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MHD convective heat transfer in 
a discretely heated square cavity 
with conductive inner block using 
two-phase nanofluid model
A. I. Alsabery1,2, M. A. Sheremet3,4, A. J. Chamkha5,6 & I. Hashim2

The problem of steady, laminar natural convection in a discretely heated and cooled square cavity 
filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects 
of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically 
by using the finite difference method. Isothermal heaters and coolers are placed along the vertical 
walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based 
nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of 
this study are the Rayleigh number (103 ≤ Ra ≤ 106), the Hartmann number (0 ≤ Ha ≤ 50), thermal 
conductivity ratio (0.28 ≤ kw ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles 
volume fraction (0 ≤ φ ≤ 0.04). The developed computational code is validated comprehensively using 
the grid independency test and numerical and experimental data of other authors. The obtained results 
reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles 
volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal 
parameters for the heat transfer enhancement in dependence on the considered system. Moreover, 
high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous 
distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near 

the centered solid block where thermal plumes from the local heaters interact.

Natural convection heat transfer in cavities is a signi�cant phenomenon in engineering systems and important 
applications in operations of solar collectors, cooling of containment buildings, room ventilation, heat exchang-
ers, storage tanks, double pane windows, etc. A comprehensive review on natural convection in cavities was made 
by Ostrach1. Also, the problem of natural convection in cavities with discrete heat sources has important applica-
tions in electronic packaging, cooling of nuclear reactors, ignition of solid fuels2,3. Kaluri and Basak4 and Kaluri 
and Basak3 considered the problem of natural convection in a discretely heated square porous cavity �lled with 
pure �uid. �ey used the �nite element method for solving the governing equations together with the boundary 
conditions and the found that the methodology of the distributed heating with multiple heat sources can be con-
sidered as an e�ective strategy for the optimal thermal processing of materials. �e thermal conductivity of nan-
oparticles is higher than that of traditional �uids. �us, nano�uids can be used in a large industrial applications 
such as oil industry, nuclear reactor coolants, solar cells, construction, electronics, renewable energy and many 
others. Also, nanoparticles are used because they stay in suspension longer than larger particles. �us, nano�uids 
can be used in a large industrial applications such as oil industry, nuclear reactor coolants, solar cells, construc-
tion, electronics, renewable energy and many others. A nano�uid as a working medium has been considered 
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by many researchers for the simple reason that it has the presence of nanoparticles resulting in higher thermal 
conductivity of medium and the heat transfer becoming enhanced.

Khanafer et al.5 reported a problem of natural convective heat transfer in cavities partially occupied by nano-
�uids. Two approaches based on conservation equations have been adopted in the literature to investigate the 
numerical simulation heat transfer of nano�uids: single-phase model (homogenous) and two phase model6. �e 
single-phase approach considers the �uid phase and the nanoparticles as being in thermal equilibrium where 
the slip velocity between the base �uid and the nanoparticles is negligible. On the other hand, the two-phase 
approach assumes that the relative velocity between the �uid phase and the nanoparticles may not be zero where 
the continuity, momentum and energy equations of the nanoparticles and the base �uid are handled using dif-
ferent methods. �ere are number of numerical studies used the single-phase model for simulation of the nano-
�uids. Hu et al.7 studied experimentally and numerically the natural convection heat transfer in a square cavity 
�lled with TiO2–water nano�uids. �ey found that the average Nusselt number increased with the addition of 
nanoparticles. Sheikholeslami et al.8 conducted an experimental investigation on the enhancement of the heat 
transfer and pressure drop through a concentration of refrigerant-based nano�uid. Sheremet et al.9 and Alsabery 
et al.10 numerically investigated the natural convection heat transfer of nano�uid �ow in di�erent geometries. 
Recently, Alsabery et al.11 numerically considered the problem of natural convection heat transfer in an inclined 
square cavity using the nano�uid single phase model. �ey found that the heat transfer rate was enhanced with 
the increment of the nanoparticles volume fraction. Most of the above studies are used the Maxwell-Garnett and 
Brinkman models to estimate the e�ective thermal conductivity and viscosity of the nano�uid. Sheikholeslami 
and Seyednezhad12 studied the in�uence of electric �eld on nano�uid �ow and natural convection in a porous 
media using CVFEM. However, the study of Corcione13 questions the validity of these models and tended to 
proposed a new models for estimating the e�ective thermal conductivity and viscosity of the nano�uid which 
appeared to be close to the experimental data. �e results showed that the heat transfer rate enhanced with the rel-
ative concentration of nano�uid. �e experimental study of Wen and Ding14 found that the slip velocity between 
the base �uid and particles may not be zero. �us, the two-phase nano�uid model observed to be more accu-
rate. Buongiorno15 proposed a non-homogeneous equilibrium model with the consideration of the e�ect of the 
Brownian di�usion and thermophoresis as two important primary slip mechanisms in nano�uid. Hamid et al.16  
used the Buongiorno model to study Non-alignment stagnation-point �ow of a nano�uid past a permeable 
stretching/shrinking sheet. Sheikholeslami et al.17 used the two-phase model of the nano�uid to investigate the 
thermal management for natural convection heat transfer in a 2D cavity. Garoosi et al.18 studied mixed convection 
heat transfer where the two-phase mixture model used to simulate the nano�uid in a two-sided lid-driven cavity 
with several pairs of heaters and coolers (HACs). Garoosi et al.19 used Corcione et al. model13 for the e�ective 
thermal conductivity and viscosity of the nano�uid to study numerically the problem of natural convection heat 
transfer in a heat exchanger �lled with nano�uids. Very recently, Motlagh and Soltanipour20 investigated numer-
ically the problem of natural convection of nano�uids in a square cavity using the two phase model. �e results 
of these studies indicated that the heat transfer rate enhanced with the increasing of the concentration of the 
nanoparticles up to 0.04.

Recently the e�ect of the magnetic �eld on convective heat transfer in cavities were considered extensively due 
to its wide applications such as in the polymer industry, coolers of nuclear reactors, MEMs, puri�cation of molten 
metals and many other important applications which can be used to control the convection inside cavities21,22 
Pirmohammadi and Ghassemi23 investigated numerically the e�ect of the magnetic �eld on a steady laminar 
natural convection �ow in an inclined square cavity. Mahmoudi et al.24 analysed numerically the magnetic �eld 
e�ect on natural convection in a two-dimensional cavity �lled with nano�uid. �ey found that the presence of 
magnetic �eld tended to decrease the convection heat transfer. Ghasemi et al.25 considered the in�uence of the 

Figure 1. (a) Physical model of convection in a square cavity, and (b) grid-points distribution in the adiabatic 
inner block (NY/2 − ND + 1 ≤ j ≤ NY/2 + ND + 1, NX/2 − ND + 1 ≤ i ≤ NX/2 + ND + 1).
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magnetic �eld on natural convection in a square cavity �lled with Al2O3-water nano�uid. �ey concluded that 
the enhancement or deterioration of the convection heat transfer by the increasing of the solid volume frac-
tion was clearly depending on the values of Hartmann and Rayleigh numbers. Using lattice Boltzmann method, 
Kefayati26 studied the e�ect of a magnetic �eld on natural convection in an open square cavity �lled with water/
alumina nano�uid where his results showed that the heat transfer decreased with the increment of Hartmann 
number and for various values of Rayleigh numbers and volume fractions. Sheikholeslami et al.27 used the KKL 
model of the nano�uid to investigate the MHD e�ects on natural convection heat transfer in a 2D cavity �lled 
with Al2O3-water nano�uid using the lattice Boltzmann method. Sheikholeslami et al.28 used the same method to 
investigated the magnetic �eld e�ect on CuO-water nano�uid �ow and heat transfer in a cavity. �ey considered 
in their study the e�ect of the Brownian motion on the e�ective thermal conductivity and they found that the 
enhancement in heat transfer increased as Hartmann number increase while it decreased with the increasing of 
Rayleigh number. Selimefendigil and Öztop29 used the �nite element method to study the magnetic �eld and 
internal heat generation e�ects on natural convection in a square cavity �lled with nano�uid and having di�erent 
shaped obstacles. �ey found that the heat transfer rate was deteriorated with the presence of the solid obstacles. 
Recently, Sheikholeslami and Shehzad30 numerically reported the e�ect of external magnetic source on natural 
convection in a permeable media �lled with Fe3O4-H2O nano�uid. Using the CVFEM simulation on the problem 
of nano�uid migration and convective heat transfer in a 2D porous cavity with an external magnetic �led was 
considered by Sheikholeslami and Shehzad31.

Sheikholeslami and Shehzad31 Sivaraj and Sheremet32 considered the in�uence of the applied magnetic �eld on 
natural convection in an inclined square porous cavity with a heat conducting solid block. �eir results indicated 
that the inclusion of the magnetic �eld decreased the heat transfer rate within the square cavity. Sheikholeslami 
and Rokni33 and Sheikholeslami34 investigated the Brownian motion e�ects on the magnetic nano�uid �ow and 
heat transfer in a 2D porous cavity using the CVFEM modeling. �ey concluded that the convective �ow was a 
reducing function of the rising of Hartmann number.

Figure 2. Flowchart for the solution procedure of MHD convective heat transfer in a square cavity with 
conductive inner block.
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Conjugate heat transfer (CHT) for a regular �uid has very important practical engineering applications in 
frosting practicalities and refrigeration of the hot obtrusion in a geological framing. For example, modernistic 
construction of thermal insulators which are formed of two diverse thermal conductivities (solid and �brous) 

Figure 3. Streamlines (a)4, (le�), present study (right), isotherms (b)4, (le�), present study (right) Ra = 106, 
φ = 0 and D = 0.5.

Figure 4. Comparison of the mean Nusselt number obtained from present numerical simulation with the 
experimental results of Ho et al.44, numerical results of Sheikhzadeh et al.45 and numerical results of Motlagh 
and Soltanipour20 for di�erent values of Rayleigh numbers.
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materials can be modeled by the partition length and conductivity model. Kim and Viskanta35 reported a conju-
gate convection in a di�erentially-heated vertical rectangular cavity �lled with viscous (pure) �uids surrounded 
by four conducting walls. House et al.36 studied the natural convective heat transfer in a square cavity with a 
centred heat-conducting body and they found that the heat transfer reduced with an increasing of the length of 
the solid body. Ha et al.37 considered the e�ect of a centred heat-conducting body on unsteady natural convec-
tion heat transfer in a vertical cavities. Zhao et al.38 studied the e�ect of a centred heat-conducting body on the 
conjugate natural convection heat transfer in a square enclosure. �e results show that the thermal conductivity 
ratio has strong in�uence on the �ow within the square cavity. Mahmoodi and Sebdani39 used the �nite volume 
method to investigate the conjugate natural convective heat transfer in a square cavity �lled with nano�uid and 

Figure 5. Corcione et al.46 (le�), present study (right) for streamlines (a) Isotherms (b) and nanoparticle 
distribution (c) at Ra = 3.37×105, φ = 0.04 and D = 0.
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containing a solid square block at the center. �ey concluded that the heat transfer rate decreased with an increas-
ing of the size of the inner block for low Rayleigh numbers and increased at high Rayleigh numbers. Mahapatra 
et al.40 numerically used the �nite volume method to investigate the CHT and entropy generation in a square 
cavity in the presence of adiabatic and isothermal blocks. �ey found that the heat transfer enhanced with the 
low Rayleigh numbers and for a critical block sizes. Alsabery et al.41 used the �nite deference method to study 
the unsteady natural convective heat transfer in nano�uid-saturated porous square cavity with a concentric solid 
insert and sinusoidal boundary condition. Very recently, Garoosi and Rashidi42 used the �nite volume method to 
investigate the two phase model of conjugate natural convection of the nano�uid in a partitioned heat exchanger 
containing several conducting obstacles. �ey found that the heat transfer rate was signi�cantly in�uenced by 
changing the orientation of the conductive partition from vertical to horizontal mode.

�e e�ect of the magnetic �eld on natural convection in a discretely heated square cavity with a conductive 
inner block has not been investigated yet. �erefore, the aim of this comprehensive numerical study is to investi-
gate the MHD natural convection of Al2O3-water nano�uid in a discretely heated square cavity with conductive 
inner block using Buongiorno’s two-phase model. �e authors of the present study believe that this work is a good 
contribution for improving the thermal performance and the heat transfer enhancement in some engineering 
instruments.

Mathematical Formulation
�e steady two-dimensional natural convection problem in a square cavity with length L and with the cavity 
center inserted by a solid square with side d, as illustrated in Fig. 1. �e Rayleigh number range chosen in the 
study keeps the nano�uid �ow incompressible and laminar. Isothermal heat sources are shown by a thick red lines 
and the remaining parts are maintained at cold isothermal which represented by a thick blue lines. While the top 
horizontal wall is kept adiabatic. �e boundaries of the annulus are assumed to be impermeable, the �uid within 
the cavity is a water-based nano�uid having Al2O3 nanoparticles. �e Boussinesq approximation is applicable, 
the nano�uid physical properties are constant except for the density. By considering these assumptions, the con-
tinuity, momentum and energy equations for the laminar and steady state natural convection can be written as 
follows:

∇ ⋅ =v 0, (1)

ρ µ ρβ σ
→

⋅ ∇ = −∇ + ∇ ⋅ ∇ + − → + ×p T T gv v v v B( ) ( ) , (2)nf nf nf c nf

Figure 6. Comparison of (a) thermal conductivity ratio with Chon et al.49 and Corcione et al.46 and (b) 
dynamic viscosity ratio with Ho et al.44 and Corcione et al.46.

Grid size Ψmin Ψmax Nunf

10 × 10 −0.8531 0.71976 4.6902

20 × 20 −0.87489 0.72082 4.9823

40 × 40 −0.89804 0.72647 5.2859

60 × 60 −0.91317 0.73159 5.4331

80 × 80 −0.93065 0.73535 5.598

100 × 100 −0.95656 0.73813 5.6167

120 × 120 −0.96098 0.73988 5.6255

140 × 140 −0.96099 0.74058 5.6261

160 × 160 −0.96156 0.74067 5.6265

Table 1. Grid testing for Ψmin, Ψmax and Nunf  at di�erent grid size for Ra = 105, Ha = 15, φ = 0.02, kw = 0.76 and 
D = 0.3.
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ρ ⋅ ∇ = −∇ ⋅ ∇ − ⋅ ∇C T k T C J Tv( ) , (3)p nf nf nf nf p p p nf,

ϕ
ρ

⋅ ∇ = − ∇ ⋅ Jv
1

,
(4)p

p

�e energy equation of the inner solid wall is

Figure 7. Variation of the streamlines (le�), isotherms (middle), and nanoparticle distribution (right) evolution 
by Rayleigh number (Ra) for φ = 0.02, Ha = 15, kw = 0.76 and D = 0.3.
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∇ =T 0, (5)w
2

where v is the velocity vector, →g  is the gravitational acceleration vector, 
→
B  represents the applied magnetic �eld, 

ϕ is the local volume fraction of nanoparticles and Jp is the nanoparticles mass �ux. �e subscripts f, nf, p and w 

Figure 8. Variation of local Nusselt number interfaces with (a) Y and (b) X for di�erent Ra at φ = 0.02, Ha = 15, 
kw = 0.76 and D = 0.3.

Figure 9. Variation of average Nusselt number with φ for di�erent Ra at Ha = 0, kw = 0.76 and D = 0.3.
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represent the base �uid, nano�uid, solid nanoparticles and solid inner wall, respectively. Based on Buongiorno’s 
model nanoparticles mass �ux can be written as:

= +J J J , (6)p p B p T, ,

ρ ϕ
πµ

= − ∇ =J D D
k T

d
,

3
,

(7)
p B p B B

b

f p
,

Figure 10. Variation of the streamlines (le�), isotherms (middle), and nanoparticle distribution (right) evolution 
by nanoparticles volume fraction (φ) for Ra = 105, Ha = 15, Kw = 0.76 and D = 0.3.
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ρ
µ

ρ
ϕ= − ∇ = .

+
J D T D

k

k k T
, 0 26

2 (8)
p T p T T

f

f p

f

f

,

where DB and DT are the brownian diffusion coefficient and the thermophoretic diffusivity coefficient. The 
thermo-physical properties of the nano�uid can be determined as follows:

�e heat capacitance of the nano�uids (ρCp)nf given is

ρ ϕ ρ ϕ ρ= − + .C C C( ) (1 )( ) ( ) (9)p nf p f p p

�e e�ective thermal di�usivity of the nano�uids αnf is given as

α
ρ

= .
k

C( ) (10)
nf

nf

p nf

�e e�ective density of the nano�uids ρnf is given as

ρ ϕ ρ ϕρ= − + .(1 ) (11)nf f p

�e thermal expansion coe�cient of the nano�uids βnf can be determined by:

ρβ ϕ ρβ ϕ ρβ= − + .( ) (1 )( ) ( ) (12)nf f p

�e dynamic viscosity ratio of water-Al2O3 nano�uids for 33 nm particle-size in the ambient condition was 
derived in ref.13 as follows:

Figure 11. Variation of local Nusselt number interfaces with (a) Y and (b) X for di�erent φ at Ra = 105, Ha = 15, 
kw = 0.76 and D = 0.3.

Figure 12. Variation of average Nusselt number with (a) Ra and (b) D for di�erent φ at Ha = 15, kw = 0.76 and 
D = 0.3.
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µ

µ
ϕ= − . .− . .( )d d1/ 1 34 87( / )

(13)

nf

f

p f
0 3 1 03

�e thermal conductivity ratio of water-Al2O3 nano�uids is calculated by the Corcione model13 is:

ϕ= + .























.. .

.

.k

k

T

T

k

k
1 4 4Re Pr

(14)

nf

f
B

fr

p

f

0 4 0 66

10 0 03

0 66

Figure 13. Variation of the streamlines (le�), isotherms (middle), and nanoparticle distribution (right) 
evolution by Hartman number (Ha) for Ra = 105, φ = 0.02, kw = 0.76 and D = 0.3.
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where ReB is the brownian motion Reynolds number which is de�ned as:

ρ

µ
= .

u d
Re

(15)
B

f B p

f

and uB is the brownian velocity of the nanoparticle which is calculated as:

πµ
= .u

k T

d

2

(16)
B

b

f p
2

Physical properties Fluid phase (water) Al2O3

Cp (J/kgK) 4178 765

ρ (kg/m3) 993 3970

k (Wm−1 K−1) 0.628 40

β × 105 (1/K) 36.2 0.85

µ × 106 (kg/ms) 695 —

dp (nm) 0.385 33

σ (Sm−1) 0.05 1 × 10−10

Table 2. �ermo-physical properties of water with Al2O3 nanoparticles at T = 310 K20,48.

Figure 14. Variation of local Nusselt number interfaces with (a) Y and (b) X for di�erent Ha at Ra = 105, φ = 
0.02, kw = 0.76 and D = 0.3.

Figure 15. Variation of average Nusselt number with (a) φ and (b) D for di�erent Ha at Ra = 105, kw = 0.76 and 
D = 0.3.
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where kb = 1.380648 × 10−23 (J/K) is the Boltzmann constant. lf = 0.17 nm is the mean path of �uid particles. df is 
the molecular diameter of water given as13

πρ
= .d

M

N

6

(17)
f

f

where M is the molecular weight of the base �uid, N is the Avogadro number and ρf is the density of the base 
�uid at standard temperature (310 K). Accordingly, and basing on water as a base �uid, the value of df is obtained:

Figure 16. Variation of the streamlines (le�), isotherms (middle), and nanoparticle distribution (right) 
evolution by thermal conductivity of the conductive inner block (kw) for Ra = 105, φ = 0.02, Ha = 15 and 
D = 0.3.
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π
=

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× .
. × × × .


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 = . × .−d

6 0 01801528

6 022 10 998 26
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nf
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σ

σ

ϕ

ϕ

= +



 −







 +



 −


 −





.

σ

σ

σ

σ

σ

σ

1
3 1

2 1
(19)

nf

f

p

f

p

f

p

f

Now we introduce the following non-dimensional variables:
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Using the above variables yields the following dimensionless governing equations:

∇ ⋅ =V 0, (21)

ρ

ρ

µ

µ

ρβ

ρ β
θ

ρ

ρ

σ

σ
⋅ ∇ = −∇ + ∇ + ⋅ + × ∗P RaV V V V B

( ) 1

Pr
,

(22)

f

nf

nf

f

nf

nf f
nf

f

nf

nf

f

2

Figure 17. Variation of local Nusselt number interfaces with (a) Y and (b) X for di�erent kw at Ra = 105, 
φ = 0.02, Ha = 15 and D = 0.3.

Figure 18. Variation of average Nusselt number with (a) φ and (b) D for di�erent kw at Ra = 105, Ha = 15 and 
D = 0.3.
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Figure 19. Variation of the streamlines (le�), isotherms (middle), and nanoparticle distribution (right) 
evolution by length of the conductive inner block (D) for Ra = 105, φ = 0.02, Ha = 15 and kw = 0.76.
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where V is the dimensionless velocity vector (U, V), B* is the dimensionless magnetic vector (Ha2 sin γ, Ha2 cos 
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ϕ

δθ

θ
θ= =

∂
∂
= − ⋅ ⋅

+

∂

∂
=

. ≤ ≤ . =

⁎ ⁎

⁎
U V

n

D

D N n

X Y

0,
1 1

1
, 1 on

0 25 0 75, 0, (26)

T

B BT nf

nf
nf

ϕ

δθ

θ
θ= =

∂
∂
= − ⋅ ⋅

+

∂

∂
=

≤ ≤ . . ≤ ≤ = .

⁎ ⁎

⁎
U V

n

D

D N n

X X Y

0,
1 1

1
, 0 on

0 0 25 and 0 75 1, 0 (27)

T

B BT nf

nf
nf

ϕ

δθ

θ
θ= =

∂
∂
= − ⋅ ⋅

+

∂

∂
=

. ≤ ≤ . = =

⁎ ⁎

⁎
U V

n

D

D N n

Y X X

0,
1 1

1
, 1 on

0 375 0 625, 0, 1, (28)

T

B BT nf

nf
nf

ϕ

δθ

θ
θ= =

∂
∂
= − ⋅ ⋅

+

∂

∂
=

≤ ≤ . . ≤ ≤ = = .

⁎ ⁎

⁎
U V

n

D

D N n

Y Y X X

0,
1 1

1
, 0 on

0 0 375 and 0 625 1, 0, 1 (29)

T

B BT nf

nf
nf

ϕ θ
= =

∂
∂
=

∂

∂
= ≤ ≤ = .

⁎

U V
n n

X Y0, 0, 0 on 0 1 1
(30)

nf

θ θ= , at the outer solid square surface, (31)nf w

Figure 20. Variation of local Nusselt number interfaces with (a) Y and (b) X for di�erent D at Ra = 105, 
φ = 0.02, Ha = 15 and kw = 0.76.
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where Kr = kw/knf is the thermal conductivity ratio and D = d/L is the aspect ratio of inner square cylinder width 
to the outer square cylinder width.

�e local Nusselt number evaluated at the le� and bottom walls, which is de�ned by
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Finally, the average Nusselt numbers evaluated at the heated parts of the le�, right and bottom walls of the 
square cavity which are given respectively by:
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Numerical Method and Validation
An iterative �nite di�erence method (FDM) is employed to solve the governing Equations (25–36) subject to the 
boundary conditions (26–32).

Continuity equation and momentum equation:
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Expanding the equations then yields
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Momentum equation in the Y-direction:

Figure 21. Variation of average Nusselt number with (a) Ra and (b) φ for di�erent D at Ha = 15 and kw = 0.76.
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Now we introduce the stream function and vorticity:
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�e stream function de�ned above automatically satis�es the continuity equation. �e vorticity equation is 
obtained by eliminating the pressure between the two momentum equations, i.e. by taking the Y-derivative of the 
X-momentum and subtracting from it the X-derivative of the Y-momentum:
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which simpli�es to:
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Using the de�nition of stream function we obtain:
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In terms of the stream function, the equation de�ning vorticity becomes:
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Since the energy, volume fraction equation and block conduction do not contain the pressure variable then the 
velocity in these equations are easily transformed into stream function formulation.

�e �nite di�erence form of equation relating the dimensionless vorticity is:
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In order to solve for the value of Ω at the grid point i, j, the values of Ω at the right–hand side must be pro-
vided. B = ∆X/∆Y. �is method is known as the point Gauss–Seidel method. �e general formulation of the 
method provides:
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�e computation is assumed to move through the grid points from le� to right and bottom to top. Here, the 
superscript k denotes the iteration number. We make partition the solution domain in the X − Y plane into equal 
rectangles of sides ∆X and ∆Y. �e values of the relaxation parameter λr must lie in the range 0 < λr < 2 for con-
vergence. �e range 0 < λr < 1 corresponds to under–relaxation, 1 < λr < 2 over–relaxation and λr = 1 refers to 
the Gauss–Seidel iteration. �e �nite di�erence form of equation relating the stream function, energy and volume 
fraction could be treat in the same way.

�e grid–points distribution at the adiabatic inner block and the square cavity is shown in Fig. 1(b), where 
ND is number of node points in the horizontal and vertical axis of the adiabatic inner block. �e temperature 
conditions at the le� and bottom interfaces are:
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�e convergence of the solution is assumed when the relative error for each of the variables satis�es the fol-
lowing convergence criterium:
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Γ

≤
+

+ ,
i i
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1

1

where i represents the iteration number and η is the convergence criterion. In this study, the convergence criterion 
was set at η = 10−5. �e �owchart of the solution method of MHD convective heat transfer in a square cavity with 
conductive inner block is presented in Fig. 2.

In the present paper, several grid testings are performed: 10 × 10, 20 × 20, 40 × 40, 60 × 60, 80 × 80, 100 × 100, 
120 × 120, 140 × 140 and 160 × 160. Table 1 shows the calculated strength of the �ow circulation (Ψmin) and aver-
age Nusselt number Nu( )nf  at di�erent grid sizes for Ra = 105, Ha = 15, φ = 0.02, kw = 0.76 and D = 0.3. �e results 
show insigni�cant di�erences for the 140 × 140 grids and above. �erefore, for all computations in this paper for 
similar problems to this subsection, the 140 × 140 uniform grid is employed.

For the validation of data, the results are compared with previously published numerical results obtained by 
Kaluri and Basak4 for the case of natural convection heat transfer in discretely heated porous square cavity, as 
shown in Fig. 3. In addition, a comparison of the average Nusselt number is made between the resulting �gure 
and the experimental results provided by Ho et al.44 and the numerical results provided by Sheikhzadeh et al.45 
and by Motlagh and Soltanipour20 for the case of the natural convection of Al2O3-water nano�uid in a square 
cavity using Buongiorno’s two-phase model as shown in Fig. 4. Next, a comparisons made between the present 
streamlines, isotherms, nanoparticles volume fraction and the average Nusselt number results and the numerical 
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one obtained by Corcione et al.46 are demonstrated in Fig. 5. Figure 6 presents alternative comparisons regarding 
the enhancement in the thermal conductivity due to the addition of the Al2O3 nanoparticles with two di�erent 
experimental results and the numerical results of Corcione et al.46 as well. �ese results provide con�dence to the 
accuracy of the present numerical method.

Results and Discussion
In this section, we present numerical results for the streamlines, isotherms and nanoparticle distribution with 
various values of the nanoparticle volume fraction (0 ≤ φ ≤ 0.04), the Rayleigh number (102 ≤ Ra ≤ 106), 
Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity of the conductive inner block (kw = 0.28, 0.76, 1.95, 7 and 
16) (epoxy: 0.28, brickwork: 0.76, granite: 1.95, solid rock: 7, stainless steel: 16), length of the conductive inner 
block (0 ≤ D ≤ 0.7), where the values of Prandtl number, Lewis number, Schmidt number, inclination angle of 
magnetic �eld, ratio of Brownian to thermophoretic di�usivity and normalized temperature parameter are �xed 
at Pr = 4.623, Le = 3.5 × 105, Sc = 3.55 × 104, γ = π

4
, NBT = 1.1 and δ = 155. �e values of the average Nusselt num-

ber are calculated for various values of Ra, φ and D. �e thermophysical properties of the base �uid (water) and 
solid Al2O3 phases are tabulated in Table 2.

�e contour level legends de�ne the direction of the �uid heat �ow (clockwise or anti-clockwise direction) 
and also the strength of the �ow. Positive values of Ψ denotes the anti-clockwise �uid heat �ow, whereas negative 
designates the clockwise �uid heat �ow. Ψmin represents the extreme values of the stream function. �ese values 
are important to show the minimum change of the �ow.

Figure 7 presents streamlines, isotherms and nanoparticles isoconcentrations for di�erent values of the 
Rayleigh number at φ = 0.02, Ha = 15, kw = 0.76 and D = 0.3. In the case of low Rayleigh number values (Fig. 6a,b) 
one can �nd a formation of six convective cells inside the cavity, namely three vortexes for le� and right sides 
from the centered solid block. More intensive circulations are located under the solid block where heater has an 
essential size in comparison with two others. In this part we have an ascending convective �ow in central zone of 
the heater and descending ones near the cooled vertical walls. An appearance of two cells on the le� (clockwise 
circulation) and right (counter-clockwise circulation) parts of the solid block can be explained by a formation of 
horizontal temperature di�erence between the vertical heaters and cold medium descended from the upper part 
of cavity where we have two vertical coolers. At the same time two convective cells are formed in the upper part 
of the cavity due to the e�ects of vertical coolers. In the case of low Rayleigh numbers the heat transfer regime is a 
heat conduction where isotherms are quasi-parallel to the isothermal zones. Non-homogeneous distributions of 
nanoparticles inside the cavity for low Rayleigh numbers are due to an essential e�ect of thermophoresis where 
we have the nanoparticles motion along the heat �ux from heated zones to cooled ones. Moreover, the above-
mentioned circulations also characterize zones of nanoparticles motion. �ese zones illustrate distribution of 
nanoparticles of di�erent concentrations. Moderate and high values of the Rayleigh number (Fig. 7c,d) re�ect 
more intensive nano�uid circulation inside the cavity, where all six circulations become more intensive. In these 
cases convective heat transfer is dominated heat transfer regime. �erefore, it is possible to observe a development 
of asymmetry �ow and heat transfer behavior (Fig. 7c) in the case of symmetry boundary conditions with respect 
to the vertical line X = 0.5. For these Ra values thermal plumes become stronger and thermal boundary layers 
thicknesses decrease. Distributions of nanoparticles for high Ra is more homogeneous due to non-essential e�ect 
of thermophoresis. �e same e�ect has been described earlier by Sheremet et al.47.

Pro�les of the local Nusselt number along the le� and bottom walls are shown in Fig. 8. First of all, it is pos-
sible to conclude that local Nusselt number has the same values for Ra = 103 and 104 and these distributions are 
quasi-symmetry with respect to Y = 0.5 (Fig. 8a) and X = 0.5 (Fig. 8b) due to a domination of the heat conduction. 
Further growth of the Rayleigh number leads to an increase in the absolute value of the local Nusselt number and 
asymmetrical distribution due to more intensive convective �ow and heat transfer regime. For the �xed value of 
Ra along the vertical wall (Fig. 8a), behavior of the local Nusselt number can be described as follows, an increase 
in Y from 0 to 0.375 re�ects an augmentation of Nul due to an interaction between the hot �uid and cold bottom 
part of the vertical wall. Negative values of Nul in this part can be explained by the direction of heat �ux from the 
�uid to the wall. For 0.375 < Y < 0.4 one can �nd an increase in Nul with successive reduction and growth of Nul. 
Such changes occur near the bottom part of the heater due to a variation of the heat �ux direction and heating 
of the nano�uid from the vertical wall. Further decrease and increase in Nul occur along the heater where high 
values of the heat transfer rate are near the bottom and upper ends of the heater and low value is in central part 
where �uid is hot and, as a result temperature di�erence is low. A growth of Y > 0.6 repeats the bottom part dis-
tribution of Nul. Behavior of Nub (Fig. 8b) is the same like above-described for Nul.

E�ects of the Rayleigh number and nanoparticles volume fraction on the average Nusselt number (see Eqs 
(33–35)) are shown in Fig. 9. As has been mentioned above, low Rayleigh numbers (103 and 104) illustrate a 
growth of the average Nusselt number with nanoparticles volume fraction, while for Ra = 105 one can �nd a 
formation of maximum heat transfer rate for φ = 0.03. Such behavior can be explained by a formation of asym-
metry convective �ow and heat transfer regimes (see Fig. 7c). In the case of Ra = 106 we have the heat transfer 
enhancement with φ.

An in�uence of nanoparticles volume fraction on streamlines, isotherms and nanoparticles isoconcentrations 
is demonstrated in Fig. 10. It should be noted that distributions of stream function and temperature does not 
change with φ. One can �nd only a reduction of �uid �ow rate with the nanoparticles volume fraction due to an 
increase in the e�ective viscosity (see Eq. (13)). Variation of nanoparticles isoconcentrations is more essential, 
namely, a growth of φ leads to more homogeneous distributions of nanoparticles inside the cavity.

Variations of the local Nusselt number along the le� vertical wall and bottom horizontal wall are presented 
in Fig. 11. Nature of the local Nusselt number has been described in detail above. It is worth noting here that an 
increase in φ leads to a growth of local Nusselt number, while behavior of Nul and Nub does not change with φ.
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Figure 12 shows dependences of the average Nusselt number on the Rayleigh number and nanoparticles vol-
ume fraction (Fig. 12a) and also centered solid block size and nanoparticles volume fraction (Fig. 12b). As has 
been mentioned above an increase in nanoparticles volume fraction leads to the heat transfer enhancement. �e 
rate of this heat transfer enhancement depends on the solid block sizes.

Figure 13 demonstrates streamlines, isotherms and isoconcentrations for di�erent values of the Hartmann 
number at Ra = 105, φ = 0.02, kw = 0.76 and D = 0.3. It is well-known that in the case of MHD an increase in mag-
netic �eld intensity leads to the convective �ow and heat transfer suppression. �erefore, in the present analysis 
a growth of Ha leads to the attenuation of convective �ow and heat transfer rate reduction. Moreover, for high 
values of Hartmann number (>10) one can �nd a formation of asymmetric nano�uid �ow structures, temper-
ature and nanoparticles concentration �elds due to an inclined in�uence of magnetic �eld where γ = π/4. Also 
for high values of Hartmann number isoconcentration �eld becomes non-homogeneous due to a domination of 
heat conduction and as a results an essential e�ect of thermophoresis. It is interesting to note a diagonal orien-
tation of convective cells and thermal plume for high values of Ha (≥25). Namely, convective cells for Ha = 50 
are elongated from le� bottom corner till right upper corner and thermal plume for Ha = 25 also has the same 
orientation. Such behavior is related to the e�ect of inclined magnetic �eld where an inclination angle of the mag-
netic �eld is equal to π/4. �e e�ect of the Hartmann number on the local Nusselt number (Fig. 14) illustrates a 
reduction of |Nu| with Ha.

�e average Nusselt number decreases with the Hartmann number (Fig. 15). Moreover, the heat transfer 
enhancement with the nanoparticles volume fraction is more essential for high values of the Hartmann number 
due to an intensi�cation of the considered slip mechanisms for nanoparticles. At the same time, the maximum 
average Nusselt number at φ = 0.03 for Ha = 0 with a growth of the magnetic �eld intensity vanishes and the heat 
transfer rate becomes an increasing function of the nanoparticles volume fraction for high values of the Hartmann 
number. In the case of variations of the centered solid block size (Fig. 15b) one can �nd a signi�cant decrease in 
Nunf  with Ha for low values of block size, while an increase in D leads to a reduction of di�erences in the average 
Nusselt number between low and high values of the Hartmann number. In the case of D = 0.7 an increase in the 
Hartmann number does not change the heat transfer rate.

�ermal conductivity ratio is a ratio between solid block thermal conductivity and nano�uid thermal con-
ductivity. In the case of conjugate heat transfer problems this parameter plays an essential role, because it re�ects 
a contribution of solid wall material in heat transfer process. Figure 16 illustrates streamlines, isotherms and 
isoconcentrations for di�erent values of thermal conductivity ratio at Ra = 105, φ = 0.02, Ha = 15 and D = 0.3. A 
growth of thermal conductivity ratio characterizes an increase in the thermal conductivity of solid block mate-
rial, as a result this block is heated signi�cantly from bottom and lateral heaters. In the case of kw = 0.28 one can 
�nd an asymmetrical nano�uid �ow structures and thermal plume over the bottom heater. Orientation of these 
thermo-hydrodynamic structures is under the e�ect of the inclined magnetic �eld. An increase in kw leads to 
more essential heating of the solid block and a formation of symmetric convective cells and thermal plume over 
the bottom heater. At the same time, isoconcentrations illustrate more homogeneous distributions of nanoparti-
cles for high values of thermal conductivity of solid block.

Pro�les of the local Nusselt number along le� vertical and bottom horizontal walls are shown in Fig. 17 for 
di�erent values of the thermal conductivity ratio. Change of kw leads to weak modi�cation of Nul and Nub.

Figure 18 shows the variations of the average Nusselt number with kw,φ and D. An increase in kw (Fig. 18a) 
leads to a growth of Nunf . In the case of di�erent D, it is possible to highlight a non-linear e�ect of the thermal 
conductivity ratio for di�erent values of the centered solid block sizes, namely, for D < 0.45 a growth of kw leads 
to the heat transfer rate reduction, while for D > 0.45 the e�ect is opposite.

�e e�ect of solid block size on streamlines, isotherms and nanoparticles isoconcentrations as well as local 
and average Nusselt numbers is demonstrated in Figs 19–21. Low volume (Fig. 19a,b) of the internal solid block 
characterizes a formation of asymmetric thermo-hydrodynamic structures with a homogeneous nanoparticles 
distributions. An increase in D leads to more essential deformation of solid structures that become symmetric 
with a thermal plume over the bottom heater. In the case of D = 0.7 (Fig. 19d) one can �nd several weak circu-
lations inside a narrow gap between solid block and cavity walls. Behavior of the local Nusselt number does not 
change with D (Fig. 20). In the case of the average Nusselt number we can highlight a non-linear e�ect of the solid 
block size on the heat transfer enhancement (Fig. 21).

Conclusions
In the present study, the �nite di�erence method (FDM) is used to study the steady laminar MHD natural convec-
tion of an alumina-water nano�uid within a discretely heated square cavity with a centered heat-conducting solid 
block. �e governing equations in dimensionless form have been formulated using the two-phase Buongiorno 
nano�uid model. �e detailed computational results for the �ow, temperature and nanoparticles volume fraction 
�elds within the cavity, and the local and average Nusselt numbers are shown graphically for wide ranges of the 
Rayleigh number, Hartmann number, thermal conductivity ratio, solid block size and nanoparticles volume frac-
tion. �e important conclusions in the study are provided below:

 1. High values of the Rayleigh number characterize more essential circulation inside the cavity. �e distribu-
tion of nanoparticles becomes more homogeneous for high Ra.

 2. �e change of the nanoparticles volume fraction illustrates more essential modi�cation of the nanoparti-
cles isoconcentrations where more homogeneous distribution can be obtained for high values of φ.

 3. �e magnetic �eld intensity (the Hartmann number) suppresses the convective �ow and heat transfer. �e 
heat transfer enhancement with the nanoparticles volume fraction is more essential for high values of the 
Hartmann number. A signi�cant decrease in Nunf  with Ha can be found for low values of block size, while 



www.nature.com/scientificreports/

22SCIENTIFIC REPORTS |  (2018) 8:7410  | DOI:10.1038/s41598-018-25749-2

an increase in D leads to a reduction of di�erences in the average Nusselt number between low and high 
values of the Hartmann number. In the case of D = 0.7, an increase in the Hartmann number does not 
change the heat transfer rate.

 4. An increase in the thermal conductivity ratio leads to more homogeneous distributions of nanoparticles. 
At the same time, for D < 0.45 a growth of kw leads to a heat transfer rate reduction, while for D > 0.45 the 
e�ect is the opposite.

 5. �e e�ect of the centered solid block size is non-linear on the heat transfer rate.
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