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Abstract  

High-performance superconducting joints are essential for realizing persistent-mode magnets. 

Herein, we propose a new process and fabrication of such superconducting joints, which 

yielded reliable performance in the operating temperature range of 4.2 K to 25 K. MgB2-

MgB2 joints in magnets, are known to result in deterioration  of localized electrical, thermal, 

and mechanical properties. To overcome these problems, the ends of the two wires are 

inserted into a pellet press, which is then filled with a mixture of unreacted magnesium and 

boron powders, followed by heat treatment. The critical current capacity and joint resistance 

were precisely evaluated by the standard four-probe method in open-circuit and by field-

decay measurements in a closed-loop, respectively. These joints demonstrated up to 66% of 

the current-carrying capacity of unjoined wire at 20 K, 2 T and joint resistance of < 1.4 x 10 
-

12
 Ω at 4.2 K in self-field.  

 

 

 

 

 



1. Introduction  

Magnetic resonance imaging (MRI) is the key technology for diagnosing critical injuries and 

diseases. In commercially available MRI systems, superconducting magnets based on 

niobium titanium (NbTi), are used for producing the high and precise magnetic fields 

required under persistent-mode for better image quality. It is well known that 

superconducting MRI magnets are currently operated in expensive liquid helium (LHe) bath 

at 4.2 K. The soaring LHe prices and possible shortages have increased the demand for LHe-

free MRI magnets more than ever [1]. Magnesium diboride (MgB2), which was found to be 

superconducting in 2001 [2], is considered as a promising candidate for LHe-free operation in 

MRI due to its relatively low material and fabrication costs compared to high temperature 

superconductors. In addition, its transition temperature of 39 K allows it to operate at higher 

temperatures up to 25 K [3-6]. Owing to these benefits [7, 8], there have been many recent 

reports on MgB2-conductor-based MRI magnets [9-14]. In fact, PARAmed has already 

commercialized LHe-free MRI systems, called as “open sky MRI”. These MRIs are not 

operated in persistent-mode, however. Therefore, a precise power supply is needed, which 

leads to high-cost operation. In general, MRI magnets are operated in the persistent-mode to 

retain magnetic field stability throughout the spherical imaging volume, to keep the long-term 

drift rate of the magnetic field under 0.1 ppm h
-1

, and to maintain overall stable operation
 

[15]. The development of a highly reliable and consistent superconducting joint technique for 

MgB2 conductors is considered to be the most critical challenge for its wide application in the 

MRI market.  

Several superconducting joint techniques for both in-situ and ex-situ MgB2 conductors 

have been reported [13, 16-23]. The first successful joint addressed splicing MgB2 and NbTi 

for an MgB2 coil operated at 4.2 K under persistent mode, reported in 2005, Hitachi, even if 

measurement resolution were not high enough to conclude that their joint was indeed 

superconducting. A real MgB2-MgB2 joint was reported in 2006 by ASG superconductor, 

based on a field decay measurement of a closed MgB2 loop. Nardelli and co-workers [24] 

further developed and reported the lowest joint resistance as low as 10
-14

 Ω at 20 K for ex-situ 

multifilament MgB2 tape. Most recently in 2013, Ling et al reported their joint concept for in-

situ monofilament MgB2 wires, resulting in consistent critical current capacities [12], 

although their closed-loop coil fabricated via the “wind and react” method achieved joint 

resistance of 1.3 x 10
-10

 Ω at 15 K in self-field, which needs to improve by at least an order of 

magnitude for practical MRI application. It is thus necessary to further improve the state-of-



the-art superconducting joint, to give it low joint resistance in an order of 10
-12

 Ω for 

persistent-mode MgB2 magnet operation.  

In this study, therefore, of a joint technique for unreacted in-situ MgB2 conductor with 

monofilament, test results at different temperatures and magnetic fields that include 

comparison of the critical current (Ic) of the joint with the wire, the closed-loop coil, and the 

microstructural analysis of the joints are presented in detail.  

 

2. Experimental details  

Monofilament MgB2 wire was fabricated by a powder-in-tube (PIT) technique, using an in 

situ process. The detailed method for fabricating wires was reported elsewhere [8]. 

Magnesium (99 %, 325 mesh) from Sigma Aldrich and amorphous boron (98.8 %, ~ 400 nm) 

powder from Pavezyum were used as the starting materials with the stoichiometric 

composition of Mg:B = 1:2. The mixed power was packed into an iron (Fe) tube with an 

outer diameter (O.D.) of 6.30 mm and an inner diameter (I.D.) of 4.11 mm. The composite 

wire was swaged and subsequently drawn to an O.D. of 1.00 mm. 

 

 

Figure 1. Joint configuration and fabrication steps for unreacted monofilament MgB2 wires. 

Figure 1 shows the joint configuration and fabrication steps for unreacted monofilament 

MgB2 wires. As shown in figure 1(a), the metallic sheath material of the two wires was 

partially peeled off using mechanical polishing until the MgB2 core was exposed. After 



removing the metallic sheath, exposed cores of the wires were aligned and made to face each 

other using conventionally available super glue. The two aligned wires were then fixed in a 

suitable SS316 enclosure having an inner bore diameter of 6 mm, using a high temperature 

sealing material from Coptaltite, as shown in figure 1(b) [25]. The curing of the sealing 

material was carried out at 150 °C for 15 min in a drying oven. For the next step, mixed 

powder from the same batch (Mg + 2B) used for wire fabrication was then packed into the 

enclosure bore, as shown in figure 1(c). The packed powder density was estimated to be 1.96 

g cm
-3

 ± 4 %. As shown in figure 1(d), sealing material was applied on the top edge of the 

enclosure to hermetically seal the enclosure to avoid Mg evaporation during the heat 

treatment process. For compacting Mg + 2B powder to make close contact with the wire core, 

~ 0.93 GPa of pressure was applied, using a suitable SS316 plug. Again, the curing of the 

sealing material was carried out at 150 °C for 15 min in the drying oven. Finally, the joints 

were heat treated in high purity argon (Ar) inert atmosphere at 700 °C for 90 min as shown in 

figure 1(e). The joints were allowed to cool down naturally to room temperature (RT) before 

removal from the furnace. Figure 1(f) shows a longitudinal cross-sectional view of the as-

prepared joint specimen after a final heat treatment.  

The Ics of the joints were measured using an American Magnetics Superconducting 

(AMS) magnet with DC currents up to 200 A (since 200 A was the limit of the power 

supply), different temperatures up to 25 K, and magnetic fields in the range of 0 – 2 T, using 

the standard four-probe method with the criterion of 1 µV cm
-1

.  

To observe the longitudinal cross-section, the joints were cut from the appropriate 

location in the centre of the enclosure. Scanning electron microscopy of all the joints was 

conducted using a JEOL low-vacuum scanning electron microscope (SEM).  

To measure the joint resistance, a small closed-loop coil was fabricated using the same 

conductor through the “wind and react” method and evaluated using the field-decay method. 

The selected specifications of the closed-loop coil are listed in table 1. Inductance was 

calculated using the standard formula because insulation was not used in the closed-loop coil 

[26]. Later, the two ends of the wire were connected using same joining technique mentioned 

earlier. The entire coil assembly was heat treated in high purity Ar inert atmosphere at 700 °C 

for 90 min. 

Table 1. Selected specifications of the closed-loop coil. 

I.D. 

(mm) 

O.D. 

(mm) 

Height 

(mm) 

Turn

s 

Inductance 

(L, µH) 

20 24 15 28 14 ± 7 % 



 

To determine joint resistance, a field-decay measurement was carried out. The field-decay 

measurement setup is shown in figure 2. A Hall sensor with 0.1 G sensitivity was installed at 

the bottom of the closed-loop coil to measure the magnetic field generated by the coil. The 

cryogenic Cernox
TM

 SD package temperature sensor was also installed using Apiezon® N 

grease and Kapton® tape for thermally well-coupled with the joint to monitor the 

temperature [27], during the closed-loop coil measurement as well as short joint measurement 

(not shown here). The test probe was then inserted into the bore of the variable temperature 

insert (VTI) of the AMS magnet. First, a magnetization test of the closed-loop coil was 

carried out to check for any magnetization effect on the coil at RT because Fe was present in 

the coil as a wire sheath. But, we did not observe any noticeable magnetization effect. 

External magnet field was applied up to 1.42 T and then decreased to zero with a ramp-down 

rate of ~ 0.17 T s
-1

. A similar magnetic field and ramp-down rate applied during the actual 

field-decay measurement to induce current in the closed-loop. Owing to the limitations of our 

equipment, the field-decay measurement was carried at 4.2 K.  

 

Figure 2. Field-decay measurement setup. 

 

3. Results and discussion  

To evaluate the current-carrying capacity of the jointed MgB2 conductor, firstly, we carried 

out Ic measurements, as shown in figure 3. Unjoined and jointed wires (inset of figure 3) were 

heat treated under the same conditions for comparative study. As can be seen in the figure, 



the Ic values of the unjoined wire under 2 T were measured to be 64 A and 155 A, 

respectively, at 25 K and 20 K. After mechanical pressing and heat treatment, the jointed 

wires showed electrical performance deterioration , leading to ~ 35% Ic degradation. The n-

values, however, which are extracted from the power law of voltage-current characteristic, 

did not show any noticeable difference between the jointed and unjoined wire. Regardless of 

the presence or absence of the joint, a very sharp transition appeared near the criterion of 1 

µV cm
-1

. Compared to low temperature superconductors such as NbTi and niobium tin 

(Nb3Sn), however, the n-value of the MgB2 conductor still shows a relatively smooth 

transition from the superconducting state to the resistive one. In particular, it is well-known 

that both the Ic and the n-value are close to the microstructures.  

 

Figure 3. Current and voltage characteristics of the jointed (inset figure) and unjoined wires 

at (a) 20 K, 2 T, and (b) 25 K, 2 T. The distance between voltage taps was 4 cm. 

 To determine the reason for the current deterioration , a detailed microstructure analysis 

was conducted using SEM. Figure 4 shows schematic representation of a longitudinal cross-

section of a joint and SEM images of the specified areas in a schematic. As has been 

described, core-exposed MgB2 wires were put into Mg + 2B powders contained in a SS316 

enclosure. Thus, we expect that some porous regions might still exist, even after pressing and 

heat treatment processes. The total length of the wire inside joint was ~ 5.63 mm and direct 



MgB2 core to core contact length was ~ 2.38 mm. The remaining length was connected 

through porous bulk MgB2 between two cores. Figure 4(a) shows schematic representation of 

a longitudinal cross-section of a joint (not scaled). Figure 4(b) depicts a bulk region formed 

by the Mg + 2B powders between wire cores. We observed that porous microstructure exists. 

On the other hand, the interface between wire cores has a denser structure with less porosity, 

as can be seen in figure 4(c). Most importantly, as can be seen in figure 4(d), the interface 

between the bulk and the wire core shows different microstructure. This might result in 

microstructural defects, such as micro-/macro-cracks.  

 

Figure 4. (a) Schematic representation of a longitudinal cross-section of a joint (not scaled), 

SEM images of the jointed wires area represented in a schematic: (b) bulk MgB2 region, 



interfaces between (c) MgB2 wire cores, and (d) MgB2 bulk and wire core, and (e) cracks in 

the joint (yellow and white arrows are showing macro and micro cracks, respectively). 

 

To examine this point, we carried out further microstructure analysis. It is worth noting 

that pressure was vertically applied to the MgB2 wires. As expected from this, micro-/macro-

cracks were observed, as can be seen in figure 4(e). External pressure helps MgB2 formation 

in the Mg + 2B bulk area, but this can induce microstructural defects, resulting in degradation 

of current-carrying capacity. In fact, by avoiding the cracks, the performance of the joints can 

be further improved. During MgB2 formation, micro-/macro-cracks were not healed during 

the heat treatment process. As a result, we need to determine the optimized pressure 

conditions. 

 

Figure 5. (a) The schematic of the operating procedure of the field-decay measurement 

method. (b) Time decay curve of the captured magnetic field (y-axis field is the induced field 

in the closed-loop coil). 

As was described above, superconducting joint resistance between MgB2 wires can be 

evaluated by field-decay measurements, i.e., the decay of the induced current in the 

superconducting closed circuit. The decay behaviour normally has two stages as shown in the 



schematic of the operating procedure of the field-decay measurement method in figure 5(a). 

The first stage shows exponentially decreasing current with a high decay rate, due to the 

lower n-value and the small difference between the induced current and Ic of the closed-loop 

coil [26, 28]. In second stage, the decay is very slow and depends on the joint resistance. The 

field-decay measurement results obtained from our system are shown in figure 5(b). During 

entire field-decay measurement period, the joint was exposed to only self-field at 4.2 K. The 

magnetic field was allowed to stabilize for about 3000 s, and at this point, was considered to 

be the initial magnetic field B0 at time t0 for the resistance estimation. About 0.1 gauss decay 

in retained magnetic field was observed in 7764 s. The retained magnetic field after 0.1 gauss 

decay was 129.3 G which correspond to 30.8 A current based on FEM analysis.     

The joint resistance was estimated from temporal decay of magnetic field in the time 

constant of L - R circuit:  

𝐵 =  𝐵0 𝑒−(
𝑅
𝐿

) 𝑡
 

where B is the magnetic field at time t, B0 is the magnetic field at time to, L is the inductance 

of the closed-loop coil, R is the joint resistance, and t is the decay time in seconds. The joint 

resistance was estimated to be < 1.4 x 10 
-12

 Ω at 4.2 K. Based on our experience, the same 

joint technique will be applied to make an MgB2 based persistent current switch (PCS). For 

practical MRI application, however, the joint technique without any electromagnetic 

performance deterioration  will be a major challenge for long-term operation.  

 

4. Conclusions  

We fabricated and evaluated superconducting joints and determined their joint resistance with 

unreacted MgB2 wire. The Ic results for the jointed wires demonstrated consistent 

performance, which is promising from the viewpoint of “wind and react” magnets. Despite 

the performance consistency in the joint performance, about 60 to 66 % of the current was 

retained after the joint was installed. A field-decay measurement of the closed-loop coil was 

also conducted to estimate the joint resistance, which is about < 1.4x 10 
-12

 Ω. Optimisation 

of the wire cutting, heat treatment conditions, and powder density in the joint is required, 

however, for further performance enhancement. The SEM observations showed very good 

MgB2 core to core contact in the joint, but some cracks were also induced in this region. 

These should be avoided for reliable joint processing. 
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