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Abstract 

Many patients with malignant gliomas do not respond to alkylating agent chemotherapy with 

temozolomide or nitrosoureas. Alkylator resistance of glioma cells is mainly mediated by the 

DNA-repair protein O6-methylguanine-DNA-methyltransferase (MGMT). Epigenetic silencing 

of the MGMT gene by promoter methylation in glioma cells compromises this DNA-repair 

mechanism and increases chemosensitivity. MGMT promoter methylation is a strong 

prognostic factor in pediatric and adult glioblastoma patients treated with temozolomide. In 

particular elderly glioblastoma patients whose tumors lack MGMT promoter methylation 

appear to benefit minimal from chemotherapy. Thus, the MGMT promoter methylation status 

has become a frequently requested biomarker test in neurooncology. Here, we discuss the 

current data on the prognostic and predictive relevance of MGMT testing, review the trials on 

targeted agents with MGMT status-restricted participation, evaluate methodological and 

quality control issues concerning the molecular testing procedure, and address the necessity 

for molecular context-dependent interpretation of MGMT testing results.  A particular focus is 

placed on the following questions: (i) Should all glioblastoma patients be tested for MGMT 

promoter methylation or should testing be restricted to elderly patients and patients in clinical 

trials with MGMT-restricted entry? (ii) Is it justified withholding alkylating agent 

chemotherapy in patients with MGMT-unmethylated glioblastomas outside clinical trials? (iii) 

What is the role for MGMT testing in other gliomas? The answers to these issues depend 

not only on data from controlled clinical trials, but also on the availability of alternative 

treatment options to alkylating agents treatment, as well as on the access to molecular 

testing and its sensitivity and specificity.  

 

Keywords 

bevacizumab, cilengitide, enzastaurin, glioma, IDH1, MGMT, promoter methylation, 

temozolomide, temsirolimus,  
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• Epigenetic inactivation of MGMT may facilitate the occurrence of point mutations in 

TP53 and other genes during tumorigenesis and progression 

• MGMT promoter methylation is not a prognostic biomarker in IDH wildtype gliomas, 

but predictive for the use of alkylating chemotherapies in glioblastoma 

• Treatment decisions in elderly patients with glioblastoma should consider MGMT 

status 

• MGMT testing for entry of patients into clinical glioblastoma trials is feasible 

• It is justified to withhold TMZ from patients with newly diagnosed glioblastoma 

without MGMT promoter methylation in the context of clinical trials 

• MGMT-mediated resistance is not overcome by alternative schedules of alkylating 

chemotherapies, but may be circumvented by the use of alternative treatments  

• Quality-ensured MGMT testing should be implemented as a molecular diagnostic 

method in the next WHO classification of brain tumors 
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Introduction 

Glioblastoma, the most common primary central nervous system tumor, accounts for 12% to 

15% of all intracranial tumors and 50% to 60% of gliomas [1]. Overall, patients diagnosed 

with glioblastoma die within a few months if untreated. Standard treatment consisting of 

surgery followed by combined radiochemotherapy with temozolomide (TMZ) increases 

median survival to 12-15 months, although the disease progresses within 6-9 months and 

the 2-year survival rate is less than 25% [2]. The EORTC 26981/22981 NCIC CE.3 trial 

demonstrated that survival benefit derived from radiochemotherapy with TMZ increases 

significantly with tumors harboring a methylated MGMT promoter [3]. This foremost 

predictive value of MGMT promoter methylation has since been confirmed [4]. In the 

absence of non-chemotherapy arms, older studies cannot separate prognostic from 

predictive properties of MGMT promoter methylation, and even the most recent RTOG-0525 

trial only confirms a prognostic impact, as there was no TMZ-free treatment arm in this trial 

[5-9] (Table 1). 

Although there may be small numbers of glioblastoma patients who benefit from combined 

radiochemotherapy although their tumors lack MGMT promoter methylation, there is limited 

if any benefit for the whole subgroup of patients with MGMT-unmethylated glioblastomas. 

This observation calls for different therapeutic approaches in glioblastoma patients 

depending on the MGMT status. The primary question to address in patients with MGMT-

unmethylated glioblastomas is the identification of novel concepts (drugs) that provide a 

larger survival benefit than radiotherapy alone or in combination with TMZ. These concepts 

have been addressed in several phase II-III clinical trials offering the opportunity to test 

novel targeted compounds in their interaction with radiotherapy (without TMZ) only, and 

thereby to avoid additive toxicity with the alkylating chemotherapy. A separation of patients 

with MGMT-methylated and -unmethylated glioblastomas into separate trials introduced 

major challenges for the trial logistics and necessitates the resolution of key questions 

regarding the sensitivity and specificity of the MGMT testing methods. In addition, the 

challenge for these trials also extends to the definition of the scientifically sound comparator 
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(standard therapy) arm. Results from studies exploring safety and efficacy of vascular 

endothelial growth factor (VEGF) inhibitors, [10-13], the integrin inhibitor cilengitide [14,15], 

the protein kinase C (PKC) inhibitor enzastaurin [16], the inhibitor of the mammalian target of 

rapamycin, temsirolimus [17] have been eagerly awaited, and will be discussed.  

Lastly, recent trials have suggested two subpopulations of glioma patients, in whom MGMT 

testing may be introduced into the daily clinical practice; these are elderly patients with 

glioblastoma and patients with anaplastic gliomas of World Health Organization (WHO) 

grade III that lack mutations in the isocitrate dehydrogenase type 1 (IDH1) gene. In contrast, 

the practice to determine MGMT status to substantiate the diagnosis of a pseudoprogression 

[18], is not supported by current analyses that do not find a differential likelihood for 

pseudoprogression dependent on MGMT status [19].  

 

Search Strategy and Selection Criteria 

Publications in the PubMed database published between January 1995 and November 2013 

were identified using the search terms “glioblastoma”, “glioma”, “MGMT”, “integrin”, “mTOR”, 

and “PKC”. Only papers published in English were reviewed. Relevant clinical trials were 

identified by searching http://www.clinicaltrials.gov/ using the search terms “glioblastoma” 

and “glioma”. 

 

Glioblastoma therapy  

The lack of alternatives to the standard of care [20], the observation that at least some 

patients with MGMT promoter-unmethylated tumors may benefit from TMZ treatment, as 

well as the limitations of the MGMT tests especially in day-to-day management, has 

prevented MGMT biomarker assessment to be generally introduced into clinical decision-

making. The EORTC 26981/22981 NCIC CE.3 trial compared radiotherapy alone with 

radiochemotherapy with TMZ [20]. In this trial, chiefly patients with glioblastoma showing a 

methylated MGMT promoter by methylation-specific PCR (MSP) analysis benefited from 

TMZ [3].  
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Based on the hypothesis that intensifying TMZ therapy would sensitize MGMT-unmethylated 

tumors to alkylating DNA damage and enhance the effect of TMZ in MGMT-methylated 

tumors [21], the Radiation Therapy Oncology Group trial 0525 (RTOG0525) compared a 

21/28 days dose-intensified TMZ maintenance therapy after regular radiochemotherapy with 

the standard of care. The trial randomized 833 patients, from whom at least one large biopsy 

specimen was available for molecular analysis. Median OS for the trial cohort was 17.7 

months and progression-free survival (PFS) was 8.2 months. MGMT promoter methylation 

was prognostic with a median OS in the patients with MGMT promoter-methylated tumors of 

23.2 months versus 16 months in patients whose tumors lacked MGMT promoter 

methylation. However, there was no difference between the standard-dosed TMZ and the 

dose-intensified regimen [9] (Table 1). 

In 2012, trials of the Neurooncology Working Group (NOA)-08 of the German Cancer 

Society and the Nordic group provided strong evidence for a predictive role of MGMT status 

assessment in selecting the appropriate treatment of elderly glioblastoma patients who are 

not commonly treated with combined modality treatment (RT/TMZ→TMZ) [22,23] (Table 2).  

Because no standard treatment option exists following recurrence, the use of lomustine or 

rechallenge with TMZ is common practice in countries without regular access to 

bevacizumab, which is approved in the US and many countries outside the European Union 

for treatment of recurrent glioblastoma [10,24]. Except from uncontrolled series [26-30], 

MGMT data for lomustine or TMZ from recent trials at progression are missing, though 

testing could be done on the tissue from original diagnosis and would not necessitate a new 

biopsy or resection [25]. 

 

Regulation of expression and function of MGMT 

The MGMT gene is located on chromosome band 10q26 and consists of five exons. A 5'-

CpG island (CGI) of 762 base pairs (bp), including 98 CpG dinucleotides, encompasses 

large parts of the promoter region and the first exon. A few studies conducted correlative 

analyses between methylation at individual CpG sites in the MGMT-associated CGI and 
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gene expression [31-34]. However, it is still not completely clear yet how many and which 

particular CpG sites in the MGMT CGI have to be methylated in order to (i) cause 

transcriptional silencing in primary tumor cells and (ii) to demonstrate the best association 

with treatment outcome and patient survival. In fact, each diagnostic methylation-specific 

assay – whether qualitative, semi-quantitative or quantitative – interrogates distinct sets of 

CpG sites within the MGMT CGI [35,36] (Fig. 1).  

In addition to promoter methylation MGMT expression is regulated also by histone 

modifications, aberrant expression or function of transcriptional activators or repressors, as 

well as posttranscriptional regulation by various microRNA (miRNA) species. Increased 

methylation of histone H3 lysine 9 (H3K9) and concomitant binding of MeCP2 to the MGMT 

promoter region was found to be associated with promoter methylation and transcriptional 

down-regulation, while histone H3 and H4 acetylation and methylation of H3 lysine 4 were 

detected in MGMT-expressing cells [32, 37]. Increased acetylation of H3K9 and decreased 

dimethylation of this residue have been linked to MGMT upregulation and acquired TMZ 

resistance in glioblastoma cell lines. In line with these findings, treatment with histone 

deacetylase inhibitors potentiated the evolution of acquired TMZ resistance [38].  

Various transcription factors have been reported to enhance activity of the MGMT promoter, 

including specificity protein (SP)1 [39], nuclear factor (NF)kappaB [40], cAMP response 

element-binding protein (CBP)/p300 co-activator complex [41] and activator protein (AP)1 

[42], while p53 has been implicated as a repressor of MGMT transcription [43]. Moreover, 

there is first evidence that hypoxia may up-regulate MGMT expression via hypoxia-inducible 

factor (HIF) 1α signaling [44], which may contribute to TMZ resistance of glioma stem cells 

located e.g. in perinecrotic hypoxic niches. These cells in turn may be sensitized by 

treatment with bone morphogenetic protein 2 (BMP2), which can down-regulate HIF-1α-

mediated MGMT induction [45]. Induction of resistance may also be conferred by the 

hypoxia- and steroid-inducible N-myc downstream-regulated gene (NDRG1), which binds to 

and thus probably sustains action of MGMT [46]. 
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Recent studies addressed a further level of MGMT regulation through direct binding of 

specific miRNAs to the 3’-UTR of MGMT transcripts, which may lead to decreased mRNA 

stability and/or reduced protein translation [47]. Distinct miRNAs that have been implicated 

as direct regulators of MGMT expression include miR-181b [48,49], miR-181d [49], 

mir221/222 [50], as well as miR-767-3p and miR-648 [47]. Thus, also aberrant expression of 

miRNAs may contribute to the variable MGMT expression values observed in MGMT-

unmethylated tumors (Fig. 2). However, the relative importance of these different regulatory 

systems for response to TMZ is not known. 

MGMT is an evolutionary highly conserved and ubiquitously expressed suicide DNA repair 

protein. It counteracts the lethal effects of alkylating agents by removing alkyl adducts from 

the O6-position of guanine [51]. This persistent O6-methylguanine adduct induced by 

methylating agents, such as TMZ and nitrosourea derivatives, causes base mispairing which 

is recognized by mismatch repair (MMR) during DNA replication and according to the futile 

repair hypothesis ultimately, induces cell cycle arrest and cell death [52-55]. The methylation 

damage induced by these agents can be reverted by MGMT. This DNA repair activity 

provides resistance against cytotoxic effects of DNA alkylating drugs, further demonstrated 

by small molecule inhibitors of MGMT that revert the effect [56] (Fig. 3). However, for 

cytotoxic activity of alkylated O6-guanine an intact MMR machinery is required (see below). 

Although many studies have shown that a deficiency of MGMT can increase the sensitivity 

of high-grade glioma to alkylating agents [5,55-57], tumors with low levels of MGMT may still 

exhibit resistance to these drugs, suggesting that other mechanisms are also involved in the 

resistance of some tumors to chemotherapy.  

The first striking observations on a potential value of MGMT protein expression as a 

biomarker determined by immunofluorescence microscopy were made in malignant glioma 

patients who appeared to derive much more benefit from carmustine (BCNU) treatment 

when the MGMT protein expression levels in their tumors were low [51,58]. A decreased 

expression of MGMT protein is mainly attributed to epigenetic silencing mediated by MGMT 

gene promoter methylation. This is assessable by a methylation-specific PCR reaction but 
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also other tests, which are discussed below (Fig. 1). First correlations of MGMT promoter 

methylation with survival in uncontrolled series were demonstrated for glioma patients 

treated with nitrosoureas [5] or TMZ [59].  

 

Reasons and consequences of MGMT promoter methylation in gliomas 

The questions why MGMT is epigenetically silenced in subsets of gliomas and how this 

alteration may provide a tumor-promoting effect have not yet been resolved completely. In 

IDH1/2 mutant gliomas, MGMT is part of a set of genes that become methylated due to 

global changes in DNA methylation as a consequence of increased levels of 2-

hydroxyglutarate (2HG), which is aberrantly produced by mutant IDH1 or IDH2 proteins [60]. 

2HG in turn inhibits various α-ketoglutarate-dependent enzymes, including ten-eleven 

translocation (TET) hydroxylases and histone demethylases [61]. Inhibition of these 

enzymes leads to aberrant DNA and histone methylation, which eventually causes a CpG 

island methylator phenotype in IDH1/2 mutant gliomas (gCIMP) that leads to epigenetic 

silencing of many different genes including MGMT [62,63]. The reasons for MGMT promoter 

methylation in IDH1/2 wildtype gliomas, including approximately 40% of primary 

glioblastomas, and the underlying molecular mechanisms are less clear. Functionally, 

MGMT promoter methylation and transcriptional silencing may not only lower TMZ 

resistance but also has been reported to increase genetic instability that may promote 

tumorigenesis, in particular by facilitating the appearance of G:C to A:T transition mutations 

[64], In fact, MGMT-deficient mice are more sensitive to cancer development upon challenge 

with DNA-alkylating cancerogenic substances [65]. In addition, associations of MGMT 

promoter methylation with higher frequencies of G:C to A:T transition mutations in tumor 

suppressor genes, including KRAS and TP53, have been reported in various cancers 

including gliomas [64,66,67]. These findings are corroborated in the TCGA data set of 

glioblastomas that also reveals a higher frequency of TP53 and PTEN point mutations in 

MGMT promoter-methylated versus unmethylated glioblastomas (TCGA, accessed Nov 11, 

2013). Moreover, TMZ treatment of MGMT-inactivated glioblastomas frequently induces a 
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hypermutator phenotype in glioblastomas, which may lead to secondary resistance by 

causing mutations in DNA mismatch repair genes [68]. Thus epigenetic inactivation of 

MGMT may facilitate point mutations in TP53 and other genes during tumorigenesis and 

progression and TMZ treatment facilitates the emergence of secondary alkylant resistance 

by inactivating mutations of MMR genes. In line with this hypothesis, the MGMT promoter 

methylation status is usually homogeneous within malignant gliomas as demonstrated by the 

analysis of serial stereotactic biopsies [69], arguing for MGMT inactivation as an early event 

in tumor development in both IDH1/2 mutant and wildtype gliomas. While acquired (somatic) 

mutations in MGMT that reduce enzymatic activity have been reported in certain epithelial 

cancers [70,71], MGMT mutations only occur in 0.4% of malignant gliomas and (TCGA data 

set, accessed Nov 11, 2013).  

 

Towards standardized testing for diagnostic assessment of the MGMT status 

A standardized MGMT test both for clinical trials and daily decision-making should be 

sensitive and specific, reproducible and applicable to formalin-fixed and paraffin-embedded 

(FFPE) tissues. The most commonly used DNA-based diagnostic method for promoter 

methylation analysis is methylation-specific polymerase chain reaction (MSP) [72]. MSP also 

can be reliably performed on small stereotactic biopsy specimens, e.g. in case of non-

resectable gliomas [73]. Moreover, MSP of serial stereotactic biopsy specimens revealed 

homogeneous distribution of MGMT promoter methylation in glioblastoma [74]. Alternatives 

to MSP are summarized in Figure 1. Additional methods are based on MGMT mRNA 

expression analysis by quantitative reverse transcription polymerase chain reaction (qRT-

PCR) [77], MGMT protein detection by immunohistochemistry or Western blot analysis 

[79,80], and assessment of MGMT enzymatic activity [81]. In general, assays based on 

expression analyses and determination of enzymatic activity are more prone to 

contamination of tissue samples by non-neoplastic, MGMT-positive cells giving rise to false-

positive results.  
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In prospective clinical trials, either simple MSP or qMSP assays have been most commonly 

used (Table 3, Fig. 1,4,6). In the NOA-08 trial, good concordance was found between results 

obtained by qMSP [75] or conventional MSP [72]. However, sensitivity and specificity to 

detect hypermethylation with these assays critically depends on the employed PCR 

protocols. The definition and prospective validation of reliable cut-off values in quantitative 

assays like qMSP, DNA PSQ require substantial resources and different methods may yield 

slightly different results. Usually, cut-off values for the distinction of methylated versus 

unmethylated cases are set at the nadir of the distribution of a large number of testing 

results, which reflects a technical cut-off. The distributions may overlap, and the behavior 

close to the cut-off is not so clear given the heterogeneous methylation patterns across the 

MGMT 5'-CpG island in malignant gliomas. Variable contamination of tumor tissue with non-

neoplastic cells, may complicate the distinction of methylated versus non-methylated cases. 

This has led to the introduction of a "grey-zone" of weakly or partly methylated tumors that 

cannot be unequivocally assigned to either the methylated or unmethylated category. While 

this concept may be acceptable for clinical trials with MGMT methylation status-dependent 

entry criteria (which simply exclude patients with "grey-zone" testing results), it is hardly 

acceptable in, where treatment decisions have to be made for each individual patient. One 

possible approach for routine clinical practice would be to evaluate those cases that 

demonstrate an equivocal, “borderline” or “grey-zone” result in one test, e.g. MSP, to an 

independent analysis with a second method, e.g. PSQ (or vice versa) (Fig. 6). If the 

independent method shows a clear result, the particular tumor can be accordingly assigned 

to either MGMT-methylated or not methylated, respectively. Although this approach may not 

provide an unequivocal result in all cases, it may at least decrease the fraction of patients 

without a definite testing result.  

The most commonly used techniques for MGMT promoter methylation testing and their 

individual advantages and limitations have been thoroughly reviewed before [35]. Although 

MSP has evolved as the ‘most commonly applied standard’ due to its simplicity and cost 

effectiveness, it has the disadvantage that it cannot detect heterogeneous patterns of 
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methylation [82], especially when performed on low quality DNA extracted from FFPE tissue 

[78,83] (Fig. 4). PSQ overcomes this problem as it provides quantitative information on the 

extent of methylation at each individual CpG site that is sequenced, however, it loses allele-

specific information [65] (Fig. 5). At present only one qMSP assay has been prospectively 

validated in a phase III trial for glioblastoma [9]. Irrespective of the method applied, care 

should be taken to standardize diagnostic procedures and establish internal quality control 

measures according to the guidelines. Moreover, it would be highly recommendable that 

each laboratory evaluates its diagnostic performance by regular participation in external 

quality assessments, which are urgently needed to ensure reproducibility and interlaboratory 

comparability of testing results across different places (see below).   

 

The current WHO classification of 2007 does not consider MGMT testing in the classification 

of glioblastomas and anaplastic gliomas. There is an ongoing debate about whether or not 

MGMT testing should be incorporated into the next revision of the WHO classification for 

reasons of clinical relevance. If so, a prerequisite would be that the respective molecular 

analysis can be performed worldwide, i.e., that it is affordable, easy to perform and does not 

require special equipment or consumables aside from what is present in most medical 

laboratories anyway. This would be an argument for the use of MSP but certainly does not 

exclude other approaches. In addition to inclusion of molecular testing in the WHO 

classification, national and international treatment guidelines for patients with malignant 

gliomas need to be amended to include predictive molecular testing for treatment 

stratification. This in turn would be important to establish appropriate reimbursement policies 

for clinically relevant, new molecular tests, which in most countries are currently not 

considered in the health care and insurance systems.  

 

Importance of internal and external quality control measures for MGMT testing  

With MGMT promoter methylation testing entering clinical routine, internal and external 

quality control measures need to be reinforced, as both false positive and false negative 
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results may be harmful for patients. In addition to the consideration of general guidelines for 

good laboratory practice, internal quality control measures for diagnostic MGMT testing 

should include histological quality checks of each tissue specimen to be tested, regular 

evaluations for reproducibility of testing results, implementation of measures for avoidance 

and detection of contamination, as well as guidelines for troubleshooting and data 

interpretation. Standardized operating procedures should be established for the entire 

testing procedures. Each tissue sample, which should get the neurosurgical labeling “not 

derived from the necrotic areas” needs to be histologically checked for sufficient tumor cell 

content (macro-dissection) of ≥80% in order to avoid false negative results due to low tumor 

cell content. Repeated testing of the same specimens is recommendable to ensure test 

reproducibility. To avoid cross-contamination, the implementation of separate laboratory 

areas for pre-PCR and post-PCR procedures is mandatory. Appropriate positive (e.g. in vitro 

methylated DNA or DNA from a MGMT-methylated tumor or cell line) and negative controls 

(MGMT-unmethylated DNA and a no-template control sample) should be run with each test. 

A modification of the commonly used method for prevention of cross-contamination, i.e., 

substitution of dTTP by dUTP in the PCR reaction and treatment of each template DNA by 

uracil-DNA glycosidase before PCR amplification has ben reported for the application to 

bisulfite-modified DNA [83]. Interpretation of the results should be performed by experienced 

staff being aware of potential methodological problems and appropriately trained in trouble-

shooting. The use of a second independent testing method for cases with borderline results 

is recommended (see above). In addition to these local issues, external quality assessment 

(EQA) measures are becoming of increasing importance. A European Consensus 

Conference has recently developed guidelines for implementation of appropriate EQA 

schemes concerning predictive molecular tests in oncology, such as KRAS mutation in colon 

cancer, EGFR mutation and ALK rearrangement in non-small-cell lung cancer, and BRAF 

mutation in melanoma [86]. Such EQA measures involve the implementation of centrally 

organized proficiency testing programs in the form of standardized interlaboratory 

comparisons (round robin trials) at the regional, national and international levels. Such EQA 
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measures have recently been established in different countries for several molecular 

markers in tumor entities outside the nervous system. The results clearly indicate a 

paramount importance of EQA measures to foster harmonization of molecular diagnostic 

testing across different laboratories [86-88]. In neurooncology, a first interlaboratory 

comparison of IDH1 mutation detection in gliomas revealed that testing for IDH1-R132H 

mutation by immunohistochemistry was consistent across the participating institutions, while 

IDH1 sequencing yielded inconsistent results in 2 of 6 participating laboratories [89]. A 

recent pilot study for the determination of MGMT status performed under the auspices of the 

German Society of Neuropathology and Neuroanatomy (DGNN) involved 23 centers in 

Germany, Austria and the Netherlands. Preliminary results of this trial have only been 

published as abstract [90] and indicate that the overall concordance rate in cases that either 

were strongly methylated or completely lacked methylation was good, with few outliers, while 

results in tumors with partial or borderline methylation were highly variable across different 

laboratories. These data lend further support for the necessity of EQA measures to assure 

the quality in diagnostic MGMT testing, which will be indispensable in the future. 

Participation in such studies should be strongly encouraged. This will provide reassurance 

for laboratories showing good performance while laboratories failing to attain sufficient 

testing results may be guided to improve their procedures or, alternatively, may withdraw 

this test from their catalogue.  

 

Targeted therapies in patients with MGMT promoter-unmethylated glioblastomas   

Due to its high prognostic and predictive relevance, assessment of the MGMT status has 

become state-of-the-art in current and planned clinical trials in glioma as a prognosticator 

and to stratify patients [9] or even patient selection into trials accordingly [14-17]. In addition, 

it is nowadays frequently requested in routine diagnostics as a prognostic tool. This said, this 

molecular biomarker, which exists for more than 10 years now, only now has a guideline-

suggested use in clinical neurooncology [91]. Arguments that prevented a regular clinical 

use for patient stratification on the one hand include the technical challenges, including the 
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grey- zone problem, and, most importantly, the lack of meaningful and strategically 

developed therapeutic alternatives to the current standard of care in glioblastoma. In fact, it 

is considered not very appealing to offer a patient whose tumor lacks MGMT promoter 

methylation mere radiotherapy. From the individual patient’s view, even a faint chance of 

success despite molecular evidence may be worth the try, particularly given the generally 

favorable safety and tolerability profile of TMZ and the higher probability to be a long-term 

survivor [92]. From the academic and caregivers perspective, however, it will be difficult to 

generate progress if each patient is offered the same treatment despite better knowledge. In 

this area of conflicts, several trial concepts have been developed, with some trial concept for 

patients with MGMT-unmethylated glioblastomas aiming at the replacement of TMZ in the 

experimental arm for newly diagnosed patients. The biggest challenges in this respect 

include the molecular testing procedure, a non-opportunistic but hypothesis-driven choice for 

the experimental arm, and the definition of the standard treatment. Here, not radiotherapy 

alone but radiochemotherapy with TMZ has been chosen. The reasons being the fear of 

facing false-negative test results or not treating outliers that may still benefit from TMZ. So 

far, this concept was feasible only in Europe, but not in the US.  

 

Optimizing primary treatment in patients with MGMT-unmethylated tumors – alternatives to 

TMZ 

The first trial restricting patient entry according to the MGMT promoter methylation status 

was the S039 trial of the PKC-beta inhibitor enzastaurin added to radiotherapy in patients 

with newly diagnosed MGMT-unmethylated glioblastoma. This single-arm phase II trial set 

the primary efficacy endpoint (PFS at 6 months, PFS6) to 55% to demonstrate superiority 

over a PFS6 of 40% achieved with radiochemotherapy in patients with MGMT-unmethylated 

glioblastoma in the EORTC 26981/22981 NCIC CE.3 trial. Despite interesting data and the 

demonstration that multicenter clinical trials with a molecularly defined entry criterion are 

feasible, this study failed to meet the preset efficacy endpoint and suffered from the missing 

control arm [15]. This trial also suggested that omission of TMZ in the experimental arm of 
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clinical trials in this patient population is not unethical because of potential “undertreatment” 

of these patients since efficacy data in the TMZ-free arm are comparable to the data with 

standard of care. The GLARIUS trial aimed to replace TMZ in the primary treatment with 

bevacizumab and irinotecan (BEV/IRI) in glioblastoma patients lacking MGMT promoter 

methylation. This randomized multicenter phase II study demonstrated an increase of PFS6 

to 71% in the BEV/IRI arm compared with 26% in the TMZ arm. Despite the challenge of 

radiographic definition of progression, this is the first trial thus far reporting efficacy of an 

alternative chemotherapy added to radiotherapy in the treatment of patients with newly 

diagnosed glioblastoma without hypermethylation of the MGMT promoter [17]. The EORTC 

26082 trial has chosen the mTOR inhibitor temsirolimus as a targeted therapy to replace 

TMZ in patients with MGMT-unmethylated newly diagnosed glioblastoma. Data from this 

European randomized controlled phase II study, which completed accrual in 2012, will 

become available in 2014 [16]. The CORE study is a formal companion to the CENTRIC 

trial, in which the integrin inhibitor cilengitide was added to (not replacing) 

radiochemotherapy with TMZ in MGMT- unmethylated glioblastoma patients [14]. In this 

study, radiochemotherapy with TMZ was compared with radiochemotherapy with TMZ plus 

cilengitide at two different dosing schedules in a randomized phase II three-arm design. 

Although negative in this trial, the RT-TMZ plus cilengitide twice-weekly arm showed an 

intriguing OS of 16.3 months when compared with 13.4 months in the control arm and 16.6 

months in the experimental arm of the GLARIUS trial [17] (Table 3). Clearly, the poor 

treatment results in this molecularly defined group should stimulate more activities in this 

prognostically unfavorable patient population. The main advantages are the analysis of the 

interaction of the experimental compound with radiotherapy alone and hence potential 

detection of radiosensitization, the limitation of side effects without the TMZ regimen, and 

the enrichment of the patient population studied. The disadvantages and challenges include 

the heterogeneity of tests used and the more opportunistic than rational drug development 

strategy, which is not focusing on concepts that may be working for patients with MGMT-

unmethylated glioblastomas but simply avoid substrates of MGMT.  
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We expect that there will be more concepts in the future that may benefit from the absence 

of TMZ but rather combine more than one MGMT-independent regimen or use more than 

one molecular biomarker. 

 

Optimizing primary treatment in patients with MGMT-methylated glioblastomas – 

companions for TMZ 

There is only one concluded trial that specifically included newly diagnosed glioblastoma 

patients with MGMT-methylated tumors, i.e. the CENTRIC trial. In this multicenter phase III 

study newly diagnosed glioblastoma patients were randomized after central MGMT testing to 

receive standard radiochemotherapy with TMZ or radiochemotherapy with TMZ plus 

cilengitide (twice per week). The primary endpoint was not met and there was no difference 

between the treatment arms in any of the parameters analyzed. A median overall survival of 

26 months in both treatment arms illustrates the challenge of optimizing an effective primary 

treatment in this favorable patient population [13].  

    

Changing practice: MGMT promoter methylation testing in elderly patients with 

glioblastoma 

Since the initial data from the EORTC 26981/22981 NCIC CE.3 trial [3], there is an ongoing 

debate on a mere prognostic versus predictive and prognostic role for MGMT promoter 

methylation in glioblastoma. Since RTOG0525 did not contain a TMZ-free control group, it 

was designed only to confirm a prognostic role for MGMT promoter methylation, which was 

convincingly shown (Table 1). An important role for MGMT testing in elderly patients with 

glioblastoma was already suggested by the non-randomized ANOCEF trial [93] and a 

prospective cohort study of the German Glioma Network [94]. Recently, biomarker subgroup 

data from two randomized trials, both using either radiotherapy or TMZ chemotherapy but 

not the combination of both as the primary treatment, defined a predictive role of MGMT 

promoter methylation for response to TMZ chemotherapy. These trials suggest the practice-

changing concept of MGMT promoter methylation testing in elderly patients with 
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glioblastoma. In the NOA-08 trial, PFS was longer in patients with MGMT promoter-

methylated tumors who received a dose-intensified TMZ schedule than in those who 

underwent radiotherapy, whereas the opposite was true for patients with MGMT-

unmethylated tumors. Data for overall survival showed the same trend, but were not 

significant [22]. The Nordic trial showed a prolonged overall survival in MGMT-methylated 

glioblastoma patients who received TMZ compared to those who underwent one of either 

(30 x 2 Gy or 10 x 3.4 Gy) radiotherapy regimens (9.7 versus 8.2 months), but similar overall 

survival outcomes for patients whose tumors lacked MGMT promoter methylation (6.8 

versus 7.0 months) [23]. It is tempting to speculate that the higher number of crossovers to 

TMZ (58.5% at recurrence after RT; to RT 46.1% at recurrence after TMZ) in the NOA-08 

trial diluted the overall survival differences. There is increasing evidence to suggest 

fundamental molecular differences between malignant gliomas of different age groups. TP53 

mutation, EGFR amplification, EGFRvIII mutation, PTEN deletion and IDH1 mutation are 

differentially distributed among in glioblastomas of young adults (19-40 years of age) versus 

patients older than 40 years [94]. Glioblastoma of older patients mostly were classified into 

mesenchymal, receptor tyrosine kinase 1 (RTK 1), “PDGFRA” or RTK 2 “classic” subtypes 

[101]. In this cohort, but also in the GGN cohort [94] and the NOA-08 trial [22], IDH 

mutations are very rare in malignant glioma patients above the age of 60. The lack of IDH 

mutations, which are sufficient to generate the prognostically favorable glioma CpG island 

hypermethylator phenotype (G-CIMP) [63] might contribute to the worse prognosis of elderly 

patients. In contrast, the distribution of MGMT promoter methylation in IDH1/2 wildtype 

primary glioblastomas does not appear to vary with age [96]. Therefore, it may be that the 

absence of yet unknown positive prognostic factors allows a clear singling out of predictive 

properties of MGMT in this population.   

Although MGMT promoter methylation testing and also a widely accepted definition of an 

“elderly patients” implies challenges [35,84], current evidence calls for including MGMT 

promoter methylation status determination in the routine diagnostic procedures for elderly 

patients with malignant astrocytoma.  
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Interdependence of MGMT promoter methylation and IDH1/2 mutation suggests a role 

for MGMT testing outside glioblastoma 

A support for a contextual role for MGMT promoter methylation comes from a retrospective 

analyses of anaplastic gliomas. In the NOA-04 and in the EORTC 26951 cohort [97,98], 

MGMT promoter methylation was prognostic and not predictive for better outcome 

independent of treatment with alkylating chemotherapy or radiotherapy. Among the potential 

explanations for these differences was a confounding influence of IDH1/2 mutations, which 

are associated with a CpG island methylator phenotype in glioma (gCIMP) [99]. The most 

obvious difference known between glioblastoma and WHO grade II and III gliomas is the 

frequency of IDH1/2 mutations of 50-70% in diffuse and anaplastic gliomas of WHO grades 

II and III as well as secondary glioblastomas, of 5-10% in primary glioblastomas of younger 

patients, and almost zero in elderly patients with glioblastoma [100, 101].  

A retrospective subgroup analysis from the NOA-04 trial suggested a simple interaction 

model to explain the prognostic versus predictive relevance of the MGMT status in WHO 

grade III versus WHO grade IV gliomas. MGMT promoter methylation is prognostic for 

patients with IDH1/2 mutant gliomas, and thus in the majority of WHO grade III gliomas. In 

contrast, in patients with IDH1/2 wildtype tumors, hypermethylation of the MGMT promoter is 

predictive for benefit from alkylating chemotherapy. This model explains a mainly prognostic 

role in younger patients with anaplastic gliomas and IDH1/2-mutant glioblastoma, and a 

predictive role in elderly patients with IDH1/2-wildtype glioblastoma [102]. The EORTC 

26951 also provides evidence for this interaction, but case numbers available to tackle that 

question were not sufficient. In addition, this trial also showed that MGMT methylation, here 

determined using 450 k data and the MGMT-STP27 model [78], which associated 

methylation at two particular CpG (Fig. 1), is of utmost relevance for the prediction of the 

effect of the procarbazine/lomustine/vincristine (PCV), also mainly alkylating and methylating 

chemotherapy [103] (Fig. 7).  
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Discussion 

In clinical neurooncology, molecular biomarkers are currently in the transition phase from 

primarily research-oriented investigations towards routine application. As outlined in this 

review article, diagnostic testing for MGMT promoter methylation has entered the guidelines 

as a predictive biomarker for elderly patients with glioblastoma based on practice-changing 

academic trials [22,23,91]. In addition, MGMT methylation testing may help in treatment 

decisions in patients with IDH1/2 wildtype anaplastic gliomas [102]. In fact, at many 

institutions the scientific evidence for MGMT being a useful predictive biomarker on the one 

hand and day-to-day decisions in the clinical management of glioma patients on the other 

hand are not well connected yet. This is in part due to limitations in the testing procedure 

and the lack of attractive therapeutic alternatives to the standard of care, but also the grim 

prognosis of the disease, which makes therapeutic approaches with reduced treatment 

intensity less attractive. Until recently, it has been a general consensus that treatment 

decisions outside clinical trials should not be based on the MGMT status. This concept is 

shifting, as many centers would nowadays recognize testing as being relevant in particular in 

the elderly patient population with glioblastoma to determine who should be treated with 

alkylating chemotherapy (with or without radiotherapy, a question that needs to be 

addressed in the future), and who should receive radiotherapy only. However, as novel 

molecular techniques evolve the question of defining clinically relevant molecular subgroups 

of patients in different age groups needs to be addressed. Recent integrative high-

throughput analyses at the genetic, epigenetic and expression levels already have 

demonstrated their value in subclassifying different kinds of brain tumors, including 

glioblastomas with certain prognostic relevance but as yet unknown predictive implications 

[101,104]. However, as next-generation sequencing techniques and microarray-based 

approaches are becoming more widely available, easier to standardize and less subject to 

bias, single marker assessments, as exemplified by the current status of MGMT testing, may 

be replaced by more comprehensive assessments of multiple genetic and epigenetic 

markers, e.g. with 450 k methylation arrays, which may require dedicated expertise in 
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bioinformatics and –statistics. Nevertheless, the requirements for routine testing will remain 

similar to those outlined for MGMT, ranging from availability and reliability of the testing 

procedures, applicability to routinely processed and even tiny tissue specimens, 

establishment of internal and external quality control measures to cost-effectiveness and 

speed of testing.  

Extending the role of MGMT testing in elderly patients with glioblastoma, all future clinical 

trials involving alkylating chemotherapy should assess the MGMT status and include this as 

a stratification parameter. In clinical trials, the concomitant assessment of MGMT promoter 

methylation status by different methods, e.g. MSP and PSQ, as well as critical development 

of biomarkers [105, 106] is encouraged. The relevance of parallel analyses of MGMT mRNA 

and protein expression is still under debate. In most EU trial centers, it is considered justified 

to withhold TMZ from patients with newly diagnosed glioblastoma without MGMT promoter 

methylation in the context of clinical trials. This approach has been used in phase II studies 

led by the EORTC, industry and other study groups in Europe and may have generated 

clinically relevant data for patients with MGMT unmethylated glioblastoma from just one [17] 

out of only three evaluated trials [14-17].  

The present data from the analyses of patients with anaplastic gliomas [102] will stimulate 

the discussion on the standard-of-care arm, RT, in the IDH1 wildtype, MGMT promoter 

methylated patients of the CATNON trial. Also the TMZ alone arm in the reopened CODEL 

trial for patients with unmethylated tumors is at stake, despite the low frequency of 1p/19q-

codeleted/MGMT-unmethylated tumors. Data from these trials need to further validate the 

role of MGMT as a predictive biomarker in the group of patients with IDH1/2 wildtype 

anaplastic gliomas. It may confirm that alkylating chemotherapy produces no benefit in 

patients with MGMT-unmethylated, IDH1/2 wildtype tumors, but will provoke the question 

whether TMZ alone, with deferred RT, may be a sufficient treatment in patients with MGMT 

promoter-methylated and IDH1/2 wildtype tumors. 
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Figure legends 
 

Fig. 1. Assays to determine MGMT promoter methylation. 

Particularly difficult is the definition and validation of the technically and clinically relevant 

cut-off for MGMT promoter methylation. The majority of samples will be classified similarly 

by most tests although different CpGs are interrogated. Misclassification is mainly due to 

incomplete methylation of the CpG interrogated by a given test or larger amounts of non-

neoplastic tissue impacting the signal in the quantitative tests. Numbering of the CpGs, 1-98, 

in the CpG island encompassing the translation start site of the MGMT genes is defined by 

the following coordinates in University of California at Santa Cruz (UCSC) Genome Browser 

GRCh37/hg19, Chr10:131264949-131265710. See visualization of CpG locations in Refs 75 

and 82. 

 

Fig. 2. Regulation of MGMT. Expression and activity of MGMT are regulated via epigenetic 

mechanisms, but also transcription factors (+/- at the promoter), protein-protein interaction 

and miRNA.   

Abbreviations: activating protein (AP)1, cAMP response element-binding protein (CREB)-

binding protein (CBP)/p300 co-activator, hypoxia inducible factor (HIF)1α, N-myc 

downstream-regulated gene (NDRG)1, nuclear factor (NF)kB, specificity protein (SP)1. 

 

Fig. 3. DNA repair mechanisms 

MGMT and other DNA repair mechanisms deal with DNA damage produced by the 

methylating therapeutic drug, temozolomide, in human cells. Temozolomide (TMZ) and 

related drugs cause potentially cytotoxic DNA lesions such as O6-methylguanine (O6-meG, 

red circle) and N7-methylguanine (N7-meG, yellow circle). A, MGMT (O6-meG DNA 

methyltransferase) removes the O6-alkylguanine DNA adduct through covalent transfer of 

the alkyl group to the conserved active-site cysteine and restores the guanine to normal. 

After receiving a methyl-group from O6-meG, MGMT is inactivated, and subject to ubiquitin-
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mediated degradation. A similar suicidal enzyme reaction occurs when MGMT transfers and 

accepts an alkyl-group from O6-benzylguanine (O6-BG) or O6-(4-bromothenyl)guanine 

(PaTrin-2), two therapeutic strategies. B, if an O6-meG DNA adduct escapes MGMT repair, it 

would form a base pair with thymine (blue circle) during DNA replication. The mismatched 

base pair of the persistent O6-meG with thymine is recognized by the mismatch repair 

pathway, resulting in futile cycles of repair leading to cell death. C, N7-meG DNA adducts 

(>70% of total DNA adducts formed by temozolomide) are efficiently repaired by the base 

excision repair (BER) pathway, and normally they contribute little to the cytotoxicity of 

temozolomide. Methoxyamine binds to AP sites produced by methylpurine glycosylase 

(MPG), the first step in BER processing. Methoxyamine-bound AP sites are refractory to AP 

endonuclease (APE, green circle) cleavage, resulting in the blockage of the BER pathway. 

This leads to strand breaks, disrupted replication, and increased cytotoxicity of 

temozolomide. 

(from Clinical Cancer Research 2006, 12(2):328-31 Lili Liu and Stanton L. Gerson, Targeted 

Modulation of MGMT: Clinical Implications [49]) 

 

Fig. 4. Methylation-specific PCR. This most commonly applied method of methylation 

analysis uses bisulphite-treated DNA. Methylation-specific primer pairs are designed by 

including sequences complementing only unconverted 5-methylcytosines, or, in contrast, 

unmethylation-specific, complementing thymines converted from unmethylated cytosines. 

Methylation is determined by the ability of the specific primer to achieve amplification. 

 

Fig. 5. Pyrosequencing. PSQ for MGMT promoter methylation determines the bisulphite-

converted sequence of specific CpG sites in the region. The ratio of C-to-T at individual sites 

is determined quantitatively based on the amount of C and T incorporation during the 

sequence extension. 

In detail, sequencing of a single strand of DNA is done by synthesizing the complementary 

strand one base pair at a time and detecting which base was added at each step. The 
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single-stranded template is immobilized and solutions of A, C, G, and T nucleotides are 

sequentially added. Further, the enzymes DNA polymerase, ATP sulfurylase, luciferase and 

apyrase as well as the substrate adenosine 5’-phosphosulfate (APS) and luciferin are added 

(a).  

The addition of one of the four deoxynucleoside triphosphates initiates the second step (b). 

DNA polymerase incorporates the complementary dNTPs onto the template. This 

incorporation releases pyrophosphate (PPi) stoichiometrically (c).  

ATP sulfurylase quantitatively converts PPi to ATP in the presence of adenosine 5´ 

phosphosulfate. This ATP acts as fuel to the luciferase-mediated conversion of luciferin to 

oxyluciferin that generates visible light in amounts that are proportional to the amount of 

ATP. The light produced in the luciferase-catalyzed reaction is detected by a camera and 

analyzed in a program. Light is produced only when the nucleotide solution complements the 

first unpaired base of the template (d). The sequence of solutions, which produce 

chemiluminescent signals allows the determination of the sequence of the template. 

Unincorporated nucleotides and ATP are degraded by the apyrase before the reaction 

restarts with the next nucleotide (e) [72]. 

 

Fig. 6. Pragmatic approach to MGMT testing  

Necessary steps to reach an efficient and cost-effective diagnosis of the MGMT status.  

 

Fig. 7. Biomarker-driven algorithm for glioma treatment 

Algorithm for the use of molecular markers in gliomas, overcoming separation according 

WHO grades, with resulting treatment recommendations.  
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Table 1 Evidence for the clinical impact of MGMT in glioblastoma 

 

   PFS [months] OS [months]    

Treatment 

regimen 

Age 

[years] 

Patient population MGMT meth. MGMT 

unmeth. 

MGMT meth. MGMT 

unmeth. 

MGMT 

determinat

ion 

MGMT 

meth./unmeth. 

Reference 

WBRT + Cisplatin + 

BCNU* 

 

38-70 Newly diagnosed 

anaplastic 

astrocytoma/ 

glioblastoma 

(n=49) 

21 

 

 

 

8 

 

 

 

>30 

 

 

 

21 

 

 

MSP 

 

40%/60% [5] 

RT/TMZ -> TMZ 

 

≥18 Newly diagnosed 

glioblastoma 

with KPS >70 

(n=38) 

nr nr 62% at 18 

months 

8% at 18 

months 

MSP 68%/32% [59] 

EORTC 26981 

RT (30 x 2 Gy) 

vs. 

RT/TMZ -> TMZ 

18-70 Newly diagnosed 

glioblastoma 

with KPS >70 

(n=573) 

 

5.9 

 

10.3 

 

4.4 

 

5.3 

 

15.3 

 

21.7 

 

11.8 

 

12.7  

MSP 45%/55% [3] 

UKT-03 

RT/TMZ -> 

TMZ/lomustine 

18-70 Newly diagnosed 

glioblastoma 

with KPS >70 

(n=31) 

19 6 34.3 12.5 MSP 42%/58% [111,112] 

GGN*  

 

with RT (n=72)  

 

with RT/TMZ -> 

TMZ(n=229) 

≥18 Newly diagnosed 

glioblastoma 

 

 

 

7.1 

 

11.4 

 

HR (MGMT-

status): 

0.51 [0.38-0.68] 

 

 

 

7.1 

 

6.9 

 

 

9.9 

 

24.1 

 

HR (MGMT-

status): 

0.39 [0.28-

0.54] 

 

 

8.8 

 

12.9 

MSP 44%/56% [4] 
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HR (treatment): 

0.51 [0.38-0.68] 

 

HR 

(treatment): 

0.51 [0.38-

0.68] 

RTOG 0525 

RT/TMZ -> TMZ 

(5/28 days) 

vs. 

RT/TMZ -> TMZ 

(21/28 days) 

>18 Newly diagnosed 

glioblastoma 

with KPS >60 and 

resection 

(n=833) 

 

8.8 

 

11.7 

 

7.1 

 

8.2 

 

23.5 

 

21.9 

 

16.6 

 

15.4 

RT-MSP  

 

[9] 

 

 

Abbreviations: European Organization for Research and Treatment of Cancer (EORTC), methylation-specific polymerase chain reaction (MSP); O
6
-

methylguanine DNA methyltransferase (MGMT), not reported (nr), real-time quantitative MSP (RT-MSP), Radiation Therapy Oncology Group (RTOG), 

temozolomide (TMZ), radiotherapy (RT), progression-free survival (PFS), overall survival (OS), whole brain radiotherapy (WBRT) 

*Indicate cohorts as opposed to clinical trials with a planned intervention. 
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Table 2 Trials for elderly patients with glioblastoma 
 

   PFS [months] OS [months]    

Treatment 

regimen 

Age 

[years] 

Trial population MGMT 

meth. 

MGMT 

unmeth. 

MGMT 

meth. 

MGMT 

unmeth. 

MGMT 

determination 

MGMT 

meth./unmeth. 

Reference 

Controlled trials          

NOA-08 

TMZ 100 mg/m
2
 

(7/14) until 

progression 

vs. 

RT (30 x 2 Gy) 

>65 

(n=373) 

Newly 

diagnosed 

anaplastic 

astrocytoma 

and 

glioblastoma 

with KPS > 60 

 

8.4 

 

 

4.6 

 

3.3 

 

 

4.6 

 

n.r. 

 

 

9.6 

 

7.0 

 

 

10.4 

MSP and RT-

MSP 

  

 

35%/65% [22] 

NORDIC Elderly 

trial 

TMZ 200 mg/m
2
 

5/28, 6 cycles 

vs. 

RT (30 x 2 Gy) 

vs. 

hypofractionated 

RT (10 x 3.4 Gy) 

>60 

(n=291) 

Newly 

diagnosed 

glioblastoma 

with KPS >70 

 

n.d. 

 

n.d. 

 

 

9.7 

 

 

8.2 

(both 

RT) 

 

 

6.8 

 

 

7.0 (both RT) 

RT-MSP 45%/55% [23] 

          

Uncontrolled trials 

[selection] 

         

All 

 

Alkylating 

chemotherapy 

 

RT 

 

RT+ alkylating 

≥18 

(n=301) 

Newly diagnosed 

glioblastoma 

5.2 

 

 

7.7 

 

4.5 

 

7.3 

4.7 

 

 

3.2 

 

5.2 

 

7.2 

8.4 

 

 

8.1 

 

7.8 

 

13.1 

6.4 

 

 

3.7 

 

8.8 

 

10.4 

MSP 58%/42% [4] 
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chemotherapy 

 

 

 

RT/TMZ -> TMZ ≥65 

(n=29) 

Newly diagnosed 

glioblastoma 

4.5 5.5 7.4 7.3 MSP 55%/45% [107] 

RT/TMZ -> TMZ 

(n=40) 

RT 

(n=14) 

unkown 

(n=10) 

 

≥70 

(n=64) 

Newly diagnosed 

glioblastoma 

10.8 5.7 16.1 8.6 MSP 58%/42% [108] 

RT/TMZ -> TMZ ≥65 

(n=37) 

Newly diagnosed 

glioblastoma 

22.9 9.5 n.r. 13.7 MSP 41%/59% [109] 

RT/TMZ -> TMZ ≥70 

(n=83) 

Newly diagnosed 

glioblastoma 

10.5 5.5 15.3 10.2  51%/49% [110] 

 

 

Abbreviations: methylation-specific polymerase chain reaction (MSP); real-time quantitative MSP (RT-MSP) 

 



 1 

Table 3 Trials for patients with glioblastoma restricted to MGMT promoter status 

 

        

Treatment regimen MGMT 

promoter 

Trial population PFS [months] OS [months] Endpoint Outcome Reference 

S039 

RT/Enzastaurin 

 

unmeth. Newly diagnosed glioblastoma 

with KPS > 70 

 

6.6 

 

 

 

15.0 

 

 

PFS-6 

(53.6%) 

negative [16] 

Glarius 

RT/TMZ 

vs. 

RT/Bevacizumab+Irinotecan 

 

unmeth. Newly diagnosed glioblastoma 

with KPS >70 

 

6 

 

9.7 

 

14.8* 

 

16.6* 

PFS-6  

(26.2%) 

 

(71.1%) 

positive [13] 

EORTC 26082 

RT/TMZ 

vs. 

RT/Temsirolimus 

unmeth. Newly diagnosed glioblastoma 

with KPS >70 

ongoing ongoing OS12 ongoing [17] 

CORE 

RT/TMZ 

vs. 

RT/TMZ + Cilengitide (x2/week) 

vs. 

RT/TMZ + Cilengitide (x5/week) 

unmeth. Newly diagnosed glioblastoma 

with KPS 

 

4.1 

 

5.6 

 

5.9 

 

13.4 

 

16.3 

 

14.5 

OS negative [15] 

        

CENTRIC 

RT/TMZ 

vs. 

RT/TMZ + Cilengitide 

meth. Newly diagnosed glioblastoma 

with KPS 

10.5 

 

13.5 

26.3 

 

26.3 

OS negative [14] 

*50% events (immature data) 

Abbreviations: Karnofsky Performance Status (KPS), radiotherapy (RT), O6-methylguanine DNA-methyltransferase (MGMT), temozolomide (TMZ), 

overall survival (OS) 




