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The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8+ T-cell adap-

tive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is 

a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machin-

ery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported 

into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by 

class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes 

and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including 

tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape 

mechanisms that disrupt the tumor cells’ ability to be recognized and killed by tumor antigen–specific cytotoxic CD8+ T cells. 

Detailed knowledge of APM is crucial for the optimization of T cell–based immunotherapy protocols.

J Natl Cancer Inst;2013;105:1172–1187

In normal cellular physiology, proteins regularly undergo a pro-

cess of turnover in which they are degraded and replaced by 

newly synthesized proteins. The degradation of most cellular 

proteins occurs by one of two major proteolytic pathways: the 

lysosomal pathway and the ubiquitin-proteasome pathway (1). 

The lysosomal pathway degrades proteins taken up by endocyto-

sis (from the extracellular environment) and by autophagy (from 

the cytosol); in this pathway, bacteria, bacterial antigens, para-

sites or long-lived bulk proteins, particularly membrane-bound 

proteins, are delivered to endosomes, which become increasingly 

acidic as they progress into the interior of the cell, eventually 

fusing with lysosomes (2). In contrast, the ubiquitin-proteasome 

pathway is mainly involved in degradation of cytosolic proteins 

(3), such as regulatory proteins (short-lived proteins that are 

eliminated soon after completing their functions); misfolded and 

damaged proteins (4), including defective ribosomal products (ie, 

newly synthesized proteins degraded within minutes of their syn-

thesis) (5,6); mutated proteins in cancer cells; and virus-derived 

proteins in infected cells. In both pathways, cellular proteins are 

cleaved into oligopeptide fragments that are presented to T cells 

by molecules of the major histocompatibility complex (MHC). 

Whereas peptides derived from proteins degraded by the lyso-

somal pathway are primarily presented by MHC class  II mol-

ecules, peptides generated by the ubiquitin-proteasome pathway 

are presented by MHC class I molecules (7). A major exception 

to this rule is cross-presentation, a process specific to profes-

sional antigen-presenting cells, whereby peptides derived from 

proteins that have entered the lysosomal pathway gain access to 

MHC class I molecules (8).

In humans, there are three main (and several minor) MHC 

class I molecules, which are also called by their gene name, human 

leukocyte antigen (HLA). The main function of class I molecules, 

which are expressed on the plasma membrane of most cell types, 

is to display these peptides to cytotoxic CD8+ T cells in support 

of their crucial activity of immune surveillance. Peptides derived 

from normal cellular (self) proteins are regularly ignored by CD8+ 

T cells, whereas those from mutated proteins and from the non-

self proteins of viruses and other intracellular pathogens are not 

ignored but trigger an adaptive immune response through binding 

to the T-cell receptor (TCR). MHC class I molecules also function 

in the innate immune system by serving as ligands of inhibitory 

killer cell immunoglobulin-like receptors (KIRs) on natural killer 

(NK) cells. NK cells have the unique ability to recognize and non-

specifically kill cells lacking self MHC class I molecules. Because 

all healthy nucleated cells express self MHC class  I  molecules, 

inhibitory KIRs ensure that NK cells do not attack normal cells 

but eliminate infected and tumor cells (which may have reduced 

MHC class I molecule expression) (9). Because not all infections or 

cancers reduce MHC class I expression, the role of these proteins 

in the adaptive immune response is fundamental.

For MHC class I molecules to present self and nonself peptides 

to CD8+ T cells, the peptides must first be produced by proteolysis 

in the ubiquitin-proteasome pathway. Proteins are targeted for 

degradation in this pathway by the covalent attachment of multiple 

copies of the 76-residue protein ubiquitin to free amino groups 

(always near the ε-amino group of Lys). Ubiquitination involves a 

ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme 

(E2), a substrate-specific ubiquitin-protein ligase (E3), and in some 
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cases an additional conjugation factor (E4) (10). The breakdown 

of polyubiquitinated proteins and the processing of the resulting 

peptides until they are presented on the cell surface involve multiple 

molecular species, including the proteasome in its constitutive and 

immunoproteasome forms, peptide transporters (TAP1 and TAP2), 

endoplasmic reticulum chaperones (calnexin, calreticulin, ERp57, 

and tapasin), and the Golgi apparatus. Acting in concert, these 

proteins, multimeric protein complexes, and organelles make up 

what is called the MHC class I antigen processing and presentation 

machinery (APM) (11–15). Defects in the function or expression 

of APM components affect the formation of MHC class I peptide 

complexes and their recognition by CD8+ T cells (and NK cells). 

This review describes the structure and key functions of the 

proteasome and immunoproteasome, dissects the four main tasks 

of antigen processing and presentation, lists APM changes that 

have been observed in tumors, and explores the possible clinical 

significance of these defects with a special focus on their potential 

role in tumor cells’ ability to escape immunosurveillance.

Proteasomes and immunoproteasomes: 
Structure, Components, and Functions

The proteasome is a multimeric protein complex found in both 

the cytosol and nucleus (16–18). Structurally, it has a cylindrical 

shape and contains both a catalytic core and regulatory particles 

(Figure 1). The catalytic core, called the 20S proteasome, is com-

posed of four stacked heptameric rings that produce a barrel-shaped 

structure with a central gate. The two outer rings each contain 

seven α subunits (α1–α7) that interact with regulatory particles and 

create a physical barrier to regulate access to the gate (17). The two 

inner rings each contain seven β subunits (β1–β7), three of which 

(β1 or δ, β2 or Z, and β5 or MB1) have threonine-protease catalytic 

centers with different cleavage specificities: β1 has caspase-like 

activity (cleavage after acid residues); β2 has trypsin-like activity 

(cleavage after basic residues); and β5 has chymotrypsin-like activ-

ity (cleavage after hydrophobic residues) (19,20).

The proteasomal gate is normally closed by the N-termini of 

the seven α subunits to keep the proteasome in a proteolytically 

inactive state and to prevent unregulated protein degradation. The 

N-terminus of subunit α3 sticks out the most into the gateway, 

interacting with every other α subunit (17,21). Cleavage of this 

N-terminus, which occurs upon conformational rearrangements 

caused by the attachment of regulatory particles to the α rings, 

opens the gate, permits the access of substrates, and activates the 

proteasome (17,21).

Regulatory particles bind to one or both ends of the 20S 

proteasome. The major regulatory particle, called the 19S 

regulator (or PA700), binds to the 20S proteasome to form the 

26S proteasome (22). The 19S regulator consists of 17 distinct 

subunits, 9 in a “base: subcomplex and 8 in a “lid” subcomplex 

(23). The lid contains binding sites for both polyubiquitinated 

proteins and enzymes that disassemble and recycle ubiquitin 

chains, called deubiquitinating enzymes. The base interacts with 

the α rings of the 20S proteasome; it triggers gate opening, unfolds 

Figure 1. Proteasome composition
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protein substrates, and catalyzes protein translocation into the 20S 

proteasome (24,25). These functions require metabolic energy, 

and, indeed, the base contains six ATPase subunits.

In addition to the 19S regulator, other regulatory particles, 

named PA28αβ (26), PA200 (27), and PI31 (28;29) can bind the 20S 

proteasome and form proteasomal isoforms. These alternative reg-

ulators bind the α rings of the 20S proteasome just as the 19S regu-

lator does, but in an ATP-independent way. PA28αβ is a heptameric 

complex composed of α and β subunits; upon binding with the 20S 

proteasome, it increases the catalytic activity of the cleavage sites 

and facilitates the opening of the proteasome gate (30). PA28αβ is 

particularly abundant in immune tissues, and it is induced by inter-

feron (IFN) γ and infection. PA200 is the most recent proteasome 

activator to be discovered (27). The original description of this pro-

teasome activator proposed it to be involved in DNA repair, pos-

sibly by recruiting proteasomes to double-strand breaks. Following 

gamma irradiation, PA200 forms hybrid proteasomes with 19S 

regulator–20S proteasome–PA200 that accumulate on chromatin, 

leading to an increase in proteolytic activity (27). PI31 is a cellular 

regulator with inhibitory function that competes with PA28αβ and 

PA200 for binding with the 20S proteasome (28,29).

Three of the 20S proteasome’s β subunits (δ, Z, and MB1) 

may be replaced by functionally different counterparts named low 

molecular weight protein (LMP) 2 (also called β1i), LMP7 (β5i), 

and LMP10 (β2i), respectively (31–33). Proteasomes incorporating 

LMP2, LMP7, and LMP10 are called immunoproteasomes because 

they develop under conditions of intensified immune response. 

Indeed, they are induced in the majority of cells by stimulation with 

type I (α and β) IFN (34;35) and type II (γ) IFN (34,35) (Figure 1). 

Cells exposed to IFN in the context of an inflammatory process 

are not the only cells to contain immunoproteasomes. These are 

also expressed in a constitutive manner in lymphoid organs such as 

the spleen, lymph nodes, and thymus (36). Interestingly, dendritic 

cells were recently found to have approximately equal amounts of 

proteasomes and immunoproteasomes when immature and only 

immunoproteasomes when mature (37).

Compared with 20S proteasomes, immunoproteasomes display 

a weaker ability to cleave peptides after acidic residues but a bet-

ter ability to cleave after basic and hydrophobic residues (38,39). 

Immunoproteasomes also serve functions besides antigen process-

ing. They generate biologically active proteins (such as cytokines) 

that are involved in inflammatory processes (40) and in T-cell dif-

ferentiation, survival, and function during thymocyte development 

(41). In addition, immunoproteasomes are thought to have a role 

in cell differentiation because they are constitutively expressed in 

mouse ocular lens and brain (42), which are immune-privileged 

sites with no apparent need to generate class I peptide ligands.

Four Main Tasks of MHC Class i Antigen 
Processing and Presentation

When polyubiquitinated proteins reach the proteasome (or immu-

noproteasome), a complex cellular process begins that prepares 

antigens for presentation on MHC class I molecules. This process 

consists of four main tasks: 1) peptide generation and trimming; 

2) peptide transport; 3) assembly of the MHC class I loading com-

plex; and 4) antigen presentation (11–15) (Figure 2).

Peptide Generation and Trimming

When the proteasome is activated, ubiquitinated proteins pass 

through the gate, unfold, spread along it, and lose the polyubiq-

uitin chain (deubiquitination) through the action of deubiquit-

inating enzymes. Proteins are then broken down into peptides 

ranging from 2 to 25 residues, which are released to the cytosol. 

The particular peptide repertoire that is generated, in terms of 

amino acid sequence, length, and quantity (39), varies depending 

on whether the proteasome or immunoproteasome is involved. 

Both are able to generate MHC class  I epitopes, but dramatic 

differences exist in the efficiency at which a given epitope is 

generated. For instance, immunodominant epitopes of infec-

tious organisms have recently been found to be more effectively 

produced by the immunoproteasome. In particular, in experi-

ments in which HeLa cells were infected with vaccinia virus 

expressing the hepatitis B virus core antigen, generation of the 

hepatitis B virus core antigen141–151 epitope required the immu-

noproteasome with subunit LMP7 (43). Moreover, in knock-out 

mice lacking the three immunoproteasome subunits, dendritic 

cells could not present several major MHC class I epitopes, and 

the epitope repertoire was 50% different from that of wild-type 

mice (44).

A minority of intracellular proteins are cleaved in protea-

some-independent pathways that also generate peptides for 

MHC class  I  presentation (45–47). For instance, peptides with 

a C-terminal lysine are generated by proteasomes with very low 

efficiency given that lysine is not a preferred proteasomal cleavage 

site (48). These peptides, which may represent important T-cell 

epitopes, may, however, be generated by additional proteases such 

as tripeptidyl peptidase II (TPPII), a cytosolic aminopeptidase 

with endoproteolytic activity able to cleave after lysine residues 

(49). This protease is essential for the generation of the immu-

nodominant HLA-A3– and HLA-A11–restricted HIV-1 Nef73-82 

epitope (50). Another cytosolic protease involved in the direct 

production of MHC class I peptides is insulin-degrading enzyme, 

a metallopeptidase that generates epitopes from the melanoma-

associated antigen A3 (51), an immunogenic protein highly 

expressed by several human tumors (52). Nardilysin and thimet 

oligopeptidase (TOP) are two additional cytosolic endopeptidases 

that are required, either together or alone, for the generation of 

T-cell epitopes from the Epstein–Barr virus nuclear antigen 3C, 

the melanoma antigen recognized by T cells 1 (MART-1), and the 

preferentially expressed antigen of melanoma (PRAME). TOP 

operates as a C-terminal trimming peptidase, whereas nardilysin 

contributes to both the C-terminal and N-terminal generation of 

the epitopes (53).

Peptides produced in the cytosol are further trimmed by enzymes 

within the endoplasmic reticulum (ER) (45,54,55) to fit into the 

groove of the MHC class I molecules. One of these enzymes, an 

ER aminopeptidase called ERAP1 (ER aminopeptidase associated 

with Ag processing 1), is considered a “molecular ruler” because of 

its substrate preference (56): ERAP1 preferentially trims peptides 

of 9 to 16 residues but spares those of 8 to 9 residues, the typical 

length for MHC class I binding (56). ERAP1 prefers peptides with 

hydrophobic C-termini and is induced by type I and II IFNs (57). 

Recent work has also shown that the ER dipeptidase angiotensin-

converting enzyme can make the final C-terminus peptide cut (58).
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Peptide Transport

Peptides generated by proteasome-dependent and -independent 

pathways are actively transported from the cytosol into the ER 

by the transporter associated with antigen processing (TAP). This 

heterodimeric complex is composed of the two half-transporters, 

TAP1 and TAP2, that are members of the ATP-binding cassette 

transporter family. Both TAP1 and TAP2 contain a hydrophobic 

transmembrane domain and a cytosolic nucleotide-binding domain 

(59). TAP forms a transmembrane pore in the ER membrane 

whose opening and closing depend on ATP binding and hydrolysis, 

respectively (ATP switch model) (60–62).

TAP transports most efficiently peptides of a certain length 

(8–12 residues) and with hydrophobic or basic C-termini that bind 

to MHC class  I molecules (63–68). Transport of longer peptides 

occurs with reduced efficiency (64–66,68). These longer peptides, 

which do not fit the class I binding groove, can be further trimmed 

in the ER lumen or, alternatively, can be transported back to the 

cytosol where they are trimmed by cytosolic peptidases and recycle 

back to the ER in a TAP-dependent fashion for association with 

MHC class I molecules (69).

Assembly of the MHC Class I Loading Complex

Peptides transported into the ER by TAP are loaded onto nas-

cent MHC class I molecules with the assistance of four chaperone 

proteins: calnexin (70), the thiol oxidoreductase ERp57 (71,72), 

calreticulin (73), and tapasin (74;75). These proteins, along with 

MHC class  I  molecules and TAP, form the MHC class  I  load-

ing complex that combines the activities of peptide transport 

and loading onto MHC molecules (70–78). Specifically, a newly 

synthesized MHC class  I  heavy chain, translocated into the ER, 

acquires a Glc1Man9GlcNAc2 glycan moiety that serves as a recog-

nition element for the membrane-bound chaperones calnexin and 

Figure 2. The four main tasks of major histocompatibility complex (MHC) class I antigen processing and presentation: 1) Peptide generation and 
trimming; 2) peptide transport; 3) assembly of the MHC class loading complex; 4) antigen presentation.
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calreticulin (79,80). The MHC class  I heavy chain interacts with 

calnexin., which both facilitates its complete folding and, by act-

ing in concert with ERp57 (81), ensures its correct oxidation (82). 

At this point, the heavy chain is conformationally recognizable by 

β2microglobulin (83). Their binding triggers the release of cal-

nexin (83,84). The resulting conformational changes give the heavy 

chain/β2microglobulin heterodimer an “open” form that interacts 

with calreticulin (73). Peptide binding requires the additional par-

ticipation of TAP, which assures a pool of free peptides, and tapasin. 

This chaperone bridges class I molecules to TAP, allowing peptides 

to gain access to the ER for class I binding (73,85). It also stabilizes 

heavy chain/β2microglobulin heterodimers (75,86) and optimizes 

the class I peptide load (87).

Antigen Presentation

After the binding of a peptide, the ER-resident chaperones are 

released and the peptide-MHC class  I  complex leaves the ER 

within vesicles that traverse the Golgi apparatus, migrate to the 

cell membrane, and fuse with it, so that the bound peptide in the 

MHC class I groove is exposed extracellularly. Here the peptide-

MHC class I complex may be recognized by and interact with the 

cognate TCR on CD8+ T cells. Peptides derived from unmutated 

(self) proteins are normally ignored by CD8+ T cells, whereas those 

derived from mutated or pathogen-derived (nonself) proteins are 

not. Using this system of intracellular surveillance, CD8+ T cells 

play a crucial role in eradicating viruses and other intracellular 

pathogens and also exert potent antitumor activity.

Defects in Class i APM in Human Tumors

Defects in the expression and function of APM components have 

been found in various solid and hematologic tumors. They occur 

individually or in combination, and the frequency and nature of the 

defect vary substantially according to tumor type (Table  1). The 

molecular mechanisms underlying these defects have been partly 

identified for some components only and seem to take place at the 

genetic and epigenetic levels (Table 2). There is also some evidence 

that transcriptional and post-transcriptional defects may occur.

Defects in Proteasome Subunit Expression Patterns

Alterations of proteasome subunits have been identified only 

recently, thanks to the availability of monoclonal antibodies that 

permit semiquantitative analyses. Downregulation of one or more 

of the 20S proteasome’s β subunits δ, MB1, and Z is characteristic 

of colorectal (88), bladder (89), and ovarian (90) carcinomas, as 

well as medulloblastoma (91). Similarly, downregulation of one or 

more of the inducible subunits (LMP2, LMP7, and LMP10) is 

prominent in acute myeloid leukemia (92), in carcinoma of the 

head and neck (93,94), esophagus (95–97), stomach (98), colo-

rectum (88,99,100), kidney (101,102), bladder (89,103), prostate 

(104), cervix (105,106), ovary (90), and breast (107;108), and in 

astrocytoma (109), medulloblastoma (91), neuroblastoma (110), 

and melanoma (111,112). We have also found that the constitu-

tive subunits δ, Z, and MB1 and the immunoproteasome subu-

nits LMP2 and LMP10 are progressively lost in premalignant and 

malignant plasma cells from bone marrow of patients with mono-

clonal gammopathy of undetermined significance (MGUS) and 

multiple myeloma (MM) (113). It should be noted that interpreta-

tion of data related to the expression of immunoproteasome subu-

nits is quite complex, given that they are likely unexpressed under 

basal conditions but are induced after exposure of cells to IFN-γ. 

Furthermore, no data are available regarding the expression of 

immunoproteasome subunits in most normal tissues. Therefore, 

in several cases it is not possible to establish whether the expres-

sion of an immunoproteasome subunit in malignant cells is a 

normal phenotype and its lack of expression is a downregulation 

process or whether such lack is a normal phenotype and its expres-

sion reflects regulatory abnormalities.

Little is known about the molecular basis of the defects in 

proteasome components. Mutations at coding microsatellites of 

genes encoding LMP7 have been detected in gastric cancer (98). 

Single nucleotide polymorphisms in the LMP2 and LMP7 genes 

have been identified in cervical carcinoma (105,114). In prelimi-

nary experiments, we found that treatment of myeloma cells with 

decitabine, a potent DNA methyltransferase inhibitor, restored 

the expression of several proteasome subunits, suggesting that 

promoter methylation alterations and epigenetic regulation were 

involved (113). Loss of IFN-γ–mediated upregulation of LMP2 

in one renal cell carcinoma cell line has been associated with the 

lack of IFN regulatory factor 1 and signal transducer and activator 

of transcription 1 (STAT1) binding activities, as well as of Janus 

associated kinase (JAK)1, JAK2, and STAT1 phosphorylation (115). 

More recently, loss of IFN-γ–mediated upregulation of LMP2 and 

LMP10 in melanoma cell lines has been found to be caused by a 

deletion of the JAK2 gene on chromosome 9 (116).

Defects in TAP1 and TAP2

Low to undetectable levels of TAP1 and/or TAP2 mRNA and/

or protein have been reported in primary cells and cell lines 

from several tumors, including carcinomas of the head and neck 

(93,94,117–119), esophagus (95–97,120), stomach (98), pancreas 

(121), colorectum (88,99,100,122–124), breast (108,125–127), 

and cervix (105,106,128–130); renal cell (101,102), prostate (104) 

and bladder (89,103) cancer; and melanoma (111,112,131–133), 

astrocytoma (109,134), medulloblastoma (91), neuroblastoma 

(110), acute myeloid leukemia (92), and multiple myeloma (113). 

In several tumor cell lines in which TAP was downregulated, its 

levels were restored by IFN-γ treatment (135,136). At the genetic 

level, mutations in TAP genes that resulted in loss of expression 

or in expression of a nonfunctional protein have been observed in 

colorectal (88,100,123), cervical (114,129,137), gastric (98), and 

lung (138) carcinomas. Methylation of the TAP1 gene promoter 

has also been found in cervical carcinoma (105). A post-transla-

tional downregulation of TAP2 has been observed in a melanoma 

cell line that does not express TAP1 because of a frameshift muta-

tion that generates a stop codon in the TAP1 gene (139). In this 

cell line, transcription of TAP1 and TAP2 genes proceeds nor-

mally, but, in the absence of TAP1 translation, the TAP2 protein 

is unstable and is lost from the cell; these results suggest that TAP 

expression is regulated through a mechanism of coordinated sta-

bilization of the TAP heterodimeric complex. Moreover, as for 

immunoproteasome subunits, loss of JAK2 has been shown to 

impair the IFN-γ inducibility of TAP1 and TAP2 in melanoma 

cell lines. (116).
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Defects in ERAP1 and ERAP2

A comparison of the distributions of ERAP1 and ERAP2 in nor-

mal and neoplastic samples from the same tissues revealed changes 

that are thought to occur during malignant transformation (140): 

1) low expression of ERAP1, ERAP2, and MHC class I as the most 

frequent phenotype observed in tumors, regardless of histotype; 

2) downregulation of ERAP1 and/or ERAP2 as the most frequent 

condition in breast, ovary, and lung carcinomas that derive from 

tissues coexpressing ERAP1 and ERAP2; 3) upregulation in colon 

and thyroid carcinomas that derive from tissues lacking detectable 

levels of both ERAP1 and ERAP2; and 4) ERAP1/ERAP2 imbal-

ance in essentially all the tested tumor histotypes. In addition, low 

expression of either ERAP1 or ERAP2 results in low levels of func-

tional trimming activities. The heterogeneity of expression found 

at the protein level matches that found at the genetic level and is 

associated with the haplotypes for several single nucleotide poly-

morphisms found in the ERAP1 gene in cervical carcinoma (137), 

as well as in the ERAP1 and ERAP2 genes in a large series of mela-

noma cell lines (141). These latter cell lines also display consider-

able diversity in their ERAP gene promoter activities, and, in some 

cases, there is discordance between this activity and mRNA levels 

or between mRNA and protein levels (141). Thus, genetic, tran-

scriptional, and post-transcriptional control mechanisms are likely 

to be involved in the regulation of the ERAP expression.

Defects in Chaperone Protein Expression

A substantial downregulation of calnexin has been observed in car-

cinoma of the maxillary sinus (142), larynx (94), esophagus (97), 

colorectum (88,100), bladder (89), prostate (104), cervix (105,130), 

and breast (108), as well as in medulloblastoma (91). Tapasin has 

been found to be downregulated in cell lines from small cell lung 

carcinoma, pancreatic carcinoma, colon carcinoma, head and neck 

squamous cell carcinoma, and renal cell carcinoma (143). It also was 

reported as being downregulated in primary cells of head and neck 

(94,117,119,142–144), esophageal (97), colorectal (88,99,100), renal 

(102), bladder (89,103), prostate (104), cervical (105,106), ovarian 

(145), and breast (108) cancers, as well as in melanoma (131), astro-

cytoma (91,134), medulloblastoma (91), and neuroblastoma (110). 

ERp57 was reported to be downregulated in carcinomas of the max-

illary sinus (142), larynx (94), esophagus (97), stomach (146), colo-

rectum (88,100), bladder (89), prostate (104), cervix (105,106), and 

ovary (90). We found that expression levels of calnexin, calreticulin, 

tapasin, and ERp57 were higher in plasma cells from MM patients 

than in either premalignant plasma cells from MGUS patients or 

normal plasma cells from healthy donors (113). Methylation of the 

ERp57 gene promoter has been found in cervical carcinoma (105). 

Frameshift mutations in calnexin, calreticulin, tapasin, and ERp57 

genes have been reported in colorectal carcinoma (100), whereas in 

gastric carcinoma mutations at coding microsatellites were seen in 

calnexin and tapasin genes (98). A transcriptional control of tapasin 

expression has been described in a cell line overexpressing HER-2/

neu (human epidermal growth factor receptor 2). In this cell line, 

site-directed mutagenesis of the p300 and E2F binding sites within 

the tapasin promoter restores the HER-2/neu–mediated suppres-

sion of tapasin (147). A deregulation of tapasin has also been associ-

ated with defective IFN-γ signaling in melanoma cell lines (116) (as 

has also been observed for immunoproteasome and TAP).B
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Defects in MHC Class I Molecule Expression

MHC class I molecules are integral membrane proteins of 45 kDa, 

but the full-length gene product can be naturally shed from cells. 

Moreover, soluble isoforms of 43, 39, and 35 kDa exist in serum and 

urine (148–151). The 39 kDa truncated isoform lacking the trans-

membrane domain results from alternative mRNA splicing (152), 

whereas the 35 kDa isoform also lacking the cytoplasmic domain 

is the product of metalloprotease cleavage (151,153,154). Soluble 

MHC class I molecules have been detected in plasma both com-

plexed to and free of β2 microglobulins (151,153,155–159).

Aberrations in MHC class  I molecule expression regard both 

integral membrane forms and secreted soluble forms. Defects in 

the surface expression of MHC class I molecules have been demon-

strated in a large variety of human tumors. The molecular mecha-

nisms underlying these changes vary according to the tumor type, 

and different mechanisms can lead to the same alteration in surface 

expression (160,161). These alterations can be genetic (at the gene 

or chromosome level) or regulatory (at the transcriptional level) 

and range from total loss or downregulation of all class I molecules 

to selective losses of HLA class I haplotypes or alleles.

The total loss of MHC class I expression from the cell surface 

is associated with mutations in the β2 microglobulin gene, micro-

satellite instability, defects in peptide formation and transport (as 

a result of alterations in other APM components, usually LMPs, 

TAP, and tapasin), deficient peptide loading of MHC molecules, 

and hypermethylation of MHC gene promoters. Total loss has been 

described in colorectal carcinoma (100,122,162–164), gastric carci-

noma (98,165), melanoma (164,166–169), oral squamous cell car-

cinoma (170), laryngeal carcinoma (164,171), cervical carcinoma 

(105,128), esophageal squamous cell carcinoma (96), breast cancer 

(172), and astrocytoma (134).

Locus-specific downregulation is due to the transcriptional 

regulation of particular MHC genes and may be caused by the 

loss of DNA binding factors required for optimal promoter acti-

vation (173,174). Locus-specific downregulation has been found 

in colorectal carcinoma (163,175), cervical and laryngeal carci-

noma (171,176), and melanoma (177). Total loss or locus-specific 

downregulation of MHC class  I  molecules has been described 

in mos-, myc-, ras-, and HER-2/neu–transformed murine and 

human cell lines, confirming that multiple signal transduc-

tion pathways control MHC class  I molecule expression either 

directly or through the regulation of other APM components 

(147,178–182).

Allele-specific MHC class I defects result from point mutations 

in or partial deletions of MHC genes, chromosomal breakage, or 

somatic recombination. These defects have been detected in colon 

carcinoma (163), melanoma (183), cervical carcinoma (129,183), 

laryngeal carcinoma (171,176), and astrocytoma (134).

Table 2. Molecular mechanisms underlying changes in major histocompatibility class  I  antigen processing and presenting machinery 
components*

Molecular mechanism Affected molecules Tumor Reference

Genetic
Loss of heterozygosity HLA-I (6p21.3), β2m (15q) Head and neck squamous cell  

carcinoma

118,184

HLA-I (6p21.3) Laryngeal carcinoma 171

HLA-I (6p21.3) Colorectal carcinoma 100

Gene mutation

Point mutation β2m Colorectal carcinoma 162

Frameshift β2m Colorectal carcinoma 162

Frameshift (start codon, splice-site) β2m Colorectal carcinoma 122, 100

Frameshift TAP1, TAP2 Colorectal carcinoma 88, 100

Frameshift HLA-I, CLX, CLT, TPN, ERp57 Colorectal carcinoma 100

Frameshift β2m Gastric carcinoma 165

Frameshift (start codon deletion,  

stop codon generation)

β2m Melanoma 166

Coding microsatellite β2m Colorectal carcinoma 88

Coding microsatellite β2m, LMP7, TAP1, TAP2, CLX, TPN Gastric adenocarcinoma 98

Single nucleotide polymorphism TAP1, TAP2, LMP2, LMP7, ERAP1 Cervical carcinoma 137, 114, 141

Defective allele TAP1 Lung cancer 138

Defective allele TAP1, TAP2, HLA-A Cervical carcinoma 129

Epigenetic, transcriptional,  
post-transcriptional, post-translational

Gene promoter methylation HLA-I Esophagus squamous cell carcinoma 96

HLA-I Gastric adenocarcinoma 98

TAP1, LMP7, ERp57, TPN Cervical squamous cell carcinoma 105

Gene promoter mutation ERAP1 Melanoma (cell lines) 141

E2F1-mediated gene promoter regulation TPN HER-2/neu+ fibroblasts (cell line) 147

Frameshift mutation in TAP1 gene TAP2 Melanoma (cell line) 139

IFN-γ signal transduction pathway defects

Lack of IRF1 and STAT1 binding to  

gene promoter

TAP1, LMP2 Renal cell carcinoma (cell line) 115

JAK2 deletion LMP2, LMP10, TAP1, TAP2, TPN, HLA-I Melanoma (cell lines) 116

* CLT = calreticulin; CLX = calnexin; E2F1 = E2F transcription factor 1; HER-2/neu = human epidermal growth factor receptor 2; IRF1 = interferon regulatory 

transcription factor 1; JAK2 = janus associated kinase 2; STAT1 = signal transducer and activator of transcription 1;TPN = tapasin.
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Haplotype-specific MHC class I  loss has been associated with 

loss of heterozygosity on chromosome 6 due to total or partial 

deletion of the chromosome, chromosomal nondisjunction or 

mitotic recombination (160,161,164,173). It has been documented 

in laryngeal carcinoma and colorectal carcinoma (171), head and 

neck carcinoma (118,184), melanoma (164,183), and pancreatic 

adenocarcinoma (185).

Aberrations in levels of soluble MHC class I molecules in malig-

nant diseases have been investigated in a few studies. Low levels 

have been described in gastric cancer (186) and melanoma (187). 

High levels have been observed in Japanese patients with pancreatic 

cancer (188). In addition, high levels of soluble MHC class I and 

β2 microglobulin have been reported in MM (158,159,189,190), 

chronic myelogenous leukemia (151), acute myeloid leukemia 

(153,155), myelodysplastic syndrome (155,190), and non-Hodgkin 

lymphoma (155) by our group and other groups.

Clinical Meaning of Class i APM Defects

Abnormalities in the expression of APM components, especially 

TAP and MHC class I, are of particular clinical interest because of 

their strict link with disease aggressiveness and clinicopathological 

outcome (Table 3). For instance, downregulation of TAP expres-

sion is more frequent in metastatic than in primary melanoma 

lesions and in nevi. TAP1, in particular, is an independent prognos-

tic factor for melanoma metastases (112), and it is never lost in pri-

mary melanoma lesions undergoing spontaneous regression (131). 

Downregulation of MHC class I expression associates with primary 

melanoma lesion thickness, advanced stage of disease, and reduced 

time to disease progression (111). The APM expression profiles of 

stage III and IV melanoma (as graded according to the American 

Joint Committee on Cancer) can be used to distinguish patients 

into two groups that differ in survival (191). Downregulation of 

MHC class I, TAP1, and TAP2 is also associated with breast can-

cer lesion grading, given that it is more frequently observed in 

high-grade (G2 and G3) than in low-grade (G1) lesions (127). In 

the same tumor, primary lesions with positive estrogen receptor 

or progesterone receptor status express lower levels of TAP2 than 

those with negative estrogen receptor or progesterone receptor 

status (108).

A connection between changes of APM components and clini-

cal course has also been described in astrocytoma (109,134), gas-

tric (146), colorectal (99,124), bladder (89), prostate (104), cervical 

(106,128), ovarian (90,145,192), head and neck (93,94,117,119, 

142,144), and esophageal squamous carcinoma (95–97). In particu-

lar, high-stage bladder carcinoma displays lower levels of immu-

noproteasome components than low-stage urothelial carcinoma; 

higher expression of delta and lower expression of calreticulin are 

associated with lower survival in urothelial carcinoma and in all 

types of bladder carcinoma (89). Downregulation or loss of calnexin 

and MHC class I molecules correlates with higher Gleason grade 

and early prostate cancer recurrence (104). Partial MHC class I loss 

is statistically associated with decreased overall survival of patients 

with cervical carcinoma (106). In the same tumor, TAP1 and ERAP1 

loss is associated with decreased overall and disease-free survival, 

and ERAP1 downregulation is an independent predictor for worse 

overall and disease-free survival in multivariable analysis (106). 

LMP2, LMP7, TAP1, TAP2, and MHC class I expression rates in 

primary head and neck squamous cell carcinoma were found to pre-

dict overall survival, and the level of LMP7 expression was inversely 

associated with disease recurrence at 2 years (93). The loss or down-

regulation of MHC class I, TAP1, LMP7, calnexin, and ERp57 in 

esophageal squamous carcinoma was directly associated with tumor 

grade and lymph node status (95). APM component deficiencies 

occur more frequently in Ki-ras–mutated colorectal carcinoma 

lesions, and APM abnormalities in combination with Ki-ras muta-

tions appear to be associated with disease stage (99).

Regarding hematological tumors, a negative correlation between 

proteasome subunit levels and clinical progression of MGUS to 

MM has been demonstrated by our group (113). Levels of soluble 

MHC class I and β2 microglobulin have been reported to correlate 

with poor prognosis in MM (158,159,189,190), chronic myelog-

enous leukemia (151), acute myeloid leukemia (153,155), myelod-

ysplastic syndrome (155,190), and non-Hodgkin lymphoma (155).

immunological Consequences of APM 
Defects

The mechanisms underlying the above-mentioned clinical associa-

tions are likely to be immunologic. They reflect the negative effect 

of APM dysfunction, caused by numerous possible defects in the 

generation and expression of trimolecular class  I β2 microglobu-

lin–peptide complexes, on immune recognition of tumor cells. 

First, downregulation of proteasome subunit expression can inhibit 

the processing of antigens in the cytoplasm, thus decreasing the 

efficiency of epitope generation. Second, variations in proteasome 

(or immunoproteasome) subunit ratios may modify the character-

istics of presented peptides, thus altering the tumor cell antigen 

repertoire. Third, TAP abnormalities may reduce the translocation 

of peptides into the ER, resulting in decreased formation of sta-

ble MHC class I molecule–peptide complexes or in expression of 

“peptide-free” MHC class  I molecules. Fourth, changes in chap-

erone protein levels may hamper proper loading and assembly of 

MHC class I molecules, thus altering their maturation and stability. 

Finally, loss of cell surface β2 microglobulin and MHC class I mol-

ecules may cause their accumulation in the extracellular milieu as 

soluble forms. All these events can have profound consequences 

on CD8+ T-cell and NK cell immune responses against tumors: 

only mature MHC class I molecules with a peptide in their bind-

ing cleft are recognized by T-cell receptors, activating T-cell cyto-

toxicity (adaptive immune response) (193), and cells lacking MHC 

class I molecules on their cell surface are unable to bind inhibitory 

KIR and therefore are subject to NK cell killing (innate immune 

response) (9).

The impact of MHC class  I  APM defects on the human 

immune system can be studied in type I  bare lymphocyte syn-

drome (BLS) (194,195). Type I BLS is a rare immunodeficiency 

syndrome mostly caused by mutations in TAP (194–196). Similarly 

to MHC class  I  KbDb-deficient mice, type I  BLS patients have 

reduced plasma membrane levels of MHC class I molecules and 

low numbers of CD8+ αβ T cells. Their NK cells are cytotoxic 

upon activation but less cytotoxic than those of normal healthy 

donors in resting conditions (194,197–199). In line with the type 

I BLS model, examination of different tumors has revealed that 
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Table 3. Clinical correlates of changes in major histocompatibility class I antigen processing and presenting machinery components, by 
tumor type*

Tumor Protein
Clinical or histopathological 

correlate Correlation Reference

Head and neck squamous cell 

carcinoma

LMP7 Disease recurrence at 2 years Inverse 93

LMP2, LMP7, TAP2 Overall survival Direct

TAP1, TAP2, TPN, HLA-I Primary lesions vs metastases Greater down-regulation 

in metastases

117

HLA-I† Disease-free survival Direct

Maxillary sinus squamous cell 

carcinoma

β2m T stage, TNM staging system Direct 142

TPN Tumor grade Direct

TPN, HLA-I† Disease-free survival Direct

Laryngeal squamous cell 

carcinoma

HLA-I Disease recurrence Inverse 94

HLA-I Disease-specific death Inverse

LMP2, β2m, HLA-I† Disease-free survival Direct

β2m, HLA-I† Cause-specific survival Direct

Oral squamous cell carcinoma TPN Tumor grade Inverse 144

TPN 5-year survival Direct

Esophageal carcinoma LMP7, TAP1, CLX, TPN, ERp57, 

HLA-I

Tumor grade Inverse 97

LMP7, TAP1, CLX, TPN, ERp57, 

HLA-I

Depth of tumor invasion Inverse

LMP7, TAP1, CLX, ERp57, 

HLA-I

Lymph node involvement Inverse

CLX Tumor vascular invasion Inverse

Esophageal squamous cell 

carcinoma

TAP1, HLA-I Tumor grade Inverse 96

HLA-I Depth of tumor invasion Inverse

LMP2, TAP1, HLA-I Lymph node involvement Inverse

LMP2, HLA-I Tumor stage, I–IV Inverse

Gastric adenocarcinoma ERp57 Depth of tumor invasion Inverse 146

ERp57 Tumor stage Inverse

ERp57 Survival, postoperative Direct

Colorectal carcinoma LMP2, LMP7, TAP1, TPN, β2m, 

HLA-I

Tumor stage Inverse 99

LMP2, LMP7, TAP1, TPN, β2m, 

HLA-I

Ki-ras mutations Inverse

TAP1 Lymph node involvement Inverse 124

TAP1 Tumor grade Inverse

Bladder carcinoma LMP2, LMP7, LMP10, CLX Tumor stage Inverse 89

Δ Overall survival Direct

CLX Overall survival Inverse

Prostate carcinoma CLX Gleason score ≥7 Inverse 104

CLX, HLA-I Early disease recurrence Inverse

Cervical carcinoma LMP2, LMP7, LMP10, 

TAP1,TAP2, CLX, CLT, TPN, 

ERp57, ERAP1, HLA-I

Depth of tumor invasion 

(>15 mm)

Inverse 106

LMP2, LMP7 Lymph node involvement Direct

TAP1, ERAP1†, HLA-I Overall survival Direct

TAP1†, ERAP1 Disease-free survival Direct

Ovarian carcinoma HLA-I Primary lesions vs metastases Loss in metastases 192

TAP1, TPN Tumor stage Inverse 145

TAP1, TAP2, TPN, β2m Tumor grade Inverse

TAP1, TAP2, TPN Lymph node involvement Inverse

β2m M stage, TNM staging system Inverse

TAP1, TAP2, TPN, β2m, HLA-I Survival Direct

MB1† Disease-specific survival Inverse 90

LMP7 Disease-specific survival Direct

Breast carcinoma TAP1, CLX, β2m Primary lesions vs metastases Greater down-regulation 

in metastases

108

TAP1, TAP2 Tumor stage, AJCC Inverse

TAP2 Nuclear grade Inverse

TAP2 Estrogen receptor and  

progesterone receptor

Inverse

TAP1, TAP2, HLA-I Tumor grade Inverse 127

Melanoma β2m Overall survival Direct 191

TAP1†, TAP2 M stage, TNM staging system Inverse 112

(Table continues)
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the extent of CD8+ T-cell infiltration directly correlates with the 

expression of several APM components (94,108,112,124,142,145) 

and that, in some cases, the lack of cytotoxic CD8+ T-cell rec-

ognition is associated with the downregulation of specific APM 

components (113,119). Indeed, defective generation of MHC 

class I–peptide complexes (eg, surface expression of peptide-free 

MHC class I complexes) might impair the activation of CD8+ T 

cells if this requires direct CD8+ T-cell priming by tumor cells 

instead of mediation by dendritic cell–dependent cross-priming 

(200). In the same way, expansion at the tumor site of previously 

primed CD8+ T cells and successful recognition of tumor cells by 

effector CD8+ T cells might be weakened by the reduced expres-

sion of MHC class I–peptide complexes on the tumor cell mem-

brane. Furthermore, β2 microglobulin and MHC class I molecules 

released from the surface of tumor cells may cause apoptosis of 

activated CD8+ T cells (201), as suggested by in vitro experiments 

(202–205) and by the finding that injection of appropriate MHC 

class I–peptide complexes into tumor-bearing mice suppressed T 

cell–mediated control of tumor growth (206,207). Besides these 

“quantitative” effects, the strength of the IFN-driven process of 

proteasome–immunoproteasome replacement might shape the 

tumor cell antigen profile and compromise ongoing CD8+ T-cell 

responses against dominant epitopes.

With respect to NK cells, if the expression of MHC class I mol-

ecules on the surface of tumor cells is reduced, one might expect 

an enhancement of NK cell–mediated killing because of a decline 

in inhibitory KIR-mediated effects. However, there are examples 

in which NK cell activity against tumors is reduced (208,209). This 

may occur because soluble MHC class I molecules released from 

the tumor induce NK cell apoptosis or impair NK cell cytotoxicity 

by binding CD8 or members of the inhibitory receptor superfamily 

[reviewed in (201)].

As already mentioned, APM components, in addition to their 

immunological roles, participate in activities essential for cell sur-

vival, cell cycle progression, and inhibition of apoptosis. These 

include the control of quality of newly synthesized proteins in 

the ER and the degradation of proteins tagged by ubiquitin. This 

means that two opposing selection forces shape the APM pheno-

type of tumor cells. On one hand, for tumor cells to survive, normal 

APM processes of protein degradation and ER function must be 

active. On the other hand, the function of these pathways sustains 

the generation of MHC class I–peptide complexes recognized by 

CD8+ T cells, thus exposing the tumors to negative immune selec-

tion. As a result, the tumor is subject to immunoediting, whereby 

those tumor cells with selective APM defects (not essential for cell 

survival) survive but cells with widespread defects in most APM 

components are eliminated.

Conclusions and Perspectives

Greater knowledge about the molecular mechanisms underly-

ing APM defects may shed light on the mechanisms of tumor 

progression and ultimately help to develop personalized immu-

nological approaches for cancer treatment. Ideally, a means to 

upregulate APM components by immunotherapy protocols 

should be investigated. Pharmacological manipulation of tumor 

cells may be feasible, although the upregulation of surface MHC 

class I expression can promote CD8+ T cell–mediated killing and 

simultaneously hinder lysis by NK cells. Thus, a fine tuning of 

this pathway is needed to increase the overall level of tumor cell 

recognition by the host immune system. A  method of antigen 

delivery that bypasses the requirements for both transport and 

proteolysis may also be considered for targeting APM-deficient 

tumors. Therefore, further studies should be directed at investi-

gating strategies to modulate in vivo APM expression in tumor 

cells.
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