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MgZnO/AlGaN heterostructure light-emitting diodes

A. Osinsky,a) J. W. Dong, M. Z. Kauser,b) B. Hertog, A. M. Dabiran, and P. P. Chow
SVT Associates, Inc., Eden Prairie, Minnesota 55344

S. J. Pearton
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611

O. Lopatiuk and L. Chernyak
Department of Physics, University of Central Florida, Orlando, Florida 32816

(Received 6 August 2004; accepted 9 September 2004)

We report on p–n junction light-emitting diodes fabricated from MgZnO/ZnO/AlGaN/GaN triple

heterostructures. Energy band diagrams of the light-emitting diode structure incorporating

piezoelectric and spontaneous polarization fields were simulated, revealing a strong hole

confinement near the n-ZnO/ p-AlGaN interface with a hole sheet density as large as 1.82

31013 cm−2 for strained structures. The measured current–voltage sIVd characteristics of the triple

heterostructure p–n junctions have rectifying characteristics with a turn-on voltage of ,3.2 V.

Electron-beam-induced current measurements confirmed the presence of a p–n junction located at

the n-ZnO/ p-AlGaN interface. Strong optical emission was observed at ,390 nm as expected for

excitonic optical transitions in these structures. Experimental spectral dependence of the

photocurrent confirmed the excitonic origin of the optical transition at 390 nm. Light emission was

measured up to 650 K, providing additional confirmation of the excitonic nature of the optical

transitions in the devices. © 2004 American Institute of Physics. [DOI: 10.1063/1.1815377]

The great potential of ZnO-based materials for solid-

state lighting applications derives from the high excitonic

binding energy of 60 meV,
1,2

enabling efficient excitonic op-

tical transitions in ZnO to take place at elevated tempera-

tures. The high excitonic binding energy is expected to pre-

vent thermal dissociation of excitons at temperatures as high

as 400 °C, leading to the design and fabrication of solid-

state optical light emitters operating at fairly high tempera-

tures without additional cooling. Thus far, the main difficul-

ties in fabricating ZnO-based emitters has been the lack of a

reliable p-type doping process necessary for the formation of

p–n junction diodes. Recently, light-emitting diodes (LEDs)

were fabricated from wurtzite n-ZnO/ p-AlGaN single

heterostructure (SHS).
3

The LEDs fabricated from

n-ZnO/ p-AlGaN heterostructures emitted UV light at

389 nm at 300 K and operated up to 500 K.
3

We report on the demonstration of p–n junction LEDs

fabricated from p–n junction MgZnO/ZnO/AlGaN/GaN

triple heterostructures (THS). The THS design is expected to

improve optical and thermal characteristics of LEDs with

ZnO-based active regions. In this work we also present the-

oretical analysis of energy band diagrams for SHS and THS,

accounting for polarization effects. Experimental measure-

ments of IV characteristics and electroluminescence (EL) are

reported for THS LED devices operating up to 650 K.

To illustrate the design concept, the band diagram and

free carrier distribution in MgxZn1−xO/AlyGa1−yN hetero-

structures were simulated using a self-consistent one-

dimensional Schrödinger–Poisson solver.
4

The parameters

used in the calculation are given in Ref. 5. Ga(Al) polarity

and Zn polarity were assumed for GaN (AlGaN) and ZnO

(MgZnO) layers, respectively. The contacts were assumed to

be ohmic. A type-II band alignment was used for

ZnO/AlGaN SHS.
3

In our model the AlGaN valence

band (VB) maxima was located above ZnO by

,f1−DEnsAlGaNdg eV, where DEVsAlGaNd is the VB dis-

continuity between AlxGa1−xN and GaN. The piezoelectric

sPPEd and spontaneous sPSPd polarizations were incorporated

into our model to account for the polar nature of the materi-

als. The polarization charge was calculated using the rela-

tion ssPSP+ PPEd= fPSPsbottomd+ PPEsbottomdg− fPSPstopd

+ PPEstopdg.
6

Figure 1 shows the band diagram and schematic charge
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FIG. 1. (a) Charge distribution and (b) band diagram of a

n-ZnO/ p-AlGaN SHS considering polarization effect s−sZnOd.
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density for a typical ZnO/Al0.16Ga0.84N heterostructure. Both

layers were assumed to be 150 nm thick with free carrier

electron and hole concentrations of about 331017 cm−3 and

131017 cm−3, respectively. To account for the PPE, the

AlGaN layer was assumed to be partially relaxed with in-

plane tensile strain of 1.95310−3. In accordance with the

standard sign convention PPE and PSP in AlGaN are aligned

in same direction and point towards the substrate. The ZnO

layer on the AlGaN was also assumed to be partially relaxed

with a compressive in-plane strain of 8.9310−3. In this case,

PPE and PSP are aligned in opposite directions. Using the

above relationship, a net negative polarization charge of

sZnO=−631012 cm−2 at the ZnO/AlGaN interface was cal-

culated. The energy band structure reveals the presence of a

hole accumulation layer at the ZnO/AlGaN interface due to

the strong polarization effects.

The radiative recombination rate in a heterojunction is

Rrad~COptnp, where COpt is the radiative recombination co-

efficient and n and p are the excess electron and hole con-

centrations near the p–n junction interface, respectively.

Based on this relation, Rrad near ZnO/AlGaN interface can

be optimized by increasing the hole and electron concentra-

tions. To enhance the hole and electron confinement near

the interface, we examined a THS consisting of

n-Mg0.1Zn0.9O/n-ZnO/ p-Al0.16Ga0.84N/ p-GaN. The free

carrier electron concentration in MgZnO and ZnO was as-

sumed to be ,331017 cm−3, with free hole concentrations

in AlGaN and GaN assumed to be 131017 and 3

31017 cm−3, respectively [Fig. 2(a)]. The total polarization

mismatch between Mg0.1Zn0.9O and ZnO layers at the inter-

face was assumed negligible.
7

Taking the GaN layer to be

relaxed, a net positive polarization charge of sAlGaN=7

31012 cm−2 was calculated for the AlGaN/GaN interface.

Thus, addition of the GaN layer contributes a +sAlGaN charge

resulting in the formation of a triangular quantum well

(TQW) for holes near the ZnO/AlGaN interface with quan-

tized energy levels as shown in the inset to Fig. 2. The

ground state and first excited state were calculated to be E0

=−75.1 meV and E1=−115.4 meV, respectively, below the

Fermi level. The TQW ensures strong confinement of holes

near the ZnO/AlGaN interface and increases the probability

of radiative recombination under forward bias. Additionally,

the TQW with high free hole density aids the lateral conduc-

tivity in the structure, reducing the access resistance. The

sheet concentration of holes in the TQW was calculated to be

3.531012 cm−2 when both ZnO and AlGaN were assumed

partially relaxed, and 1.8231013 cm−2 for the fully strained

structure. In contrast to the SHS structure presented in Ref.

3, in which the carriers were spread throughout the thick

p-AlGaN layer, the THS described here gives rise to strong

hole confinement in the TQW enhancing Rrad at the interface.

Due to conduction band offsets, the Mg0.1Zn0.9O layer forms

a barrier of ,100 meV for electrons injected into the ZnO

providing additional confinement.

The THS LED structures considered above were grown

by rf plasma-assisted molecular-beam epitaxy technique. A rf

plasma source (model SVT-45) was used for producing

atomic nitrogen and oxygen fluxes. Mesa geometry vertical

devices were fabricated and characterized. The details on

growth and fabrication are presented elsewhere.
5

The active

region of the THS LED device is a ,50–100-nm-thick un-

intentionally doped ZnO layer, sandwiched between a

150-nm-thick Ga-doped n-Mg0.1Zn0.9O electron emitter and

a ,40-nm-thick p-Al0.16Ga0.84N barrier that serves as a

source for holes. The energy band diagram of the fabricated

THS LED is essentially the same as that shown in Fig. 2.

Electron-beam-induced current (EBIC) measurements
8

were carried out at the p–n junction cross section. Figure 3

shows the secondary electron image for the cleaved edge of

the LED device superimposed with the EBIC line scan taken

across the same structure. EBIC scans across p–n junction

allow the determination of the junction position. A pro-

nounced peak in the EBIC signal coincides with the physical

junction between n-MgZnO/n-ZnO (light on the picture)

and p-AlGaN/ p-GaN (dark on the picture) layers, indicating

the presence of a p–n junction at the interface. The diffusion

lengths of minority carriers, extracted from the EBIC line

scan, are 120 nm for holes in n-ZnO and 890 nm for elec-

trons in p-AlGaN/GaN regions.

The characteristics of the fabricated ZnO/AlGaN-based

p–n diodes were measured at the wafer level using standard

electrical and optical characterization methods. The measure-

ments were conducted in the temperature range 300–650 K

for LEDs operating in pulsed and cw modes. Figure 4 shows

typical IV characteristics of forward biased THS LED de-

vices measured at different temperatures. Rectifying IV char-

FIG. 2. (a) Charge distribution and (b) band diagram of the p–n junction

MgZnO/ZnO/AlGaN/GaN heterostructure. The layer thicknesses are 100,

100, 40, and 200 nm, respectively.

FIG. 3. Cross-sectional image of MgZnO/ZnO/AlGaN/GaN THS in sec-

ondary electrons (SE), EBIC line scan is superimposed with the SE image.
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acteristics were measured up to 680 K. The turn-on voltage

for these devices at 300 and 500 K was in ,3.2–3.6 V

range, consistent with the ZnO bandgap. A reduction in the

turn-on voltage to ,2.8 V was observed for LEDs at T

=650 K. Room-temperature measurements suggest that there

are two different mechanisms contributing to the current

flow. Besides the exponential increase in current with for-

ward bias near the turn-on voltage, we observe an additional

rapid increase in the current at forward biases ù13 V. The

mechanism responsible for this is not well understood, but

one possibility is field induced tunneling of holes through the

barrier at the AlGaN/GaN interface and another is the con-

tact resistance to the p-layer. At higher temperatures this sec-

ondary current source becomes less apparent as the device

series resistance decreases. Thermal activation of the Mg ac-

ceptors in p-type AlGaN/GaN part of the LED structure

leads to lowering of the device series resistance at elevated

temperatures.

EL spectra measured at different temperatures and driv-

ing currents are shown in Fig. 5. The emission band origi-

nates from the near interband transition in the ZnO active

region near the p-AlGaN interface. The peak position of the

emission band red-shifts from 390 nm (curve A) to ,391 nm

(curve B) as the temperature increases from 300 to 500 K,

which is consistent with the redshift observed for SHS.
3

A

more significant redshift in the emission peak to 401 nm

(curve C) occurs at 650 K. The full width at half-maximum

of the spectra also narrows from 40 to 28 nm as the tem-

perature is raised from 300 K to above 500 K. The observed

broadening of the optical emission band at 300 K may be

caused by spatial strain inhomogeneities in the ZnO active

region. Another possible mechanism is optical recombination

through different energy states localized in the TQW of the

VB [inset in Fig. 2(b)]. The origin of the emission is the

annihilation of excitons as suggested by optical absorption,

photocurrent, and cathodoluminescence. A band, at zero bias,

with a peak ,389 nm was measured in the photocurrent

spectrum (curve D in Fig. 5). This band arises from excitonic

absorption and the subsequent field-induced dissociation of

the excitons in the ZnO layer by the built-in field s,8

3105 V/cmd of the junction depletion region. A significant

redshift to peak emission at 409 nm was observed for LEDs

driven at 300 mA at 650 K, suggesting significant internal

heating in the active region. Optical emission power in-

creased linearly with forward current, providing additional

evidence that the optical emission is interband related rather

than impurity related. The optical power of a test device was

,10 mW at 300 K.

In conclusion, we have presented results for THS LEDs

fabricated from MgZnO- and AlGaN-based materials. EL

transitions were observed from a p–n device that were exci-

tonic in nature. These optical emissions persisted to 650 K.

ZnO-based emitters clearly show great potential for applica-

tions at high temperature.
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FIG. 4. Forward bias IV characteristics of THS UV LED device measured at

different temperatures. Curves A, B, and C correspond to measurements at

300, 500, and 650 K, respectively. At 100 mA current, the series resistance

is ,150 V, and is ,105 V for 300 to 650 K.

FIG. 5. The first three curves are EL spectra of UV LEDs measured, respec-

tively, at 300, 500, and 650 K. The driving currents were 60, 150, and

160 mA, respectively. Curve D is the photoresponse spectrum at 300 K.
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