4 Traffic Control Benchmark

So far, we have introduced the excellent performance of
MFVFD in the mixed cooperative-competitive task. In the
real world, scenarios where cooperation and struggles coex-
ist are everywhere. The traffic control benchmark is a typical
example. As roads are limited, in order to drive fast, vehi-
cles need to struggle with each other, but in order to avoid
traffic jams, vehicles also need to cooperate. To demon-
strate that MFVFD has the potential to solve real-world prob-
lems, we chose the traffic environment Flow [Wu et al., 2017;
Vinitsky et al., 2018] to conduct exploratory experiments.
The first scenario is Ring as shown in Figure 4(A) with 22

(A) Ring (B) Figure Eight

Figure 4: (A) The Ring environment has 22 vehicles where each
aims to move quickly and avoid the rear-end collision on a one-way
ring road. (B) The Figure Eight environment has 14 vehicles where
each aims to move quickly and avoid rear-end collisions, side colli-
sions, and traffic jams on a one-way eight road with a intersection.

episode 300 1000
MFVFD 28049.7 28623.0

VDN 18992.4 27705.8

DQN 13947.3 27131.2

(a) Ring game

episode 300 1000
MFVFD 4032.89 5174.25

VDN 3029.18 3419.2

DQN 2639.17 3126.69

(b) Figure Eight game

Table 3: Mean rewards of MFVFD and baselines in the traffic con-
trol benchmark tasks, where (a) shows Ring task, and (b) shows Fig-
ure Eight task.

RL controlled vehicles on a one-way ring road, which is the
basis scene from the real world: drive as fast as possible on
one-way streets while avoiding collisions by observing the
front and rear distances. The second scenario is Figure Eight,
which simulates the real problem of passing through a road
intersection. We compared MFVFD with DQN and VDN un-
der the same settings. The mean learning rewards are shown
in Table 3. Experimental results show that MFVFD has the
potential to solve practical traffic problems, and we will con-
duct more in-depth and comprehensive research in the future.

5 Conclusion & Future Work

In this paper, we introduced MFVFD , a novel multi-agent Q-
learning framework under CTDE that leverages mean-field
theory to decompose the joint action Q-function from the
individual perspective, which further enables the scalability.
Matrix game experiments evaluate the convergent solution of
MFVFD . Empirical results show that MFVFD could achieve
more significant performance comparing to previous methods
in the mixed cooperative and competitive task with hundreds
of agents.

In the near future, we aim to conduct additional experi-
ments to compare across more complex tasks. While in the
long term, it will be an interesting and valuable direction to
study both efficacy and efficiency of MFVFD on real-world
applications.
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