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MGMT promoter methylation in malignant gliomas: ready for personalized 

medicine?  

Michael Weller, Roger Stupp, Guido Reifenberger, Alba A. Brandes, Martin J. van den 

Bent, Wolfgang Wick and Monika E. Hegi 

 

ABSTRACT 

The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) 

antagonizes the genotoxic effects of alkylating agents. MGMT promoter methylation is 

the key mechanism of MGMT gene silencing and predicts a favorable outcome in 

patients with glioblastoma who are exposed to alkylating agent chemotherapy. This 

biomarker is on the verge of entering clinical decision-making and is currently used to 

stratify or even select glioblastoma patients for clinical trials. In other subtypes of glioma, 

such as anaplastic gliomas, the relevance of MGMT promoter methylation might extend 

beyond the prediction of chemosensitivity, and could reflect a distinct molecular profile. 

Here, we review the most commonly used assays for evaluation of MGMT status, outline 

the prerequisites for standardized tests, and evaluate reasons for difficulties in 

reproducibility. We critically discuss the prognostic and predictive value of MGMT 

silencing, reviewing trials in which patients with different types of glioma were treated 

with various chemotherapy schedules, either upfront or at recurrence. Standardization of 

MGMT testing requires comparison of different technologies across laboratories, and 

prospectively validated cut-off values for prognostic or predictive effects. Moreover, 

future clinical trials will need to determine, for each subtype of glioma, the degree to 

which MGMT promoter methylation is predictive or prognostic, and whether testing 

should become routine clinical practice. 
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Key points 

 MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation has 

become the most powerful molecular prognosticator in malignant gliomas 

 MGMT promoter methylation is predictive for response to alkylating agent 

chemotherapy in glioblastoma 

 Methylation-specific PCR is the only validated technique to derive prognostic 

information from determination of the MGMT status 

 The MGMT status has become a parameter for stratification of patients with 

glioma within clinical trials 
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INTRODUCTION  

O6-methylguanine-DNA methyltransferase (MGMT) is a ubiquitous DNA repair enzyme 

that has been highly conserved throughout evolution. MGMT is associated with 

resistance to alkylating agent cancer therapy, and modulation of this enzyme as a 

treatment target has been under investigation for over 2 decades.1,2 MGMT rapidly 

reverses alkylation, including methylation, at the O6 position of guanine by transferring 

the alkyl group to the active site of the enzyme.3 Although O6-alkylguanine is not the 

main lesion induced by alkylating agents, it seems to be the most cytotoxic one. Lack of 

MGMT in the cell allows accumulation of O6-alkylguanine in the DNA, which, subsequent 

to incorrect pairing with thymidine, triggers mismatch repair, thereby inducing DNA 

damage signaling and, eventually, cell death.4,5 In accordance with this postulated 

mechanism, mismatch repair-deficient cells are highly resistant to alkylating agents, 

even in the absence of MGMT. 

In this article, we critically review the prognostic and predictive value of MGMT 

silencing in gliomas, drawing on the results of trials in which various chemotherapy 

schedules were used to treat patients with these tumors. We discuss the assays that are 

most commonly used to evaluate MGMT status, outline the prerequisites for 

standardized tests, and consider possible reasons for difficulties in reproducibility.  

 

THE MGMT GENE AND ITS PROMOTER 

The MGMT gene is located on chromosome 10q26. Its promoter lacks the constitutive 

regulatory elements known as the TATA box and the CAT box, similar to many 

housekeeping genes, and contains a CpG island. CpG islands are genomic regions, 

typically of 300–3000 bp, that contain a high frequency of CG dinucleotides (CpG sites), 
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and are often located in the vicinity of the transcription initiation site. The region required 

for maximal promoter activity lies at the 5’ end of the gene (from bps –953 to +202; 

transcription initiation site +1 bp) and comprises a minimal promoter, an enhancer region 

to which the MGMT enhancer-binding protein (MEBP) binds, and a number of 

transcription factor binding sites, such as those for Sp1 and AP1 (Figure 1). Expression 

levels of MGMT vary considerably between organs, with relatively low levels in the brain 

and the highest levels in the liver. Tumors frequently exhibit higher levels of expression 

than do their tissue of origin.1  

The CpG island is located in the 5’ region of MGMT (bps –552 to +289) and 

includes 97 CpGs (Figure 1), which are usually unmethylated in normal tissues. Methyl-

CpG-binding proteins, such as methyl-CpG-binding protein 2 (MeCP2) and methyl-CpG-

binding domain protein 2 (MBD2), bind to aberrantly methylated sequences, leading to 

alterations of chromatin structure and preventing binding of transcription factors, thereby 

silencing the gene (Figures 1 and 2a).16 Some studies have provided insight into the 

relationship between gene expression and the patterns and localization of dense CpG 

methylation in the MGMT promoter.16,17 Two regions that are prone to high levels of 

methylation have been identified, of which the region comprising the enhancer element 

seems to be more critical for the loss of MGMT gene expression upon methylation, on 

the basis of luciferase reporter assays interrogating different regions of the methylated 

promoter.16,17 Hence, most methylation-specific tests are designed to interrogate this 

region (Figure 2b). 

 

MGMT PROMOTOR METHYLATION IN GLIOMAS  
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The first striking observations on a potential predictive value of MGMT protein levels, as 

determined by immunofluorescence microscopy, in patients with malignant glioma were 

made more than 10 years ago.6,7 Patients with low levels of MGMT seemed to derive 

considerably more benefit from carmustine (BCNU) than those with high levels. 

Similarly, low levels of MGMT protein, as detected by immunohistochemistry, predicted 

prolonged progression-free survival (PFS) in patients with glioma treated upfront with 

temozolomide,8 or prolonged overall survival in patients with newly diagnosed, 

inoperable glioblastoma treated with neoadjuvant temozolomide.9  

Decreased levels of MGMT protein can be attributed to epigenetic silencing 

mediated by MGMT gene promoter methylation, which can be assessed by a simple 

methylation-specific PCR (MSP). A correlation with survival was demonstrated when 

glioma patients were treated with nitrosoureas10 or temozolomide,11 strongly suggesting 

that MGMT promoter methylation assessment could provide a prognostic or predictive 

biomarker for benefit from alkylator-based chemotherapy added to radiotherapy. 

Subsequently, in the randomized European Organisation for Research and Treatment of 

Cancer (EORTC) 26981-22981–National Cancer Institute of Canada (NCIC) CE.3 

trial,12,13 MGMT promoter methylation was shown to predict prolonged PFS specifically 

in patients treated with temozolomide and radiotherapy, consistent with the idea that 

methylation predicts benefit from alkylating agent chemotherapy rather than simply 

being yet another prognostic marker. By contrast, only a slight trend was observed 

towards longer PFS in patients with methylated versus unmethylated tumors who were 

treated with radiotherapy alone.13 This study used a nonquantitative gel-based MSP 

assay and dichotomized patients into methylated and unmethylated groups (45% versus 

55%). Quantitative assays, such as real-time, quantitative PCR (qMSP), suggest that a 
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subgroup of patients with intermediate methylation exists, representing a ‘gray zone’ in 

the test results. This observation could account for the fact that some patients with 

MGMT-methylated tumors seemed to derive no benefit from temozolomide, whereas 

some patients in the unmethylated group did benefit from the treatment. The modest 

effect of temozolomide in patients lacking MGMT promoter methylation has provoked an 

ongoing discussion as to whether MGMT testing should be made mandatory, and 

whether temozolomide should be withheld from patients with tumors that lack MGMT 

promoter methylation.  

The possible predictive value of MGMT promoter methylation specifically for the 

benefit derived from alkylating chemotherapy in glioblastoma patients has recently been 

challenged in patients with anaplastic glioma. A trial by the German Cancer Society’s 

Neuro-Oncology Working Group (NOA-04) showed prolonged PFS and overall survival 

in WHO grade III anaplastic glioma patients with MGMT promoter methylation, 

irrespective of initial treatment with radiotherapy or alkylating agent chemotherapy, 

temozolomide or procarbacin, CCNU and vincristin (PCV).14 Similarly, in the EORTC 

trial 26951 on adjuvant PCV chemotherapy, PFS was prolonged in patients whose 

tumors showed MGMT promoter methylation independent of the administration of 

alkylating agent chemotherapy.15 Since no evidence exists that MGMT is involved in the 

repair of radiation-induced DNA damage, other, as yet unknown, genetic alterations 

associated with MGMT promoter methylation and predictive for sensitivity to irradiation 

could be operating in MGMT-methylated anaplastic gliomas. These findings raise the 

question of whether MGMT promoter methylation is merely an epiphenomenon of other 

important predictive and prognostic markers, and they also underline the idea that grade 

III and grade IV gliomas need to be studied as separate entities. 
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Assessing MGMT status in tumor tissue  

The potential clinical utility of MGMT status as a biomarker in gliomas has led to an 

ongoing debate regarding how this status should be assessed—by promoter methylation 

analysis, at the level of mRNA or protein expression, or by enzyme activity—and which 

specific procedure is best suited for routine clinical applications.18,19 A biomarker test for 

MGMT status needs to be standardized, suitable for high-throughput analyses and 

reproducible in independent laboratories, and must have a clinically relevant cut-off 

point. The test should allow prospective patient selection and individualized therapy, 

thereby pursuing the strategy of personalized medicine for patients with brain tumors. 

 

Enzyme activity 

The enzymatic activity of MGMT can be assessed in cell lysates from freshly resected or 

frozen tumor tissue. The main drawbacks to this approach are the potential 

contamination by non-neoplastic cells,20 and the requirement for rapid and standardized 

processing of the samples. By means of an assay that measured the transfer of 3H-

labeled methyl groups from the O6 position of guanine to protein in the cell extract, 

MGMT activity was shown to be increased in recurrent tumors specifically in patients 

who had received alkylating agent chemotherapy.21,22 However, such data have not 

been generated in a controlled, prospective manner and with parallel assessment of 

MGMT promoter methylation. 
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Immunohistochemistry 

The early studies that used immunofluorescence detection in malignant gliomas,6,7 as 

well as more-recent studies in progressive low-grade oligodendroglial tumors23 or newly 

diagnosed glioblastoma,9 reported that low MGMT protein levels had predictive value for 

the response to alkylating agents. The clinical value of immunohistochemical detection 

of MGMT protein in human gliomas, however, remains controversial for several 

reasions. First, MGMT assessment by immunochemical techniques has failed to 

correlate consistently with outcome.18,24 Second, a high interobserver variablility, even 

among expert neuropathologists, casts doubt on the reproducibility of this method of 

assessment.18 Third, many authors have failed to identify a correlation between MGMT 

promoter methylation assessed by MSP and protein levels in glioma tissue assessed by 

immunochemistry.18,24-26 One explanation for this lack of correlation is the considerable 

and highly variable contamination of glioma tissue sections with non-neoplastic cells 

expressing MGMT that are not always easy to distinguish from tumor cells (Figure 3). 

Furthermore, published cut-off levels employed to define low versus high MGMT 

expression are highly variable (ranging from >10% to >50% positive cells).18 The extent 

to which such variation accounts for the conflicting results remains unknown.  

 

mRNA expression 

MGMT mRNA levels can be determined in fresh surgical specimens, although 

contamination by mRNA from non-neoplastic cells makes the results difficult to interpret. 

In situ hybridization might circumvent this problem, but specific delineation of tumor 

cells, as well as careful and uniform handling of the samples to prevent degradation, 

remains a challenge, as does any effort at quantification. 
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MGMT promoter methylation 

The widespread recognition of the value of the MGMT promoter methylation status 

derives from its identification as a predictive marker for prolonged PFS and overall 

survival in temozolomide-treated patients in the EORTC–NCIC study. This study used a 

gel-based MSP assay that is now widely employed.13,27,28 

 Diagnostic methylation-specific assays aim at predicting the activity of the whole 

MGMT promoter by interrogating only a fraction of the CpGs for their methylation status. 

In other words, the test needs to predict overall dense promoter methylation that is 

associated with silencing of the gene (Figure 2a). The CpGs interrogated by different 

methylation-specific assays are depicted in Figure 2b. The principle for the 

discrimination of unmethylated from methylated sequences that is used by most 

methylation-specific assays is based on a bisulfite treatment step that converts 

unmethylated cytidine—but not 5-methylcytidine—in the DNA to uracil (Figure 4). 

Subsequent detection and quantification of the methylated and unmethylated sequences 

can be performed by various technologies to create semiquantitative or quantitative 

assays (Table 1).  

MSP is the most commonly used technology at present (Tables 2 and 3). This 

technique uses methylation-specific primers, each of which is designed to bind only to 

completely methylated or unmethylated sequences. Each primer typically interrogates a 

series of three to five CpGs.27–29 MSP can be performed using real-time PCR platforms 

that allow standardization, high-throughput analysis, and definition of cut-off points.30,31  

Other quantitative or semiquanitative methods include methylation-specific 

pyrosequencing, which interrogates between 4 and 12 CpGs,32 and methylation-specific 
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clone sequencing. Restriction enzymes that differentiate between methylated and 

unmethylated sequences are used in combined bisulfite restriction analysis (COBRA)32 

and methylation-specific multiplex ligation-dependent probe amplification (MS-MPLA).33 

The latter technique does not depend on bisulfite conversion. Recently developed 

technologies that analyze bisulfite-converted DNA include methylation-sensitive high-

resolution melting (MS-HRM; a PCR-based method that differentiates the melting 

behavior of the amplicons derived from methylated and unmethylated sequences),34 

bead array-based technologies,35 mass spectroscopy,36 and denaturing high-

performance liquid chromatography.37 

Each technology must define a cut-off point for the prognostic effect of the MGMT 

methylation status, which needs to be validated prospectively. Quantitative assays are 

more amenable to definition of technical cut-off points and quality control than are 

qualitative assays, as illustrated by qMSP.29,31 Completely quantitative or 

semiquantitative assays that normalize to a control gene or the copy number of the 

unmethylated MGMT promoter sequence might underestimate MGMT methylation, 

because contaminating nontumoral tissue will contribute to the signal of the normalizing 

gene. The tissue used for DNA isolation must, therefore, be macrodissected by the 

neuropathologist, so as to avoid infiltration zones, lymphocyte infiltrates, and regions 

dominated by vascular proliferation. Samples consisting of compact tumor tissue of 

sufficient size; for example, four paraffin sections with a compact tumor surface of 0.5x1 

cm, generally provide good results. Stereotactic biopsies should be controlled for tumor 

content, and usually only yield sufficient DNA when obtained frozen.25 Tissues should be 

fixed in buffered formalin. Overfixation decreases the quality of the DNA owing to 

formation of cross-links, and can impede successful testing. 
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Bisulfite conversion is the most critical step, since incomplete conversion yields 

an apparently ‘methylated’ CpG. The procedure should, therefore, be controlled for 

completion of the reaction.29 A number of commercial kits work reliably. Bisulfite-treated 

DNA is unstable and should be used rapidly, although storage at –20°C in aliquots will 

slow down the decay.  

To date, MSP is the only test that has repeatedly been shown to be of predictive 

or prognostic value in clinical trials (Tables 2 and 3).11,38 At present, qMSP31 is being 

used for patient selection in the CENTRIC trial (http://clinicaltrials.gov, NCT00689221). 

This trial is assessing a role for cilengitide in newly diagnosed glioblastoma in light of 

promising phase II data indicating that the activity of this drug is restricted to patients 

with MGMT promoter methylation (Stupp, R. et al., unpublished work). Furthermore, on 

the basis of a strong preclinical rationale, the activity of enzastaurin and radiotherapy in 

newly diagnosed glioblastoma is being assessed only in patients with an unmethylated 

MGMT promoter.39 The results of prospective validation of a qMSP-based test,31 in a 

randomized phase III trial of glioblastoma patients treated with temozolomide in the 

Radiotherapy Oncology Group (RTOG) 0525 EORTC Intergroup trial 

(http://clinicaltrials.gov, NCT00304031), are expected by early 2010. The quantitative 

evaluation of MGMT methylation in this trial is expected to provide a clinically relevant 

cut-off point, as opposed to the technical cut-off already defined.31 Validation of other 

technologies is awaited. Given the large variation of 30–60% MGMT methylation 

reported in the literature for glioblastoma, clinical validation of cut-offs for individual tests 

is crucial. Methylation testing performed outside the academic trial context should also 

follow a specified protocol that lends itself to independent reproduction. In the future, the 

use of prospectively validated tests should become standard. 
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THE ROLE OF MGMT IN GLIOMA SUBTYPES 

Glioblastoma 

The MGMT promoter methylation status, as determined by MSP, is the strongest 

prognostic factor for outcome in patients with newly diagnosed glioblastoma, and is a 

powerful predictor of response to alkylating chemotherapy (Table 2).10,11,13,38,40,41 The 2 

year and 5 year survival rates in patients with a methylated MGMT promoter treated with 

concomitant and adjuvant temozolomide were 49% and 14%, respectively, while the 

corresponding figures for patients initially treated with radiotherapy only were 24% and 

5%. Of patients with an unmethylated MGMT promoter, 15% and 8% were alive at 2 

years and 5 years, respectively, after treatment with combined chemoradiotherapy, 

compared with 2% and 0% in those initially treated with radiotherapy alone.42 The small 

improvement in outcome even in the patients with an unmethylated MGMT promoter 

could be attributable to the above-mentioned gray zone separating methylated and 

unmethylated tumors, and the consequent somewhat arbitrary separation into two 

groups. Incorrect test results, misdiagnosis of some lower grade gliomas, differences in 

post-progression therapy, and individual variability due to other, as yet unrecognized, 

prognostic factors could also explain the marginally improved outcome of combined-

modality treatment in patients with an unmethylated MGMT promoter.  

The prognostic relevance of MGMT promoter status has been confirmed in elderly 

glioblastoma patients treated with concomitant and adjuvant temozolomide.43 In 

addition, the observation that 74% of patients with glioblastoma who survive for >5 years 

have MGMT promoter methylation—as opposed to <50% in an unselected population of 

glioblastoma patients—also underlines the prognostic value of MGMT status.44 
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Nevertheless, long-term survival can be observed even in the absence of MGMT 

promoter methylation, indicating that MGMT promoter methylation is only one aspect of 

a very complex biological system.44,45  

A study published this year proposed that the extent of MGMT methylation, as 

measured by pyrosequencing, is a prognostic factor in glioblastoma patients treated with 

temozolomide and radiotherapy.46 Patients with >29% MGMT methylation over the 12 

CpG sites measured had a significantly better outcome than patients with >9% but ≤ 

29% methylation, a clinically interesting finding that will need prospective validation. The 

authors defined 9% methylation as the cut-off point for determining outcomes between 

methylated and unmethylated tumors [Au: OK?; yes]. This cut-off for methylation was 

considered to be statistically different from the background determined in non-neoplastic 

brain. Leaving aside the possibility that methylation detected at a low level could reflect 

a false-positive result, a low methylation average could, in some cases, signify the 

presence of only a few methylated CpGs, as suggested by the unsupervised analysis of 

the MGMT methylation pattern used in this study. Such low positive scores might not 

necessarily reflect the dense methylation that is required for silencing of the gene. In 

comparison, MSP would only recognize dense methylation and would not detect small 

numbers of methylated CpGs, highlighting the different information content of the results 

rendered by these two technologies.  

In contrast to newly diagnosed glioblastoma, the predictive value of MGMT 

promoter methylation has remained controversial in recurrent glioblastoma. The 

absence of a strong predictive effect on tumor response or outcome with various 

temozolomide administration schedules47–49 suggests that MGMT-independent 

mechanisms of resistance have a predominant role in the setting of recurrent 

Gelöscht: , a clinically 
interesting finding that will need 
prospective validation



 15 

glioblastoma. Nevertheless, patients with MGMT-methylated tumors still showed 

improved survival in these series, although no such effect was seen in a recent study 

from Belgium.50 Selection for loss of mismatch repair proteins, such as MSH6, could be 

involved in a minority of patients.51–53 In vivo evidence for the direct involvement of 

MGMT in the response of glioblastoma to alkylating agents has been provided by The 

Cancer Genome Atlas.54 Mutation analyses of 601 genes in 91 matched tumor and 

normal samples identified a hypermutator phenotype in the recurrent glioblastoma of a 

subset of 7 of 19 patients pretreated with alkylating agents. This phenotype was much 

more common in tumors with a methylated MGMT promoter (6 of 6 MGMT-methylated 

cases) than those with an unmethylated promoter. Moreover, in all 6 treated and MGMT-

methylated glioblastomas that were hypermutated, at least one of the mismatch repair 

genes MLH1, MSH2, MSH6 and PMS2 was mutated, compared with only 1 of 84 non-

hypermutated, untreated glioblastomas. The gene mutation pattern, including mutations 

of the mismatch repair genes, was different in the six patients whose glioblastoma 

carried a methylated MGMT promoter from the pattern seen in unmethylated and treated 

tumors (n=13). This discovery was compatible with a deficiency in repair of alkylated 

guanine residues, as reflected in a strong predominance of G:C to A:T transitions at 

non-CpG sites (146/181 [81%] mutations in the 6 treated, MGMT-methylated patients 

versus 29/99 [29%] in the 13 treated, MGMT-unmethylated patients). These findings are 

consistent with escape from MGMT methylation-mediated sensitivity to the alkylating 

drug by selection for mismatch repair deficiency.  

The value of temozolomide in the setting of recurrent glioblastoma, including its 

relationship with MGMT promoter methylation status, must now to be determined in 
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patients who have already been exposed to temozolomide in the first-line setting,55,56 as 

is being pursued in the DIRECTOR trial (http://clinicaltrials.gov, NCT00941460).  

 

Anaplastic glioma 

The NOA-04 trial showed no difference in PFS or overall survival between patients with 

anaplastic glioma started on radiotherapy alone and patients started on temozolomide or 

PCV alone. Interestingly, MGMT promoter methylation predicted prolonged PFS 

irrespective of the initial treatment.14 Similar results were obtained in the EORTC trial 

26951, in that MGMT promoter methylation was prognostic for PFS in both arms—

radiotherapy alone and radiotherapy followed by PCV.15 The high correlation of MGMT 

promoter methylation with the 1p19q co-deletion15,57,58 and isocitrate dehydrogenase 

(IDH) gene mutations,59 which are known to be favorable prognostic factors in anaplastic 

glioma,14,60,61 might indicate that epigenetic deregulation of MGMT occurs in a specific 

pathogenetic context in anaplastic gliomas. Since MGMT promoter methylation is 

prognostic and not predictive for chemotherapy response in anaplastic gliomas, a 

methylated MGMT promoter should not be used to justify the upfront treatment of these 

tumors with temozolomide-based radiochemotherapy in the absence of appropriate data 

from studies such as CATNON (http://clinicaltrials.gov, NCT00626990). 

 

Low-grade glioma 

An initial study on 49 patients reported that MGMT promoter methylation is a negative 

prognostic factor for PFS in patients with low-grade astrocytomas.62 The population was, 

however, mixed, in that approximately one-quarter of the patients were untreated after 

surgery, one-quarter received radiotherapy, and half received interferon only. By 
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contrast, protracted treatment with temozolomide in a phase II study in low-grade glioma 

showed improved outcome in patients with MGMT promoter methylation.63 One might 

speculate that the differences in outcome attributed to the MGMT status were, in fact, 

due to the alkylating agent therapy that was present in the latter study. Both MGMT 

promoter methylation64 and low MGMT protein levels23 were reported to predict a 

favorable response to temozolomide in low-grade oligodendrogliomas. In addition, a 

correlation exists between MGMT promoter methylation and the 1p19q co-deletion and 

mutations of the IDH1 gene in these tumors,57,59 as well as in anaplastic gliomas14,59 

(see above). Which of these changes, or other aberrations yet to be identified, contribute 

most to the chemosensitivity of these tumors remains to be elucidated. 

 

Pseudoprogression, relapse patterns and MGMT 

The idea that MGMT methylation status might have clinical relevance was supported by 

the analysis of peculiar false-positive neuroradiological patterns mimicking early disease 

progression in patients after radiochemotherapy involving temozolomide. These 

patterns, termed ‘pseudoprogression’, are usually seen in the first 3 months after 

completion of radiotherapy with concomitant chemotherapy, and may be more common 

in patients with MGMT-methylated tumors, possibly signifying the extent of cytotoxic 

effects of treatment.65  

Some have speculated that the increase in overall survival observed in patients 

with glioma treated with temozolomide concomitant with radiotherapy could be 

associated with altered patterns of relapses. For many years, relapse inside the 

radiotherapy field in 90% of all cases has been the rule for patients with glioblastoma. A 

recent analysis of the EORTC 26981–22981-NCIC CE.3 trial showed a frequency for 
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distant recurrences of 20%.66 This analysis, which was carried out using a novel 

observer-independent tool, demonstrated no differences in the recurrence pattern 

(distant versus local) according to either therapy or MGMT status. In another series, 

MGMT promoter methylation was associated with an increased frequency of distant 

recurrences, defined as recurrences with ≤20% enhancing tumor residing inside the 

95% isodose of the radiation field.67 The best methodology to determine this clinically 

relevant point needs to be confirmed prospectively.  

 

A ROLE FOR ROUTINE MGMT TESTING?  

MGMT promoter methylation is now recognized to be a relatively early molecular lesion 

in the pathogenesis of gliomas. The frequencies of methylation seem to be specific to 

the glioma subtype and malignancy grade, as depicted in Figure 5. Whether a 

methylated MGMT promoter has the same relevance in all types of gliomas and for all 

grades of malignancy, however, remains a matter for debate. In glioblastoma, for 

example, in contrast to all other glioma subtypes, one MGMT allele is frequently lost by 

deletion of one copy of chromosome 10. Loss of one allele plus methylation is likely to 

have more profound effects on MGMT expression than methylation alone.   

The true value of MGMT promoter methylation as a diagnostic and prognostic 

marker suitable for treatment decisions depends in part on the answers to several 

crucial questions. First, which area of the gene is most relevant for silencing through 

methylation? Second, how do we set the clinically relevant cut-off point in quantitative 

assays? Third, how homogeneous is the MGMT promoter methylation pattern within a 

given tumor? Last, how stable is the methylation pattern throughout the course of 

disease and on disease progression? Importantly, at present we have no appropriate 
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alternative treatments for patients whose MGMT promoter methylation profile does not 

suggest a substantial benefit from alkylating agent chemotherapy. Withholding such 

treatment on the basis of this profile, therefore, would seem to be inappropriate at this 

stage.  

A thorough analysis of two to four biopsy specimens from each of 25 WHO grade 

III or IV gliomas revealed that MGMT promoter methylation is a highly homogeneous 

marker in malignant gliomas. MSP and sodium bisulfate sequencing showed identical 

results, and only one tumor showed inconsistent results between biopsies.25 

Little is known regarding therapy-induced changes in MGMT promoter 

methylation or MGMT expression levels in the tumor. Neither dexamethsone nor 

irradiation induced MGMT gene transcription in glioma cells in vitro.68 In tissue culture 

and animal studies, however, temozolomide strongly induced MGMT protein expression 

in temozolomide-resistant glioma cells lacking MGMT promoter methylation.69 

Loss of MGMT promoter methylation might represent a key mechanism by which 

patients with initially methylated tumors eventually acquire resistance to temozolomide, 

leading to progression or relapse. Data on changes in methylation status, however, 

remain scarce. A study of 14 patients with initial low-grade astrocytoma histology 

showed that three patients acquired methylation at recurrence, but no initially methylated 

tumor lost its methylation.62 Another small study reported changes in methylation status 

in three of ten patients, but a possible relationship with treatment was not explored.70 Of 

ten patients treated with temozolomide chemoradiation in phase II or III trials,11,13 eight 

tumors remained unchanged (one unmethylated and seven methylated), while one 

gained and another lost MGMT promoter methylation (Hegi, M. E. unpublished work). 

Similarly, an analysis of paired primary and recurrent glioblastoma tissue samples from 
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patients initially treated with radiotherapy and temozolomide by the German Glioma 

Network indicated that the MGMT promoter methylation status remained stable in the 

vast majority of patients (Reifenberger, G. and Weller, M., unpublished work). Hence, 

treatment resistance seems not to be associated with changes in the MGMT methylation 

status.  

 Taken together, the data summarized so far indicate that the determination of 

MGMT promoter methylation undoubtedly yields prognostic information, but is rarely 

useful for clinical decision-making in individual patients. Could MGMT testing have a role 

in clinical trials for patients with glioma? Several current trial concepts use the MGMT 

status, as determined by MSP, for stratification or as an inclusion criterion, limiting 

enrollment to patients either with methylated or unmethylated tumors. Moreover, in 

Europe at least, withholding temozolomide from patients with newly diagnosed 

glioblastoma without MGMT promoter methylation is considered to be justified in the 

context of clinical trials to test the effect of a new compound. Indeed, such an approach 

is being used in a current phase II study led by the EORTC, comparing radiotherapy 

plus temsirolimus versus radiotherapy plus temozolomide. This is view is not, however, 

shared by most neuro-oncologists in the US. 

 

MGMT-DEPLETING STRATEGIES 

The presence of MGMT as a key DNA repair protein is an undisputed mechanism of 

resistance to chemotherapy with alkylating agents. Strategies to overcome MGMT-

mediated resistance have been and are being pursued. MGMT-depleting agents, such 

as O6-benzylguanine (O6-BG), act as a pseudosubstrate for MGMT, which in turn is 

consumed and subsequently targeted for proteasomal degradation. Thus, de novo 
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synthesis of MGMT is required to maintain DNA repair. Systemic application of O6-BG 

was shown to decrease MGMT activity in glioma tissue when assessed 6 hours later, 

but was no longer effective at 18 hours,71 suggesting that MGMT is rapidly 

resynthesized in vivo. Accordingly, multiple daily dosing would be necessary to maintain 

low MGMT activity. Furthermore, O6-BG depletes MGMT nonselectively, resulting in 

substantial systemic toxicity, most notably dose-limiting myelosuppression, which 

necessitates substantial dose reductions for nitrosoureas or temozolomide. The clinical 

experience has, therefore, been disappointing overall in recurrent glioblastoma, although 

some responses (16% [5/32]) were reported in patients with anaplastic glioma.72 The 

feasibility of administering O6-BG locally into the tumor cavity via an Ommaya reservoir, 

in combination with systemic temozolomide, has been explored in a single patient.73  

With the aim of increasing the dose-limiting tolerance of the bone marrow towards 

alkylating chemotherapy or inducing long-term selection of genetically modified 

hematopoietic stem and precursor cells (HSCs), HSCs were transduced with a retroviral 

vector that expresses the Pro140Lys mutant of MGMT (MGMT*), which confers 

resistance to inhibition by O6-BG. Rhesus macaque experiments with CD34+ HSCs 

demonstrated the feasibility of generating long-term repopulating MGMT* HSCs. O6-BG 

plus temozolomide or BCNU treatment provided chemoprotection of progenitor cells but 

no selection of long-term repopulating HSCs.74 A phase I clinical trial of this approach for 

patients with newly diagnosed glioblastoma or grade III astrocytoma was opened in 

2006 (http://clinicaltrials.gov, NCT00272870), but was suspended owing to low 

recruitment levels and drug availability. 

Since temozolomide is itself a substrate for MGMT, alternative, more-protracted 

dosing regimes of temozolomide have been explored in first-line and recurrent 
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glioblastoma settings. The RTOG–0525–EORTC Intergroup trial has set out to 

determine whether alternative dosing of temozolomide in the adjuvant phase after 

completion of the concomitant treatment phase, using a 3 weeks on–1 week off 

schedule, could overcome resistance to chemotherapy in the nonmethylated population 

in the first-line setting. Even if this trial proves to be positive for patients without MGMT 

methylation, the question of whether the success depended on a dose-intense 

temozolomide-dependent depletion of MGMT levels in the tumor cells still remains open. 

Two small phase II trials aiming at improving PFS and overall survival by intensifying 

alkylating agent treatments have resulted in clinical benefits only for patients with MGMT 

promoter methylation.38,75,76 The use of dose-intense temozolomide in patients with 

recurrent disease resulted in PFS rates at 6 months of 30–45%,47,48,55 suggesting 

superiority over conventional dosing using the 5 out of 28 days schedule (21%).77 

Notably, none of these studies have been able to demonstrate that the presumed 

superiority of dose-intense temozolomide regimens is truly mediated by MGMT 

depletion, because serial biopsies of brain tumors are ethically not feasible. Moreover, 

preliminary results of the UK Medical Research Council BR12 trial, which allocated 

patients with recurrent anaplastic astrocytoma or glioblastoma randomly, in a 

noncomparative design, to temozolomide for 5 out of 28 days or 21 out of 28 days, 

indicated an inferior outcome with the continuous adminstration schedule. 

 

CONCLUSIONS 

MGMT promoter methylation has emerged as an important molecular marker in patients 

with gliomas. Furthermore, the EORTC–NCIC trial has suggested that MGMT promoter 

methylation is not only a prognostic marker, but is also a predictive marker for response 



 23 

to temozolomide in patients with newly diagnosed glioblastoma.13 Emerging data 

indicate that MGMT promoter methylation has strong prognostic relevance following 

therapy with both radiation therapy and alkylating chemotherapy in patients with 

anaplastic glioma.14,42 In this setting, MGMT promoter methylation is likely to be 

indicative of a broader molecular phenotype with prognostic significance. Correlative 

analysis with other prognostic molecular markers, such as the 1p19q co-deletion or 

IDH1 and IDH2 mutations, should further clarify the importance of MGMT promoter 

methylation in this patient population. In anticipation of the results of ongoing 

prospective phase III trials incorporating MGMT promoter methylation status, and 

validation of a diagnostic assay, treatment decisions should not yet be based on MGMT 

promoter methylation status outside clinical trials. However, all investigators conducting 

ongoing and future clinical trials in patients with glioma should consider assessing 

MGMT promoter methylation status, and probably including this factor as a stratification 

parameter. 

 

Review criteria  

The reference database MEDLINE served as the basis for the present Review. A 

literature search was performed for papers published in the English language up to 

August 2009. The keywords used were as follows: “glioma”, “MGMT”, “methylation”, 

“trial”, “alkylating agent”, “DNA repair”, and combinations thereof. The papers identified 

by this search were reviewed, as were references cited therein. The database available 

at http://clinicaltrials.gov—a registry of federally and privately supported clinical trials 

conducted in the US and around the world—was consulted for information on clinical 
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trials using the following keywords: “glioma”, “MGMT”, “methylation”, “temozolomide” 

and “alkylating agent”. 
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Figure legends 

 

Figure 1 | Map of the CpG island region of the MGMT promoter.16 a | Genomic map of 

the MGMT 5’ region. A bent arrow indicates the transcription initiation site. Binding sites 

for the Sp1 transcription factor are indicated. The CpG island (bps –552 to +289), which 

includes 97 CpG sites, is numbered from 5’ to 3’, and an outline of CpG density is 

shown. Adapted by permission from Macmillan Publishers Ltd: Nakagawachi, T. et al. 

Oncogene 22, 8835–8844 © 2003.  

 

Figure 2 | Methylation of the CpG island region of the MGMT promoter. a | Detailed 

methylation status of the whole CpG island in MGMT-expressing and MGMT-

nonexpressing cell lines. Each circle graph represents the percentage of methylated 

clones (number of methylated clones/10 analyzed clones x 100) at one of the numbered 

CpG sites. b | Visualization of CpGs interrogated by diverse methylation-specific assays. 

Alike colors signify CpGs evaluated on the same fragment, except for qMSP2 where the 

methylation-specific probe is marked in light blue and recognizes the same molecule. 

Abbreviations: COBRA, combined bisulfite restriction analysis;32 HRM, high-resolution 

melting; MGMT, O6-methylguanine-DNA methyltransferase;34 MS-MPLA methylation-

specific multiplex ligation-dependent probe amplification;33 MSP, methylation-specific 

PCR;13,28 qMSP1, quantitative MSP using methylation-specific primers;31 qMSP2, 

MethyLight—including, in addition, a methylation specific probe;29 PyroSeq, methylation 

specific pyrosequencing.32 Part a adapted by permission from Macmillan Publishers Ltd: 

Nakagawachi, T. et al. Oncogene 22, 8835–8844 © 2003. 
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Figure 3 | Immunochemical staining for MGMT protein expression in glioblastomas. a | 

Lack of nuclear MGMT expression in tumor cells from a glioblastoma with MGMT 

promoter methylation. Note staining of proliferating microvascular cells as an internal 

control. b | Strong MGMT positivity in tumor and vascular cells in a MGMT-unmethylated 

glioblastoma. c | Numerous MGMT-positive cells in a glioblastoma with MGMT promoter 

methylation. d | Staining of the same tumor for CD45 reveals prominent contamination of 

the tumor tissue with CD45+ microglial cells and macrophages, which express MGMT 

and might be responsible for erroneously positive estimates of MGMT expression and 

activity levels. The insert in part d shows double staining of perivascular macrophages 

for CD68 (red) and MGMT (brown) in another case of glioblastoma. All sections are 

counterstained with hemalum. Original microscopic magnifications were x 400 (parts a 

and b, and insert in d) or x 100 (parts c and d). Abbreviations: MGMT, O6-

methylguanine-DNA methyltransferase; v, blood vessel. 

 

Figure 4 | Bisulfite conversion of tumor DNA. Treatment of DNA with bisulfite results in 

the conversion of unmethylated cytidine into uracil, which is replaced by thymidine in the 

subsequent PCR step. By contrast, 5-methylcytidine (mC) will not be converted and thus 

remains as a cytidine. Incomplete bisulfite conversion of unmethylated cytidine will be 

interpreted as methylation in the subsequent quantification step using any technology 

and will, therefore, yield a false-positive result. 

 

Figure 5 | Frequency of MGMT promoter methylation in glioma subtypes. Frequencies 

(%) of MGMT promoter methylation were taken from 25 publications evaluating 2,994 

gliomas (avoiding overlap of studies, not exhaustive). Numbers in bars represent 
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numbers of cases considered. Data were derived from the studies cited in Tables 2 and 

3 and several additional references.25,57,62,78-87 Most studies used gel-based methylation-

specific PCR. Glioblastoma shown as ‘GBM’ are not listed under PrGBM or ScGBM, 

with the exception of one population-based study. Abbreviations: AA, anaplastic 

astrocytoma; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; 

GBM, glioblastoma; LA, low-grade astrocytoma; O, oligodendroglioma; OA, 

oligoastocytoma; PrGBM, primary glioblastoma; ScGBM, secondary glioblastoma.  



Table 1 | Commonly used DNA methylation-specific assays 

Technology Pretreatment Number 
of CpGs 
tested 

Test properties Principle Read out Advantages Disadvantages 

MS clone 
sequencing 

Bisulfite 
conversion

a
 

 

Complete 
sequence 

Quantitative Converted amplified 
sequences are cloned 
into vector and 
amplified in bacteria; 
each clone is 
sequenced 

Methylation 
status at all 
CpGs for each 
individual allele 

Comprehensive No high-
throughput option 

MSP,  
gel-based 

Bisulfite 
conversion 
  

9 Qualitative Methylation-specific 
primers: amplification 
of methylated 
sequences; 
amplification of 
unmethylated 
sequences 

Gel; presence 
or absence of 
methylation  

Sensitive; 
associated with 
prediction in trials

Difficult to 
standardize 

qMSP Bisulfite 
conversion 
  

8 Quantitative MSP using real-time 
technology 

Fully 
methylated 
MGMT 
promoter 

versus -actin 
gene  

Standardized; 
high throughput; 
technical cut off 

Recognition only 
of fully 
methylated 
sequence—may 
make technique 
too restrictive  

MethyLight 
qMSP 

Bisulfite 
conversion 
 

12 Quantitative MSP using real-time 
technology plus 
methylation-specific 
probe 

Fully 
methylated 
MGMT 
promoter 
versus control 
gene  

Standardized; 
high throughput; 
technical cut off 

Recognition only 
of fully 
methylated 
sequence—may 
make technique 
too restrictive 

Pyrosequencing Bisulfite 
conversion 
  

4–12 Semiquantitative Quantification of each 
added nucleotide 
during sequencing 

Sequence; 
average (%) 
methylation 
over all CpGs 
measured  

Standardized; 
high throughput; 
internal control 
for bisulfite 
conversion 

Cut-off definition 

COBRA Bisulfite 
conversion; 
restriction 
enzymes

b
: 

BstUI, TaqI  
 

5 Semiquantitative Only methylated 
sequences are cut; 
fragments are 
quantified 

Percentage of 
cut sequences; 
sequencer 
(gel

c
) 

Specificity; 
internal control 
for bisulfite 
conversion 

Extra step; 
depends on 
restriction sites; 
cut-off definition 

MS-MPLA Restriction 
enzyme: HhaI 
(methylation 
sensitive) 
 

4 Semiquantitative Unmethylated CpG in 
recognition site 
results in restriction; 
only methylated 
sequences get 
amplified 

Average (ratio 
methylated 
versus 
unmethylated 
alleles) 

No bisulfite 
conversion; high 
throughput 

Limited to 
restriction sites; 
cut-off definition 

MS-HRM Bisulfite 
conversion 
  

18  Semiquantitative qPCR, change of 
melting curve 
depends on presence 
of methylated 
sequences 

Percentage of 
methylated 
sequences 
defined by  
standard curve

Evaluates large 
regions; 
standardized; 
high throughput 

Cut-off definition 

 
a
All unmethylated cytidines are converted to uracil, in subsequent PCR uracil is replaced by thymidine; methylated cytidines are resistant 

to conversion and remain unchanged (Figure 4).
 b

Restriction enzymes recognize specific sequences and cut at defined positions.
 c
Often 

used in a qualitative manner (presence versus absence). Abbreviations: COBRA, combined bisulfite restriction analysis; MGMT, O
6
-

methylguanine-DNA methyltransferase; MS, methylation-specific; MS-HRM, MS-high-resolution melting; MS-MPLA, MS-multiplex 
ligation-dependent probe amplification; MSP, MS PCR; qMSP, quantitative MSP.  
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Table 2 | MGMT promoter methylation in human glioblastoma  

Reference MGMT 

methylation 
frequency

a
  

Clinical significance of MGMT promoter methylation  

Newly diagnosed glioblastoma 

Esteller et 
al. (2000)

10
 

41% (12/29) Prolonged overall survival in response to radiotherapy plus alkylating agent-containing 
chemotherapy 

Hegi et al. 
(2004)

11
 

68% (26/38) Prolonged overall survival in response to radiotherapy plus concomitant and adjuvant 
temozolomide; phase II trial 

Hegi et al. 
(2005)

13
 

45% 
(92/206) 

Prolonged PFS in response to radiotherapy plus concomitant and adjuvant temozolomide as 
opposed to radiotherapy alone, and prolonged overall survival; randomized phase III trial 

Herrlinger 
et al. 
(2006)

38
 

42% (8/19) Prolonged PFS and overall survival in response to radiotherapy plus temozolomide and lomustin; 
phase II trial 

Criniere et 
al. (2007)

88
 

58% 
(136/219) 

Prolonged PFS in response to radiotherapy plus nitrosourea-based chemotherapy, as opposed to 
radiotherapy alone 

Brandes et 
al. (2008)

65
 

35% 
(36/103) 

Prolonged overall survival in response to radiotherapy plus concomitant and adjuvant 
temozolomide; association of pseudoprogression with methylated MGMT promoter 

Wick et al. 
(2008)

66
 

44% (20/45) Recurrence patterns revealed no difference between groups, treatment arm or MGMT methylation 
status (radiotherapy, n=22; radiotherapy plus concomitant and adjuvant temozolomide, n=23); 
randomized phase III trial 

Brandes et 
al. (2009)

67
 

34% (32/95) Pattern of and time to recurrence
 
strictly correlated with MGMT methylation status in patients 

treated with radiotherapy plus concomitant and adjuvant temozolomide 

Brandes et 
al. (2009)

43
 

43% (16/37) Prolonged PFS in response to radiotherapy plus concomitant and adjuvant temozolomide and 
prolonged overall survival in elderly patients 

Zawlik et al. 
(2009)

89
 

44% 
(165/371) 

No prognostic effect in patients treated without chemotherapy (surgery, n=105; maximal surgery 
plus radiotherapy, n=208; radiotherapy alone, n=10; supportive care only, n=29)  

Dunn et al. 
(2009)

46
 

53% 
(58/109) 

Prolonged PFS and overall survival in response to radiotherapy plus concomitant and adjuvant 
temozolomide; extent of MGMT methylation associated with outcome 

Prados et 
al. (2009)

90
 

36% (16/44) Prolonged overall survival in response to radiotherapy plus concomitant and adjuvant 
temozolomide plus erlotinib; phase II trial 

Weller et al. 
(2009)

40
 

44% 
(133/295) 

Prolonged PFS and overall survival in response to radiotherapy plus concomitant and adjuvant 
temozolomide; prospective collection 

Weiler et al. 
(2009)

76
 

41% (16/39) Prolonged PFS in response to radiotherapy plus concomitant and adjuvant (1 week on–1 week off) 
temozolomide plus indomethacin; phase II trial 

Clarke et al. 
(2009)

91
 

19% (9/48) No difference of PFS or overall survival in response to radiotherapy plus concomitant and dose-
modified adjuvant (1 week on–1 week off versus continuous) temozolomide 

Recurrent glioblastoma  

Brandes et 
al. (2006)

47
 

46% (10/22) No prognostic significance in recurrent disease treated with temozolomide (3 weeks on–1 week off) 

Wick et al. 
(2007)

48
 

47% (17/36) No prognostic significance in recurrent disease treated with temozolomide (1 week on–1 week off) 

Brandes et 
al. (2009)

49
 

34% (13/38) 
at first 
surgery; 
29% (11/38) 
at second 
surgery  

No prognostic value of MGMT promoter methylation at recurrence in patients pretreated with 
radiotherapy plus adjuvant or concomitant and adjuvant temozolomide 

a
MGMT promoter methylation analysis performed by gel-based methylation-specific PCR, except the study by Dunn et al. 

(pyrosequencing).
46

 Abbreviations: MGMT, O
6
-methylguanine-DNA methyltransferase; PFS, progression-free survival.  
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Table 3 | MGMT promoter methylation in various human gliomas 

Reference MGMT 

methylation 
frequency

a
  

Clinical significance of MGMT promoter methylation  

Anaplastic astrocytoma 

Wick et al. 
(2009)

14
 

50% (48/96) Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with 
temozolomide (5/28 [Au: OK for all? YES]) or PCV; phase III trial 

Anaplastic oligoastrocytoma 

Brandes et 
al. (2006)

92
 

69% (37/54) No prognostic significance in recurrent oligoastrocytoma or oligodendroglioma treated with 
temozolomide (5/28) 

Wick et al. 
(2009)

14
 

71% (53/75) Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with 
temozolomide (5/28) or PCV; phase III trial 

Anaplastic oligodendroglioma 

Wick et al. 
(2009)

14
 

71% (22/31) Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with 
temozolomide (5/28) or PCV; phase III trial 

Anaplastic oligodendroglioma and anaplastic oligoastrocytoma without necrosis 

van den 
Bent et al. 
(2009)

15
 

84% (81/97) Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with PCV; phase 
III trial 

Anaplastic oligoastrocytoma with necrosis (glioblastoma) 

van den 
Bent et al. 
(2009)

15
 

73% (29/40) No prolonged PFS and overall survival in response to radiotherapy or chemotherapy with PCV; 
phase III trial 

Recurrent anaplastic astrocytoma or oligoastrocytoma and glioblastoma 

Sadones et 
al. 2009

50
 

26% (10/38) Prolonged overall survival in response to temozolomide (5/28 or 1 week–1 week off) in anaplastic 
astrocytoma and oligoastrocytoma 

Grade II astrocytoma  

Komine et 
al. 2003

62
 

43% (21/49) Decreased PFS with no treatment or radiotherapy or interferon 

Grade II oligodendroglioma and oligoastrocytoma  

Everhard et 
al. 2006

64
 

93% (63/68) Prolonged PFS in patients with oligodendroglioma (n=42), oligoastrocytoma (n=18) or astrocytoma 
(n=8) treated with temozolomide 

Kesari et al. 60% (12/20) Prolonged PFS and OS in patients treated with temozolomide (11 weeks on–4 weeks off); phase II 
trial 

a
MGMT promoter methylation analysis performed by gel-based methylation-specific PCR, except studies by Sadones et al. 

(quantitative methylation-specific PCR)
50

 and van den Bent et al. (methylation-specific multiplex ligation-dependent probe 
amplification.)

15
 Abbreviations: 5/28, 5 out of 28 days; PFS, progression-free survival; PCV, combination of procarbazine, CCNU 

(lomustine) and vincristine.
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