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AbstractÐWe describe MGV, an integrated visualization and exploration system for massive multidigraph navigation. It adheres to

the Visual Information-Seeking Mantra: overview first, zoom and filter, then details on demand. MGV's only assumption is that the

vertex set of the underlying digraph corresponds to the set of leaves of a predetermined tree T . MGV builds an out-of-core graph

hierarchy and provides mechanisms to plug in arbitrary visual representations for each graph hierarchy slice. Navigation from one level

to another of the hierarchy corresponds to the implementation of a drill-down interface. In order to provide the user with navigation

control and interactive response, MGV incorporates a number of visualization techniques like interactive pixel-oriented 2D and 3D

maps, statistical displays, color maps, multilinked views, and a zoomable label based interface. This makes the association of

geographic information and graph data very natural. To automate the creation of the vertex set hierarchy for MGV, we use the notion of

graph sketches. They can be thought of as visual indices that guide the navigation of a multigraph too large to fit on the available

display. MGV follows the client-server paradigm and it is implemented in C and Java-3D. We highlight the main algorithmic and

visualization techniques behind the tools and, along the way, point out several possible application scenarios. Our techniques are

being applied to multigraphs defined on vertex sets with sizes ranging from 100 million to 250 million vertices.

Index TermsÐExternal memory, visualization, massive data sets, graphs, hierarchies.
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1 INTRODUCTION

ONE of the great visualization challenges today is the
representation and fluid navigation of complex sys-

tems [19]. These include the World-Wide Web [9], the

Internet backbone [10], telephone call graphs [27], coauthor-

ship and citation networks of scientists [16], [17], [14], the

intersection graph of boards of directors of large companies

[18], the topology of food webs [3], [4], electrical power

grids, cellular and metabolic networks [5], [6], [7], [8], and

the neural network of certain nematode worms [15]. There

has been renewed interest in the study of the structure and

dynamics of complex networks [2]. Processing, querying,

exploring, and visualizing these massive data sets pose a

series of interesting computational and visual challenges.
We concentrate on data sets that have an underlying

multidigraph structure that is very large but of sparse

density and low diameter. Usually, the application depen-

dent information can be modeled as a special collection of

edge attributes. Our focus is on the basic multidigraph

structure. This impacts the data set storage organization

and the retrieval of its associated information. Geographic

information systems, telecommunications traffic, World-

Wide Web, and Internet data are prime examples of the

type of graphs whose navigation can be guided by our

approach.

1.1 The Bottlenecks

When visualizing massive data, two of the most funda-
mental issues are those associated with the I/O and screen
bottlenecks [12]. Sheer size is the first fundamental issue
that needs to be addressed when the data to be dealt with is
considered massive. In our case, for one of the data sets, we
receive a stream of about 275 million records daily, yielding
about 450 GBytes per month. Having access to several SGI
Origin-2000 servers, 5 terabytes of disk, and an SGI Onyx
connected to a 5; 120 � 2; 048 power wall certainly helps in
the processing, but it does not circumvent two important
bottlenecks: I/O bandwidth and screen real estate.

The I/O bottleneck is caused by the substantial difference
between CPU speeds and external memories. Algorithms
whose performance is stated in terms of not just the input
size, N , but also in terms of the size of main memory, M,
and of the disc block transfer size, B, are called external
memory algorithms.1 With this framework in mind, the first
requirement for a data set to be considered massive is that
its size (N) must be larger than the size of available RAM
(M). In the case of multidigraphs, N is essentially O�jEj�,
where jEj is the number of edges of the underlying graph.

An intermediate case, quite relevant in practice, occurs
when the set of vertices fits in RAM but not the edge set
(this is called the semi-external case in [27]). The justifica-
tion for this model relies on the increased availability of
large RAMs. For example, the essential information
associated with 250 million vertices fits nicely in 2 GBs of
RAM. In this case, in principle, one can process any
secondary storage multidigraph with vertex set up to this
size.

The screen bottleneck is caused by the simple fact that the
amount of information that can be displayed at once is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 8, NO. 1, JANUARY-MARCH 2002 21

. The authors are with Information Visualization Research, Shannon
Laboratories, AT&T Labs-Research, 180 Park Ave., Florham Park, NJ
07932. E-mail: {abello, jlk}@research.att.com.

Manuscript received 23 apr. 2001; revised 16 May 2001; accepted 10 July
2001.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 114500. 1. See J. Abello and J. Vitter [31] for a recent review of this subject.

1077-2626/02/$17.00 ß 2002 IEEE



ultimately limited by the number of available pixels and the
speed at which the information is digested by a user. Even
though a large number of pixels diminishes the screen
bottleneck, it does not help the user's visual processing
abstraction unless the display metaphor incorporates some
global data set semantics. Luckily, a variety of massive
multidigraphs are implicitly defined on vertex sets that
correspond to the leaves of a predefined hierarchy T . When
we can induce such a hierarchy, we can use it to guide the
exploration and visualization of the data set. This is done by
defining an inherited equivalence relation on the multi-
digraph edge set (see Section 2). The hierarchy makes it
possible for a user to digest one manageable portion of the
data at a given time.

Having a hierarchical partition of the edge set is essential
for processing, but it is not enough for visual navigation. To
ease the screen bottleneck, what is required is a mapping
from the edge partition to the available display. This
amounts to a second level clustering of the vertex hierarchy
T , where each tree vertex has out-degree bounded by a
parameter d that is display size dependent. This is one of
the aspects that the notion of graph sketches encapsulates.

1.2 Approach

In order to deal in a unified manner with both the I/O and
the screen bottlenecks, we base our work on a computa-
tional metaphor called hierarchical graph slices and on a
corresponding visual metaphor called graph sketches. The
main idea is to build a hierarchy of multidigraph layers on
top of the input multigraph. Each layer is obtained by
coalescing disjoint sets of vertices at a previous level and
aggregating their corresponding weighted edges. A collec-
tion of edges in a layer whose aggregation produces an
edge at the next higher layer is called an edge slice. Several
ªnaturalº operations provide hierarchical edge browsing.

In order to use edge slices as an effective tool for visual
navigation, we require a mapping of a hierarchical partition
of the edges of the input graph G into a hierarchical
partition of the screen space. Each such a mapping is called
a Graph Sketch [13]. Good graph sketches offer simple views
of a very large graph macro-structure. These views are
zoomable and parameterized by specific subgraph thresh-
olds. When the obtained subgraph is small enough to fit on
the available screen, the graph representation and its
processing can be varied. These representations may
include 2D needle-grids, Star-Maps, 2D surfaces in R3, or
conventional graph drawings. Slices have different proper-
ties depending on their depth, as shown in Fig. 1. Slices at a
greater depth are represented by more pixel hungry
representations. Representations can be chosen automati-
cally based on properties of the data or can be plugged in
manually by a system user.

Many of our visualizations depart strongly from the
conventional visual graph representation that draws graphs
as nodes and edges unless the slice being considered is very
sparse and defined on a very small number of vertices and
edges. When facing a dense subset of edges, we use color
maps and adjacency matrix-based visualizations since they
are likely easier to digest. Conventional graph representa-
tions like the one shown in Fig. 2 are of very limited use for
the range of sizes being considered in this work. This paper

presents matrix and color map-based techniques that are

particularly helpful in visualizing dense slices. We also

introduce some novel sketch representations of massive

multidigraphs that can be used to drive their navigation.

Graph Slices and Graph Sketches provide a unified view of

computation and visualization on very large graphs. Graph

Sketches are particularly useful when a predefined hierarchy

tree T is not known in advance. They provide visual

indexes that guide the navigation of a multidigraph too

large to fit on the available display.
After a vertex hierarchy T is computed, the correspond-

ing graph-layers can be updated incrementally. They are

suitable for the processing, navigation, and visualization of

external memory graphs [27] whose vertex sets are

hierarchically labeled.
A by-product of the hierarchical graph-slices metaphor is

that a commercial relational database can be used to query

the multidigraph hierarchy with very little extra effort.

Also, hierarchical graph-slices are amenable to distributed

visual exploration.
Our current prototype (termed Massive Graph Visualizer)

is a system with the following highlights:
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Fig. 1. Graph layers of a hierarchical decomposition. Layers in deeper

levels tend to be sparser.

Fig. 2. Traditional nodes-and-edges representation of a fully connected

graph with 20 nodes.



. It handles hierarchical views of massive multi-
digraphs.

. It consists of a C-computational engine (server) and
a Java-3D visualizer (client), which may reside on
separate machines. In fact, the visualizer can run on
multiple desktops allowing different users to navi-
gate a massive data set independently.

. It provides a drill-down zoomable interface together
with a collection of multilinked views and customiz-
able color maps.

. Context is maintained by using multiple cameras.
One provides an overview and the others trail each
other depending on a user-specified zooming inter-
val. A persistent history of previous navigations of
the hierarchy is maintained.

. In the case of geographical data, displays such as
the Star-Map (Section 5.2) allow the superposition
of graph neighborhood information on a given
geography.

. Visual aggregation can be obtained by special views,
such as our multicomb view (Section 5.3) or by an
adaptation of the circle of segments technique [25].

. The effective navigation of very large graphs is
demonstrated by the use of Graph Sketches based on
tree maps and orthogonal bars.

. Users can plug in alternative visualizations of the
hierarchical graph slices and can apply their own
filters to the slices.

1.3 Related Work

Drawings that display a graph completely have the

advantage of showing global structure; however, for large
graphs, such drawings become impractical. On the other

hand, partial drawings allow the display of larger graphs,

but they fail to convey their global structure. Multilevel
views offer the possibility of drawing large graphs at

different levels of abstraction. The higher the level of

abstraction, the coarser the provided graph view. Com-
pound and clustered graphs have been considered in [33],

[34], [35], [36]. The use of binary space partitions to produce

graph clusters was introduced in [32]. However, the quality
of the corresponding multilevel drawings depends heavily

on the initial embedding of the graph on the plane.
Recently, force-directed methods have been considered

for the drawing of large graphs. In [37], a hierarchy of
subgraphs is associated with a large graph. One funda-

mental step of the algorithm is the use of the all-pairs

shortest paths, making its applicability to very large graphs
limited since its space complexity is quadratic. The scaling

of displacement vectors is based on an expensive Newton-

Rapson optimization method.
In [38], some of the limitations of force-directed based

methods for drawing large graphs are addressed. A central

idea is to produce graph embeddings on Euclidean spaces

of high dimensions and then project them into a two or
three-dimensional subspace. The method is based on a

maximal independent set filtration of the vertexes of the

graph and it is not apparent how to obtain, in an I/O
efficient manner, such a filtration in the case of external

memory graphs.

The work presented here grew out of the graph surfaces
metaphor presented in [30]. The primary difference is that
2D surfaces are not easy to refine locally. By choosing
different representations for the higher levels of the
hierarchy, we get very fast local refinement, a very intuitive
visual aggregation operation, and visually pleasant anima-
tions of data set evolution.

The vertex set of our hierarchy is a superset of the vertex
set of the underlying multidigraph. This makes our
approach quite different from other graph visualizations
based on spanning trees of the underlying graph (see
Munzner [42], Wills [29]). We present some methods for
computing from the input graph, hierarchy trees that can be
turned into efficient Graph Sketches. Graph Sketches can be
viewed as visual navigation aids that help the user drive a
computation toward a feasible set of answers.

The use of hierarchies for the exploration of large graphs
is explicitly mentioned in [28]. Our work can be viewed as
an automation of these ideas that provides a uniform
overall view of massive graph data together with scalable,
efficient, and flexible visual navigation tools.

The layout of the paper is as follows: In Section 2, we
discuss graph slices, the main elements of the computa-
tional engine, and its fundamental operations and I/O
performance. In Section 3, we present the notion of graph
sketches and, in Sections 4 and 5, we discuss the correspon-
dence between the slice hierarchy and the different visual
representations. Section 6 contains a Breadth First Search
based sketch that has been used to detect dense subgraphs
on very large graphs. The components of the Java-3D
visualizer and the main interface issues are the contents of
Section 7. Section 8 points out some future research
directions.

2 HIERARCHICAL GRAPH SLICES

In order to handle very large graphs, a hierarchy of
multidigraph layers is constructed. Each layer represents a
multidigraph obtained from an equivalence relation de-
fined on the edge set of the input multigraph. Each layer
edge represents an equivalence class of edges at the previous
layer. Each such equivalence class constitutes what we call
an edge-slice. Zooming operations are provided that allow
the user to explore the graph slice hierarchy in a fluid manner.

We introduce these concepts more formally next. Fig. 3
illustrates our definitions.

2.1 Definitions

. For a multidigraph G, let V �G� and E�G� denote the
set of vertices and edges of G, respectively. It is
assumed that a function m : E ! N assigns to each
edge a nonnegative multiplicity. With these conven-
tions, a multidigraph is a triplet G � �V ;E;m�.

. For a rooted tree T , let Leaves�T � = set of leaves of T .
Height�T � = maximum distance from a vertex to the
root of T ; T �i� is the set of vertices of T at distance i
from the root of T . For a vertex x 2 T , let Tx denote
the subtree rooted at x. Vertices p and q of a rooted
tree T are called incomparable in T if neither p nor q is
an ancestor of the other.
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. Given a multidigraph G � �V ;E;m� and a rooted

tree T such that Leaves�T � � V �G�, the multiplicity

of a pair of vertices p and q of T is m�p; q� �
P

�x;y�2E�G� m�x; y� f o r x 2 Leaves�Tp� a n d y 2
Leaves�Tq�: An incomparable pair �p; q� is called a

multiedge when m�p; q� is greater than zero. When

both p and q are at the same distance from the root of

T , the multiedge is called horizontal. A nonhorizontal

multiedge between vertices p and q where p is a leaf

and Height�q� > Height�p� is called a primary cross-

ing multiedge.
Notice that a horizontal multiedge �p; p;m�p; p��

represents the subgraph of G induced by Leaves�p�
and m�p; p� is its aggregated multiplicity.

. For G and T as above, the hierarchical graph
decomposition of G, given by T , is the multidigraph
H�G; T � with vertex set equal to V �T � and edge set
equal to the edges of T union the multiedges
running between incomparable pairs of T .

Because H�G;T � contains a very large collection

of multiedges that can be computed from the

horizontal and primary crossing multiedges as defined

above, we take the approach of maintaining just

these multiedges and computing the remaining ones

on demand. This submultigraph is denoted by

LH�G; T �. LH�G;T � can be viewed as a collection

of layers representing an equivalence relation on

E�G�. Each layer contains horizontal multiedges only.

The primary crossing multiedges indicate interlayer

data relations. It is precisely this layered view of a

graph what allow us to explore it visually.
. For G and T , as above, the i-layer of G is the

multidigraph with vertex set T �i� and all the
corresponding horizontal multiedges.

. For a multiedge �x; y� of an i-layer, its edge-slice is the
submultigraph of the (i+1)-layer whose nodes are the
children of x union the children of y and whose
multiedges are those in the (i+1)-layer running
between these nodes.

. A good mental picture of what the definitions
convey is that each multiedge �p; q� has below it a
hierarchy of edge-slices where each level represents
an aggregation of previous levels and where the
bottom most level is the subgraph of G with vertices
Leaves�Tp� union Leaves�Tq� and edges of G running
between them. This is the justification for naming
this section Hierarchical Graph Slices.

2.2 Constructing LH�G; T �
The procedure Construct LH�G;T �, presented in [30], takes

as input a stream of edges representing a multidigraph G

and a rooted tree T such that Leaves�T � � V �G�. It returns
as output a disk resident, multilevel index structure to the

edges of LH�G; T �.
Lemma 1. LH�G;T � can be constructed in a bottom-up fashion

[30], [32] in time

O�jV �G�j �Height�T � � jE�G�j�:

Space requirements are similar, making LH�G;T � an

efficient data structure to use for our visualization system.
Because LH�G; T � is really T plus the collection of layers

of G given by T , we can think of each layer as being

represented by a two-dimensional grid and T as a road map

to navigate the slice hierarchy.

2.3 Handling the I/O Bottleneck

When G is an external memory graph residing on disk there

are three cases to consider: 1) T fits in main memory, 2) T

does not fit but V �G� does, and 3) V �G� does not fit. The

first two cases correspond to what is called the semiexternal
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version ([27]) and the third one is referred to as fully

external. We center our discussion on the first two cases

since they suffice for our applications. The third case is not

fully understood yet and its solution may take something of

a breakthrough both at the algorithmic and at the systems

level. In the first case, the edges of G are read in blocks and

each one is filtered up through the levels of T until it lands

in its final layer. This can be achieved with one pass.
In the second case, a multilevel external memory index

structure is set up to represent T as a parent array according

to precomputed breadth first search numbers. Filtering the

edges through this external representation of T can be done

in no more than Height�T � scans over the data.
As pointed out in the introduction, the increased

availability of large RAMs makes it realistic to assume that

the vertex set fits in main memory. With multigigabyte

RAMs being a reality and using our approach, one can

process, in principle, any secondary storage multidigraph

defined on hundreds of millions of vertices.

2.4 Navigating the Slice Hierarchy

The condition that Leaves�T � � V �G� guarantees that every
T �i� determines a partition of V �G� with every higher level

being just a partial aggregation of this partition. This

implies, in turn, that, from any given layer, one can move to

any of the adjacent layers by partial aggregation or by

refinement of some sets in the corresponding partition. This

is precisely the information that is encoded in LH�G; T �.
Namely, from any given multiedge e in LH�G; T �, one can

obtain the set of edges in G that are represented by e. This is

the only operation that is needed to navigate since vertices

in T can be easily replaced by their children by just

following the tree edges. Nonprimary crossing edges between

nonleaves of the tree can be expanded by using the basic

operations defined below. The I=O complexity is propor-

tional to the difference in height between the two end

points.
The main navigational operations used by the computa-

tional engine are:

. Replacement: Given a vertex u in T , replace�u�
substitutes u by its children. This can be implemen-
ted by generating edges f�u; ui� : ui is a child of u in
Tg and vertices children (u).

. Vertex zoom: Given a vertex u in T with children
u1; u2; . . . ; uk, zoom�u� generates f�u; ui� : ui is a child
of u in T and pairs (ui; uj) such that, in the input
multidigraph, the set of edges from Leaves�ui� to
Leaves�uj� is nonempty}.

. Edge zoom: Given an edge �u; v�, zoom��u; v�� is
defined as follows: {delete the edge �u; v�; replace�u�;
replace�v�; add all the edges in the next layer that
run from the children of u to the children of vg.

Suitable inverses of the operations above can be defined

provided certain restrictions are obeyed. For example, the

inverse of replace is defined, for a set of vertices, only if they

are on the same layer and if they constitute all the children

of a vertex u.

3 VISUAL NAVIGATION VIA GRAPH SKETCHES

In order to visualize data sets with sizes of two or three
orders of magnitude (typically around 250 million records)
larger than the screen resolution (typically about one
million pixels), it is imperative to use a decomposition of
the visual space that reflects some structural view of the
data. A Graph Sketch is a screen zoomable macroview of a
very large graph. The goal is to use the sketch to guide the
search for ªinterestingº subgraphs. The sketch should be
tailored to the task at hand. For example, if the goal is to
find dense subgraphs, the sketch needs to incorporate some
notion of distance. This, in turn, affects the type of recursive
clustering that will be used to define the sketch. In the
applications section, we discuss a sketch that has been used
successfully in the detection of dense subgraphs in very
large graphs. In general, a good deal of ingenuity will be
necessary to design sketches that become effective visual
navigation aids. With this framework in mind, designing a
good navigation sketch for a particular problem becomes
the central algorithmic question that needs to be resolved
before a useful interactive visualization can be proposed. In
this context, visualization is no longer just a presentation
aid; it becomes part of the computational process.

A sketch for a graph G is essentially a planar multi-
digraph defined on a partition V0; V1; . . . ; Vk of V �G� that is
embeddable on the available pixel array. For a given graph
problem P , if a solution on G can be obtained from the
restrictions of P to the Vis, then, in principle, one can use
divide and conquer to search for a solution to P . The planar
graph separator theorem ensures that, for a certain class of
graph problems, there are nontrivial sketches that guide the
assembly of global solutions from local ones.

Given an algorithm that computes a sketch for a graph G,
it can be used recursively to generate a tree T such that
Leaves�T � represent a refinement of the original partition
defining the sketch. This hierarchy tree T determines a
hierarchical partition of E�G�. This means that a detailed
view of an sketch edge can be obtained by zooming into it.
In other words, from the initial planar embedding of the
sketch, one can zoom in locally into any of the edges. This
locality provided by the planar clustering allows the user to
explore the multidigraph edge hierarchy in a fluid manner.
Of course, all of this is possible if the detailed view of a
macroedge can be computed efficiently. We will discuss in a
later section how and in what circumstances this is possible.
Next we introduce the sketch related notions more formally.

3.1 Definitions of Graph Sketches

. A multidigraph G0 � �V 0; E0;m0� is called a k-view of
a multidigraph G � �V ;E;m� if V 0 is a partition of V
with k subsets, where �u0; v0� is an edge in E0 iff there
exists u in u0 and v in v0 such that �u; v� is an edge in
E. It is also required that

m0�u0; v0� �
X

�u;v�2E�G�
m�u; v�

for u 2 u0 and v 2 v0.
. For a given graph problem P , a k-view of a multi-

graph G is called P-good, if any solution to P on G
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can be efficiently computed from the solutions to P ,
on the subgraphs induced by each of the sets of the
partition that define the k-view.

. A d-sketch of a multigraph G � �V ;E;m� is a planar
embedding of a k-view of G where k is no more than
���

d
p

and d is a display dependent parameter.
The goal is to devise good d-sketches for problems

on very large graphs.
. Recall the definition of LH�G; T � from the previous

section. It consists of a collection of layers represent-
ing an equivalence relation on E�G�. In order to
navigate LH�G;T �, we need to make sure that each
node of the underlying hierarchy tree T has no more
than

���

d
p

, where d is the number of pixels on the
display array D. This corresponds to computing a
d-sketch for each subgraph of LH�G; T � that is
obtained by zooming into a multiedge of the form
�p; p;m�p; p��. This computation only needs to be
done in advance for the first couple of layers of
LH�G; T �. A good mental picture is to think of
transforming T into another hierarchy tree T 0 where
the degree of each of its internal vertices has been
reduced at the expense of higher depth. This in turn
corresponds to having an equivalence relation on
E�G� that is a refinement of the original one. Call the
corresponding multigraph LH�G; T 0�. With this in
mind, we start with a d-sketch of the first layer of
LH�G; T 0� and expand the self-loop multiedges
�p; p;m�p; p�� recursively, leaving the remaining
horizontal multiedges to be computed on demand.
In other words, the self-loops act as a basic
coordinate system for the entire data set. When their
corresponding edge-slices get computed, the funda-
mental data required by the other horizontal multi-
edges is simultaneously preprocessed in preparation
for future queries. Denote the collection of self-loops
�p; p;m�p; p�� in LH�G; T 0� by SLH�G;T 0��. Next, we
discuss how algorithms that compute sketches can
be used recursively to generate hierarchical parti-
tions that are refinements of the original partition
defining the sketch.

3.2 Constructing SLH�G; T 0�
Given a procedure Construct-Sketch(G) that produces a
d-sketch for G with partition V0; V1; . . . ; Vd, Construct-Sketch
is invoked for each i on the subgraph induced by Vi. It is
important to notice that all these invocations are indepen-
dent of each other and that by the end of the computation of
the d-sketch, only references are kept from each obtained
multiedge to the actual input data that it represents. Only
the subgraph to be expanded needs to reside in memory.
Care needs to be taken to carry with each call a mapping
from the current vertex names to the local ones. The depth
of the recursion is controlled by the number of available
pixels d, a time or space budget, and problem defined
parameters. When the recursion is finished, a data structure
representing the obtained hierarchy tree and a mapping
from the tree leaves to the partition of V �G� that they
represent is produced. This data structure may reside in
memory or on disk, depending on the amount of available
RAM. Notice that the complexity of constructing

SLH�G;T 0� depends strictly on the complexity of the
procedure Construct-Sketch and on the quality of the
obtained partition determined by T 0.

3.3 Computing the Edge Slice Hierarchy Associated
with a Horizontal Multiedge Not in SLH(G,T')

Given a hierarchy tree T 0 and a disc resident index from
multiedges �p; q;m�p; q�� to their corresponding subgraphs
G��p�; �q��, the computation of the edge-slice hierarchy
represented by �p; q;m�p; q�� is obtained by using the
procedure Construct-LH(G, T') of Lemma 1. It takes as
input a graph and a hierarchy tree and produces as output a
multilevel index structure to the corresponding edge-slice
hierarchy. This procedure runs in time

O�jV �G��p�; �q���j � Level��p; q�� � jE�G��p�; �q���j�:

It is worth noting that this computation depends mainly on
the level of the multiedge. This suggests that a measure of
quality of a hierarchy for navigation purposes should take
into consideration the number of horizontal edges that are
nonself loops at every level together with the size of the
subgraphs they represent. So, sparseness of each horizontal
subgraph at each layer appears to be an important guiding
principle. Criteria that involve the number of horizontal
edges at each level together with the sizes of the subgraphs
they represent can be used to devise algorithms that
transform a hierarchy tree into another with the objective
of improving the quality of the underlying vertex partition.
We will address these and related issues in a future paper.

Because LH�G;T 0� is really T plus the collection of layers
of G given by T 0, we can think of each layer as being
represented by a two-dimensional grid and T 0 as a road
map to navigate the sketch hierarchy.

3.4 Sample Sketches

As discussed previously, the main task in designing a good
sketch for a problem P is to devise a partitioning scheme of
the input graph that guarantees that the space of solutions
for P can be obtained by a suitable combination of the space
of solutions of P restricted to the subgraphs induced by
each set in the partition. Of course, this may not be the case
for all problems and we know of no easily computable
criteria to classify a problem as partitionable (in the sense
described here). Nevertheless, we provide concrete exam-
ples of sketches for some NP-hard problems.

. The most direct example of a sketch comes from
graphs whose vertices have associated a geographic
location. A classical example is the graph whose
vertices are telephone numbers and the edges
consist of phone calls among them. In this case, the
hierarchy T on the vertex set is preestablished and
consists of the subdivision of the earth in continents,
countries, states, counties, towns, etc. An embedding
of the vertex hierarchy is provided by a cartographic
map. The difficulty with this embedding is that
higher level slices become very dense and, if we
want to draw the slice edges, we are forced to live
with edge crossings. The idea is not to draw the
edges at all. In [12], a star map drawing was
proposed in order to place the underlying graph
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on top of the map embedding. An alternative view
can now be provided by using a matrix-based
sketch. The rows and columns of the matrix are
ordered according to a Peano-Hilbert ordering
determined by the geographic position of the
vertices. This allows for the visual correlation of
the two views via multilinking (see Fig. 4). In
summary, matrix-based views correspond to a
mapping of a partition of the edge set of G into a
partition of the display. Edge crossings are not an
issue anymore.

. Consider the problem of finding a largest cardinality

clique in an arbitrary connected graph G. A Breadth

First Search tree of G determines a partition of V �G�
defined by distances from the BFS root. The

corresponding multigraph is planar (in fact, ignoring

directions, it is simply a path) and the number of sets

in the partition is just the depth of the BFS tree. So,

the only condition that could fail for this multigraph
to be considered a sketch is that the depth of the BFS

tree is larger than
���

d
p

, where d is the number of

available pixels. In this case, successive folding of

the path can be done until it fits on the available

screen. More generally, any planar k-view can be

transformed into a related planar d-view where

d < k.
The assertion that a BFS-based partition of V �G� is

a good d-sketh, for the maximum clique problem,

follows from the observation that cliques of G are, by

definition, induced subgraphs where all the vertices

are at distance exactly 1. Therefore, cliques can span

at most two consecutive levels of any BFS tree. A

corresponding screen embedding is presented in the

applications section (Section 6).

. The Network Decomposition Problem presented in
[45] consists of finding a coloring of V �G� with a
distance parameter l such that:

- Each color class is partitioned into an arbitrary
number of disjoint clusters,

- The shortest path distance between any pair of
nodes in a cluster is at most l, and

- Clusters of the same color are at least distance 2
apart.

The goal is to find such a decomposition of a
network where both the number of color classes and
the distance parameter l are both O�log�n��, where n
is the number of vertices in G.

Despite the apparent similarity between this
problem and the clique problem, such a decomposi-
tion can be found in optimal time O�jEj � n� by a
simple greedy construction. This decomposition can
be used as a base for a sketch, but it is not clear for
what class of graph problems this is a good sketch in
the sense defined in this section.

4 VISUAL EXPLORATION

We are able to explore very large graphs by starting with
very simple structural macroviews and then navigating
them via hierarchical slices. Our system allows the user to
begin with a visualization of an initial layer and
interactively focus on selected edges, which can be
zoomed in to produce a visualization of a slice from
the next layer down the hierarchy. Currently, the system
uses a mouse/keyboard input interface. Using joysticks
and gestures to navigate the environment is a possibility
worth exploring. The best representation for a particular
slice depends on properties of the graph representing that
slice, so our system allows a variety of visualization
techniques to be used for each slice. In the case of highly
dense slices, which are usually encountered in higher
layers of the slice hierarchy, we are often better off using
adjacency matrix style visualizations since the number of
edges is too large to effectively use the traditional nodes-
and-edges visualization.

In our experience, the process of drilling down on slices
works well to explore the real-world multidigraphs we are
dealing with. Such data sets have highly skewed distribu-
tions and this skewness can be directly observed by the
visual cues in our 2D and 3D representations. For example,
when we are dealing with phone records (calling frequency
or total minutes of call), we are naturally interested in areas
of larger edge weights. Looking at the grid representation
shown in Fig. 5, we can quickly determine such edges using
the inclination and color of the sticks. We can then zoom
into these sticks to obtain more refined views.

We now describe in more detail our scheme to visualize
very large multidigraphs. In this context, large refers to data
sets that do not fit into main memory. Our system consists
of two main components: the C computational engine and the
Java-3D graphical engine. Given a large graph as input, the
computational engine uses the approach outlined in the
previous sections to cluster subgraphs together in a
recursive fashion and generates a hierarchy of weighted

ABELLO AND KORN: MGV: A SYSTEM FOR VISUALIZING MASSIVE MULTIDIGRAPHS 27
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the US and color and size represent the density of phone calls made

between pairs of states.



multidigraphs. The edge-slices in each layer of this

hierarchy are sufficiently small to fit in main memory.
A typical large and realistic data set may have a

number of interesting patterns and trends that informa-

tion visualization and data mining applications want to

explore. However, providing all this information in one

shot might be too difficult to analyze or understand. In

our metaphor, we amortize the visual content in every scene

with the constructed graph hierarchy. Further, the

reduced size of each edge-slice makes it possible to

provide the necessary real-time feedback in such an

exploratory setting. As the user traverses deeper into

the hierarchy, the scene displayed becomes more detailed

in a restricted portion of the data set.
The graphical engine has two primary functionsÐ

generating graph representations for individual slices in

H�G;T � using the navigation operations defined in the

previous section and displaying appropriate visual cues

and labeled text. One of the aims is to help the user have

intuitive understanding along with complete navigation

control.

We now describe the main visual primitives that allow a
user to move from one level of the hierarchy to another
while changing the visual representation if necessary.

4.1 Zooming

As the user is viewing a particular slice, he/she can use the
mouse or keyboard to pan, rotate, or zoom the image. A
threshold can be set which defines between which zoom
factors the visualization is valid. If the user zooms far
enough in or out to exceed the threshold, a callback is
invoked which replaces the current slice with a new slice.
When zooming, the computation engine retrieves a new
slice representing the closest edge to the center (which is
where we are zooming into) and the slice is placed on a
stack. When zooming out, the corresponding slice is
retrieved from the stack.

4.2 Views

A variety of visualizations can be used to display a given
slice. A default is chosen automatically based on properties
of the graph, but the user is presented with a list of
visualization types that can be selected. If an alternate view
is selected, the current visualization is substituted by the
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Fig. 5. A needle grid view of call data. Each axis represents the states of the US and density of phone calls made between pairs of states is

represented with a needle with multiple visual cues: color, angle, and length.



chosen replacement. Our system keeps track of the
preferred view in case the user navigates to other slices
and then returns to a slice. Moreover, several mechanisms
are provided that allow the user to plug-in his/her own
slice representation.

When multiple views of a slice are used simultaneously,
they can be linked together. As the mouse passes over
elements in one view, other views highlight the correspond-
ing elements in their view.

4.3 Selection

The user interface allows for nodes to be selected with the
mouse. A list of selected nodes is maintained by the system
which can be used by different visualization methods.
Typically, the selection is used to display a subgraph of the
current slice. For example, if we are displaying a graph
whose nodes are all states in the US, we could select a
handful of states in which we are interested and limit our
display to only those nodes and related edges. When the
selection changes on one view of a graph, it is appropriately
updated on corresponding linked views.

4.4 Slice Computation

Our computation engine does not need to compute the
entire H�G; T � a priori since it is likely that a user will only
navigate through a subset of the data. Therefore, our engine
runs in concert with the visualization interface and acts as a
server. The interface starts off by requesting an initial slice
from the server. This slice is converted to a visual
representation, which is navigated by the user. If the user
selects to zoom into an edge, the interface sends a request to
the server to obtain a new slice. The engine can compute
this slice on the fly or simply return the contents of a
precomputed slice.

5 SLICE VIEWS

This section describes some of the built-in visualization
techniques that can be used to display graph slices. MGV
provides a flexible interface for defining new visualizations,
so we are not limited to the set of views that we describe
here.

MGV works with slices in their adjacency matrix
representation. Slices are visualized as a set of line
segments, where each matrix element maps into a single
line segment whose origin, length, color, width, etc. depend
on some mapping function f . In the simplest case, we can
draw the elements onto a rectangular grid, but much more
sophisticated mappings are possible.

Our system automatically tracks the correspondence
between edges and visual segments. Thus, the author of a
visualization does not have to handle the details of user
interaction. The system can determine which edges are
selected through the interface. It uses this information to
interactively label edges and determine which edge is to be
replaced and expanded when the user zooms in.

Currently, our visual metaphors are being used in the
analysis of several large multidigraphs arising in the
telecommunications industry. These graphs are collected
incrementally. For example, the AT&T call detail multi-
digraph consists of daily increments of about 275 million

edges defined on a set containing on the order of 260 million
vertices. The aim is to process and visualize these types of
multidigraphs at a rate of a million edges per second. We
will use examples from this data to illustrate the metaphors
presented in this section;2 we describe other applications in
Section 6.

5.1 Needle Grid

One way to view a slice is as a real nonnegative matrix A
whose entries are normalized in a suitable fashion. Each
matrix entry A�i; j� is represented as a vector r�i; j� with
origin at �i; j� and whose norm is obtained via a continuous
and nondecreasing mapping n. The angle ang�i; j� that
r�i; j� forms with the horizontal axis x is predetermined by
the order of the entries in the matrix A. We constrain the
range of ang�i; j� to run between ÿ� and 0.

A rectangular grid with the needles, representing the
values A�i; j�, placed at their corresponding origins �i; j�, is
called the needle-grid representation of the given matrix or a
needle slice (see Fig. 5 for an example). Note that the grid
view for a particular graph is not unique. It depends on the
ordering of the matrix elements.

For our set of phone call data in Fig. 5, we can make
some interesting observations. First, we see high values
along the diagonal. This indicates a higher call volume for
interstate calls in general. We have arranged the order of the
matrix elements to conform to a Peano-Hilbert path through
the US map. In this way, clusters around the diagonal
correspond to country regions with high calling traffic. We
can also observe asymmetries in the edge density and that
could be areas with differing densities of AT&T customers.
In general, patterns at higher levels of the hierarchy can be
used as exploration guides at lower detail levels.

5.2 Star Maps

The Star-Map view rearranges each row or column of our
matrix into a circular histogram rooted at a single point. The
histogram is arranged such that the first value is drawn at
0 degrees and values are evenly spaced such that the final
value is drawn at 2�. This results in a star-like appearance.
We refer to each element of a star as a star segment. Star
segments have a length proportional to the value of the
edge it represents. Additionally, the color of the star
segment is dependent on the value to provide an additional
visual cue.

Each star represents a row or column, depending on
which type of star visualization is chosen. The position in
which each star is placed is arbitrary; however, if available,
we can make use of geographic data associated with each
node in the graph. For example, suppose we are looking at
call detail data, where each node in the slice represents a
particular state. We could supply latitude and longitude for
each node and arrange the stars on a USA map, as shown in
Fig. 6. In this case, we are placing the star representing the
row (or column) j at the geographic position of j.

The Star-Map conveys a different type of information
than the needle grid. It is particularly well-suited to focus
on a particular subset of vertices and easily detect among
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them those ones with higher or lower incoming or outgoing
traffic. By moving the mouse over the segments, the
corresponding vertex labels get activated. In the call detail
data, we notice some states with one or two star segments
that are larger than the others. Moving the mouse over the
segments reveals which states these are.

5.3 Multicomb

The Multicomb view can be thought of as an extension of
the star map. With star maps, an entire row or column of
the matrix is drawn such that it appears as a single object (in
the shape of a star), but it represents a collection of values.
Taking this a step further, we can turn an entire matrix into
a ªsingleº object by placing the collection of stars that
compose the matrix on top of each other along the z axis
and connecting the endpoints of the corresponding star
segments. An example is provided in Fig. 7. This single
object represents an aggregate view of a graph with
hundreds of million of edges.

An advantage of this view is that we can compare rows
or columns depending on if we look along the star segments
at a particular z or if we look at all the z values for a
particular star segment. When we consider all the z values
for a single star segment, it resembles a comb, which is why
we term this view the Multicomb view. This view is useful
in providing animations of data set evolution.

5.4 Multiwedge

The Multiwedge view is a different way to overlay stars on
top of each other. Instead of putting each star at a different
z value as we do with the Multicomb, we draw a single star
as ticks instead of segments, where each tick is placed at the

endpoint of that segment. The resulting picture, as shown in
Fig. 8, is a circular histogram with a distribution spectrum
on each star segment, which we call a wedge. From this
view, we can see the min and max values for a star line
(which is a row or column), standard deviation, median,
mean, etc. This is a two-dimensional view, which is
preferable to the Multicomb for static visualizations. The
colors of the ticks represent the value of the back-edge in the
multigraph. When the matrix is symmetrical, the colors of
ticks will occur in order. Thus, we can easily detect
asymmetries with this coloring convention.

In our example, we can look at the calling distributions
for each state. We again see that intrastate calling is
typically a lot greater than interstate calling, but this view
reveals the rest of the distribution varies a lot by state.
Looking at the distributions can tell us which states have
more regional calling patterns. For example, North Dakota
makes a lot more calls to Minnesota than to any other state,
but California has a more even distribution to the other
states. We also see that the northern states of Idaho,
Montana, and North Dakota have lower phone usage than
neighboring states.

5.5 Aggregate Views

Although we map each matrix entry to exactly one screen
segment, we can create mappings which effectively
compute certain aggregate operations. For example, sup-
pose we are using the star map for a graph with associated
geographic information and we want to replace the stars
with a single bar representing their aggregate equivalent.
We can accomplish this by creating bar segments for each
star and placing them on top of each other along the
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Fig. 6. A star-map view of call data, superimposed with geographic information. For each state, a star is drawn which consists of line segments that

represent phone call density to each other state. The circular order of the states is the same for all stars.



z direction. The resulting view will appear as a single bar

representing the sum of values for that row (or column), as

shown in Fig. 9. Additionally, a user can move the cursor
on the bar to find out which the segments make up the bar
and can zoom into a particular segment.

If we wish to do more complicated aggregations, such as
taking the mean, median, or an arbitrary function f over the
values, we can accomplish this by mapping the slice into a
new slice representing the aggregation and visualizing that
slice. For example, if we wanted to visualize the average
over each row, we would map an m � n slice into an m � 1
slice. Our system provides a mechanism to define slice
transformations, which are useful in other contexts as well.
For instance, suppose we are only interested in a subset of
the vertices. We can use a slice mapping to select out only
the nodes we are interested in. We can also use transforma-
tions to rearrange the vertex ordering.

6 APPLICATIONS

The navigation operations can be enhanced to perform a
variety of statistical computations in an incremental
manner. They can also be used to animate behavior through
time. The Star-Map metaphor is very useful when the
vertices of the multidigraph have an underlying geographic
location (see Fig. 6). This offers a high degree of correlation
between graph theoretical information and the underlying
geography.

We currently have instantiations of MGV that visualize
call detail data and network capacity data. We can work

ABELLO AND KORN: MGV: A SYSTEM FOR VISUALIZING MASSIVE MULTIDIGRAPHS 31

Fig. 7. Multicomb view of call detail data at the state level. This can be

thought of as stacking all of the stars in the Star-Map view of Fig. 6 on

top of each other to form a 3D volume.

Fig. 8. Multiwedge view of call detail data. Each wedge shows the distribution of calls for one state and can be compared to the star of a particular

state.



with a variety of other data sets as well; citation indexes,

general library collections, program function call graphs,

file systems, and internet router traffic data are, among

others, interesting data sets that can be explored using the

approach described here.
We have also applied MGV to smaller data sets such as

the year 2000 US Presidential Election results. Fig. 10 shows

a Multiwedge representation of the results at the state level.

Such a view shows which states had close elections (such as

Florida) and in which states third party candidates did well

(such as Nader in Oregon).
Internet data is a prime example of a hierarchically

labeled multidigraph that fits quite naturally our graph

metaphor. Each i-layer represents traffic among the aggre-

gate elements that lie at the ith level of the hierarchy (such

as IP address blocks or the domain name space). We can

also apply the techniques to web data. Considering pages as

nodes and hyperlinks as edges, we can take a set of web

pages as a digraph. A portal such as Yahoo, which
categorizes web sites into a hierarchy, could be used as T .

6.1 A BFS Sketch to Detect Dense Subgraphs

As discussed in Section 3.4, a breadth first search

partition of a large graph G produces a good sketch. This

section describes experiences with such a sketch, as

reported in [13].
We assume for the purpose of illustration that the

diameter of the graph is smaller than the larger diagonal of

the available screen space. This is not such an unreasonable
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Fig. 9. Aggregate view of the data represented in Fig. 6. Instead of

drawing star segments around a circle, they are stacked on top of each

other.

Fig. 10. A Multiwedge view of the US presidential election results. Each wedge shows the distribution of the election results for one state for the four

major candidates. Notice that only three edges are visible in Florida's wedge because Gore's and Bush's votes nearly overlap.



assumption since it has been observed experimentally that
call detail, Internet, and web-based data graphs [9] share
some properties, namely, they are very large but sparse,
with low diameter and very skewed degree distribution
[10]. Moreover, a giant component emerges in a similar
manner to the way that it emerges in random graphs ([20],
[11]). This giant component has logarithmic diameter.

A natural question is then to detect on graphs with these
characteristics large subgraphs with edge density above
certain threshold t. Ideally, one is interested in large
subgraphs of density 1 (cliques). Since this problem is
NP-complete, one wonders if involving the user more
directly into the exploration process could yield better
dense subgraph detection. With this in mind, we set out to
use a BFS-based sketch augmented with a density color
map to guide the search. The basic components of the
interface are illustrated in Figs. 11 and 12. One of the
sketches consists of mapping each vertex of the hierarchy,
to a box placed diagonally inside its parent's box, with the
side lengths of the two boxes being in the same proportion
as the ratio of the cardinalities of their corresponding sets of

descendant leaves. Because the sketch is based on a BFS
view of G, the subgraph consisting of the edges between
consecutive levels naturally gets assigned to the only
adjacent boxes that are determined by consecutive boxes
on the diagonal. Each box is painted according to a density-
based color map. When zooming on a box, its interior is
partitioned according to its children and the color map is
recomputed according to its children densities. The diag-
onal boxes corresponding to the leaves of the hierarchy tree
can be thought of as a coordinatization of the visual space.
When a subgraph is detected that reaches the desired
threshold, the subgraph representation is switched to a
matrix-based visualization (Fig. 4). If more detailed con-
nectivity is desired, a conventional drawing representation
can be invoked (Fig. 12). The overview (Fig. 15) is always
present and a highlighted bar indicates the level, in the
hierarchy tree, at which the exploration is taken place.
Experimentally, we have been able to detect, in call detail
graphs, that the largest cliques also have logarithmic size.

6.2 Sketch Maintenance

In order to effectively use sketches, the following prepro-
cessing steps are necessary.

. Compute an external memory BFS. This can be done
in O��jV j � jEj=B� � log�jV j=B� � sort�jEj�� I/Os by
using a modification of a data structure originally
proposed by [46]. B is the size of the disk block.

. Build an in-core index to a disk resident data
structure that contains, for each level of the BFS, its
induced subgraph and, for each pair of adjacent
levels, the subgraph consisting of all the edges going
from one level to the other in both directions. The
in-core index will only keep a reference to the disk
location, the associated density function value, and a
few bookkeeping items. With this information, the
corresponding screen embedding is computed as
depicted in Fig. 11. The corresponding portion of the
current hierarchy tree T is also stored in memory.
Now, for those vertices of the hierarchy tree whose
associated induced subgraph fits in main memory,
the corresponding full hierarchy subtree is com-
puted, using an internal memory implementation.
Notice that all these computations can be made
independently. For those vertices of the hierarchy
tree whose vertex set fits in main memory but not its
edge set, a semi-external version of BFS is invoked
[31]. Those vertices of T whose associated vertex set
does not fit in memory are processed again by a fully
external BFS algorithm. Notice that all these compu-
tations are amenable to parallelization since they are
independent. At the end of these steps, we have a
disk resident representation of the hierarchy tree T
and a mapping from its leaves to the actual vertices
that they represent in the input graph.

. A more economical sketch can be obtained by
mapping each node of the hierarchy tree to a colored
bar where the length is proportional to the size of its
set of descendants leaves and where the color again
encodes a map density. The collection of bars
representing the set of children of a pair of bars
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Fig. 11. BFS graph sketch. The collection of boxes is a partition of the

vertex set. The size of each box corresponds to the number of vertices in

that set and the color corresponds to the density of its induced
subgraph.

Fig. 12. Conventional boxes and arrows subgraph representation.



are placed parallel to each other and in the order of

their BFS levels. In the case of zooming into the

children of just one bar, its children are placed inside

a zoomed version of the bar in a direction orthogonal

to that of the parent bar. Initially, the root bar gets

assigned a fixed but arbitrary direction.

We refer to this BFS sketch embedding as the
orthogonal bars sketch, as shown in Fig. 13.

7 IMPLEMENTATION

Asmentioned previously, MGV is separated into a computa-
tion engine and a Java-based user interface. The engine runs
as aweb server and communication takesplaceusing the http
protocol. The server encodes slices as XML which are then
processed by the interface. The use of Java-3D makes the
system portable and allows fast rendering of visual
representations as it is able to take advantage of hardware
graphics support. In the design of the interface, we had to
make decisions on some interesting questions regarding the
presentation of the various visualizations:

. How do we provide context to the user while he/she
is exploring a node deep in the hierarchy?

. Typically, at each level, there are a few sites that are
potentially interesting. How do we communicate
this in the display and encourage them to explore
deeper?

. Labeling is an important issue when displaying
information. How can we avoid the problem of
cluttering during the display of labels?

. How can we apply geographic information asso-
ciated with the data?

Fig. 14 shows a running instance of MGV. Here, we see
several MGV views, such as a Grid view, a Multiwedge, a
Star-Map, and a Multicomb. When the user first invokes
MGV, two windows appear: a control window (shown in
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Fig. 13. Orthogonal bars sketch. The collection of strips represents a

partition of the graph. Each strip contains a collection of vertical

segments representing a recursive partition of the subgraph induced by
the strip. Color encodes graph density.

Fig. 14. A screen dump of the MGV system showing some components and controls.



the upper lefthand corner), allowing a data set to be selected
for viewing, and an overview window. The overview
window maintains context and is shown in more detail in
Fig. 15. The overview window shows the vertex hierarchy,
represented with horizontal bars and marks the currently
viewed slice.

The control window lists each of the view types and lists
each of the available data sets. Once the load button is
pressed, a window appears showing the topmost slice in the
hierarchy with the selected view. Using the mouse, the view
can be rotated, translated, or zoomed. When the user zooms
in far enough, a slice further down in the hierarchy replaces
the currently viewed slice. In addition, a user can at any
time change the view used to represent the current slice
(e.g., from a grid to a map).

In a view, we highlight those data portions that have
been visited already to provide users with information
about the extent of their exploration. The visualization
engine tracks the mouse activity of the user and displays
textual information about the closest edge in a separate
window, as shown in the top right window (ªLabelº).
Potentially interesting regions (i.e., hot-spots) are high-
lighted in a different color to catch the user's attention.
An obvious limitation of the current approach is that what
is and is not interesting from a data mining point of view
must be predetermined.

In order to handle textual labels in an efficient manner,
we divide the set of labels into two parts, static and
dynamic. Static labels are displayed at all times. They are a
small fraction of the entire label set. Dynamic labels are
displayed only when the user selects them. The combina-
tion of static and dynamic labels manages the excessive
clutter in the display well.

Users can open an arbitrary number of views at once
with MGV. Often, it is desirable to see the same edge in
two different views, which is why MGV provides linking
functionality. Any set of views can be linked, which
results in shared behavior between the views; as the
mouse is moved in one view, the edge closest to the
mouse is highlighted in all linked views, providing visual

correspondence. When an edge in one view is replaced
with a slice further down the hierarchy, all linked views
do the same replacement.

Another important aspect of the user interface, described
in more detail later in this section, is the ability to edit color
maps. Each view contains a mapping between values and
colors used to represent those values. For any view, the user
can edit this map. This is shown in the bottom left windows
of Fig. 14. Changes made to the color map are immediately
seen in the view that uses the map. Users can also link color
maps of different views together so that a change in one
map affects all linked windows.

The rest of this section walks through the MGV Java
front end by examining the implementation. We give an
overview of the classes to best illustrate our design choices.

7.1 MGVSlice

The most basic structure used is the MGVSlice class, which
is a data structure that represents a slice. The slice is stored
in an adjacency matrix representation. Consider the
representation of the slice for edge e � �v1; v2�. We set up
a grid where the rows are from 0 to j, where v1 has children
v10 . . . v1j and columns are from 0 to k, where v2 has children
v20 . . . v2k. Each grid entry contains the weight for the
appropriate edge or is null if no such edge exists. We can
map between rows or columns of the matrix to global vertex
identifiers through the functions rowToVertex, colTo-
Vertex, vertexToRow, and vertexToCol. The class also
provides methods to get the label for matrix elements, get
the latitude/longitude of a label, and read and write slices
as XML from/to a disk or network. The summary of
functions is below:

int getNumRows()

int getNumCols()

double getEdgeValue(int r, int c)

double maxEdgeVal()

double minEdgeVal()

String getRowLabel(int r)

String getColLabel(int c)

double getLat(String label)

double getLon(String label)

int rowToVertex(int r)

int colToVertex(int c)

int vertexToRow(int vertexId)

int vertexToCol(int vertexId)

static MGVSlice readSlice(int v1, int v2)

void writeSlice(OutputStream f)

7.2 MGVSliceView

Each view of a slice is defined as a subclass of the base class
MGVSliceView. This class does all of the necessary
bookkeeping and user interaction that all views share. Each
new slice view needs to overwrite a small set of functions,
shown below. The drawImagemethod is invoked to render
the slice view as a Geometry, which is a Java3D primitive.
A Geometry is an array of points that make up either lines,
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Fig. 15. Overview window. Each level of the hierarchical graph

decomposition is represented with a bar. Markers are drawn in the

view that correspond to the nodes in the hierarchy, representing the

currently viewed slice.



line strips, polygons, or some other geometric 3D object.

The methods mapEdge and unmapEdge are used to map

between an edge and the position into the Geometry array

that represents the edge. The function filter is called

when a view of the slice is created, which is used to

transform the incoming slice representation into a slice that

the view uses. By default, the view can simply return the

incoming slice, but it may choose to pick a subset of vertices

to display, rearrange the vertices, or perform some other

transformation.

// Functions that each view must overwrite

Geometry drawImage()

// Draw image as Java3D Geometry

Geometry drawLabels()

// Draw labels as Java3D Geometry

boolean inExpansionThreshold(double dist)

// Have we zoomed enough to expand?

MGVSlice filter(MGVSlice inSlice)

// Transform the slice

// Mapping functions implemented in base class

int unmapEdge(int v1, int v2)

// Convert edge to Geometry point

void mapEdge(int v1, int v2, int num)

// Map an edge to Geometry point

7.2.1 Filters

The class MGVSliceFilters provides a set of predefined

filters that views can use. They are shown below.

. static MGVSlice reverse(MGVSlice slice):
Reverses the order of vertices in the slice.

. static MGVSlice flip(MGVSlice slice):
Transposes the adjacency matrix.

. static MGVSlice merge(MGVSlice slice1,

MGVSlice slice2): Combines two slices into a
single slice.

. static MGVSlice topN(MGVSlice slice, int

percent): Filters out edges above the given percent
threshold.

. static MGVSlice sortByLabel(MGVSlice

slice): Rearranges the order of vertices by sorting
the labels.

. static MGVSlice sortByLocCircle(MGV-

Slice slice): Rearranges the order of vertices
using latitude and longitude to place vertices around
a circle.

. static MGVSlice sortByLocPeano(MGVSlice

slice): Rearranges the order of vertices using
latitude and longitude to correspond to a Peano-
Hilbert tour of the vertices.

7.3 MGVInstance

Each new window is created using a class called

MGVInstance. An instance shows a particular view of a

slice at a given time. The user interacts with an instance by

moving the mouse over the display, zooming, rotating, or

panning. When the mouse is moved over an edge on screen,

it becomes highlighted. The user can link different windows

together, which will cause the appropriate element to be

highlighted in all linked displays. An instance also allows

the user to expand or contract edges when the user zooms

in far enough in or out (again, linked displays react

accordingly).

MGVInstance(String name, MGVSliceView slice)

// Constructor

void link(MGVInstance inst)

void highlight(int v1, int v2)

ColorMap getColorMap()

void expand(int v1, int v2)

void contract()

void replace(MGVSliceView sliceView)

void destroy()

void setExpandMode(int mode)

// mode = {LEFT_EDGE, RIGHT_EDGE, BOTH_EDGE}

7.4 Colorings

MGV uses the weight of an edge to determine what color is

used to visually represent that edge. The mapping between

weights and colors is done by a separate module, called the

ColorMap. It is important to let the user control as much of

the color mapping process as possible. The ColorMap class

allows for this by providing a user interface where values

can be mapped to colors. Reasonable defaults are used

based on the slice's data. A side effect of the color editor

user interface is that it is easy to perform certain visual

queries. For example, if we are interested in looking at the

top 10 percent of values, we can edit the color map such that

the bottom 90 percent of values are mapped to a light gray

color and the top 10 percent map to a bright color. Applying

this map will make the desired values stand out in the

display, where they might not otherwise be seen.
Each view can have its own color map or link to the same

color map used by other views. Color maps can also be

modified by the components themselves in case they want

to set their own default maps. See Fig. 16.

7.5 MGVManager

Finally, the MGVManager class brings everything together.

This class provides the functionality to create new views or

instances. It contains a static method, called register-

View, which is called by each type of view that is in the

system (typically in the static initializer of that class). By

registering, a mapping is created between the name of the
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Fig. 16. Color map editor user interface.



view (for example, ªMultiWedgeº) and the class that is
used to render it.

static void registerView(String name,

Class cls)

MGVSliceView createView(String viewName,

MGVSlice level)

MGVInstance createInstance

(MGVSliceView slice)

7.6 The Star-Map Algorithm

As mentioned previously, the Star-Map view rearranges
each row or column of a slice into a circular histogram,
resulting in a geographic map of histograms that resemble
stars. In order for such a view to be useful, the order of the
segments in each histogram needs to be chosen carefully.
Due to the geographic nature of the underlying data,
segments are arranged in a manner that has as much
correspondence as possible to their underlying geographic
values. MGV creates the appropriate ordering with the
following algorithm:

. We are given a set of points that we wish to arrange
along the circumference of a circle.

. We first compute the center of the set of points. This
is done by simply averaging the set of points
together.

. Next, we compute the convex hull for the set of
points. All points on the hull are inserted into a
priority queue with priority p.

. We compute the convex hull for the remaining
points. All points on the hull are inserted into the
priority queue with priority p� 1. This process is
repeated until there are no more points.

. We then remove points from the priority queue from
lowest priority to highest priority, choosing a
position along the star that has an angle that is most
similar to the angle formed between the center and
the examined point.

This algorithm ensures that the outermost points are
placed into the arrangement first because those points are
most noticeable and likely to be used as road maps. For
example, for the set of points that represents states in the
US, among the first states to be placed are Florida, Texas,
Hawaii, California, Washington, and Maine.

8 CONCLUSIONS

Needle-grids, Star-Maps, Multicombs, and Multiwedges are
the visual counterpart of the graph theoretical notions of
edges and neighborhoods. They can be superimposed on an
arbitrary layout of the vertex set of a graph without
cluttering the view. They can be also used to visually
represent a certain type of aggregate statistics on multi-
graphs. These facts, coupled with a predefined hierarchy on
the vertex set, allow us to visually explore very massive
multidigraphs. The navigation is based on the notion of
graph-slices. Graph-slices provide flexibility in terms of
visual representations and visual navigation. The fact that
the MGV client is implemented in Java3D helps make the
system highly portable and extensible.

Graph Sketches offer a unified view of computation and

visualization on very large graphs. Very large graph

visualizations need to be aware of the intrinsic algorithmic

question that needs to be solved in order to provide

interactive navigation that can guide a user toward the

discovery of interesting graph substructures. Tailoring a

graph decomposition to an exploration task appears to be

an interesting angle that deserves further exploration.

Devising useful 3D sketches is a tantalizing area of research.

A question that comes to mind is: What should the

3D counterpart to the planarity condition for 2D sketches

be? Given the fact that sketches are mainly an abstraction of

some of the properties of geographical maps, does it make

sense to ask for the graph theoretical counterpart of

curvilinear coordinates? What is a killer application that

will benefit in concrete terms from these investigations? Are

there any other interesting graph problems for which the

BFS-based sketches introduced here are beneficial?
Some of the metaphors proposed here open up the door

to the use of matrix theoretical methods for the hierarchical

analysis of very large data collections. In particular, the

pseudoautomatic selection of color maps depending of the

statistical properties of the data at different levels of the

hierarchy is one central aspect that deserves further

scrutiny.
Another natural direction to pursue is to come up with

an efficient distributed memory implementation of MGV.
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