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Abstract
The chain rule for functionals is used to reduce the noncanonical Poisson bracket
for magnetohydrodynamics (MHD) to one for axisymmetric and translationally
symmetric MHD and hydrodynamics. The procedure for obtaining Casimir
invariants from noncanonical Poisson brackets is reviewed and then used to
obtain the Casimir invariants for the considered symmetrical theories. It
is shown why extrema of the energy plus Casimir invariants correspond to
equilibria, thereby giving an explanation for the ad hoc variational principles
that have existed in plasma physics. Variational principles for general equilibria
are obtained in this way.

1. Introduction

The development of ideal magnetohydrodynamics (MHD) followed early attempts to
understand astrophysical plasma phenomena and to model experiments in different scientific
fields, ranging from research in magnetic fusion to that associated with innovative plasma based
technologies such as electric propulsion and MHD generators. Like ideal hydrodynamics (HD),
which is described by Euler’s fluid equations, the MHD equations are typically expressed
in terms of Eulerian variables, which facilitates the study of stationary (time-independent
equilibrium) flows. Some insight into plasma and fluid behaviour using MHD and HD has
been achieved, but because of the presence of nonlinear terms it is difficult to obtain solutions,
even for the vastly simpler problems of equilibrium configurations and their nearby (linear)
dynamics. Thus further simplifications of the MHD model are often introduced, and one class
of such simplifications arises by applying symmetry constraints that reflect both technological
choices and reasonable approximations for many phenomena.
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Assuming axial symmetry in toroidal geometry, Grad and Rubin [1] and Shafranov [2]
(see also [3]) obtained an equation for static MHD equilibria, and the identical equation was
obtained earlier by Bragg and Hawthorne [4] in the HD context (see also [5–8]). In order to
describe stationary equilibria, i.e. equilibria with time-independent flow, the Grad–Shafranov
(GS) equation has been successively extended and generalized equilibrium (GE) equations
have been obtained [9]. Over the years both the GS and GE equations have been studied.
In addition, equations for general MHD equilibria with one ignorable coordinate have also
been obtained [10] as well as relativistic GE equations [11] and equations for equilibria with
translation symmetry, which permit the description of self-similar flows and the study of
transitions between different flow regimes (see [10, 12]).

Contemporaneous with the above developments, variational formulations for various
MHD equilibria have been constructed in an ad hoc manner. For example, a variational
formulation of hydromagnetic equilibria, including the velocity field, was extensively treated
for the first time by Woltjer [13–16]. His procedure was to bound the energy of the system with a
sufficient number of dynamical constraints—however, a complete set of constraints was found
only for the axisymmetric case. A similar approach was adopted by Taylor [17, 18] in order
to deduce the final state of plasma relaxation under constraints for both toroidal and spherical
topologies and to show that, if the plasma flow and internal energy can be neglected, the
invariance of the total magnetic helicity produces specific force-free configurations. Another
example is the variational principle for GE that was obtained in [9] and further investigated in
[19–21] and references therein. A main goal of this paper is to show how to derive a variational
principle for GE from the noncanonical Hamiltonian description of MHD introduced in [22, 23]
with the imposition of symmetry, a generalization of the case of reduced MHD where this
procedure was first carried out [24, 25]. Thus it is seen that the Lagrangian of previous work
is in fact a Hamiltonian and, as is expected from mechanics, equilibria are extrema of this
Hamiltonian.

Since both the HD and MHD models are ideal, i.e. dissipation free, a Hamiltonian
description is to be expected (see, e.g., [26]). First attempts to define an Eulerian version of
Hamilton’s equations conflicted with the fact that the Eulerian variables, unlike the Lagrangian
displacement variable and its conjugate momentum density, do not constitute a set of canonical
variables. One consequence of this is the occurrence of the Casimir dynamical invariants,
such as helicity and cross helicity, that have been used in constructing variational principle for
equilibria (see, e.g., [27–29]). Thus it is observed that the collection of dynamical invariants
and associated variational principles that have been obtained for a myriad of plasma kinetic
and fluid models all derive from a basic Hamiltonian theory.

The idea that HD and MHD are Hamiltonian theories described in terms of noncanonical
variables with a corresponding noncanonical Poisson bracket was introduced by Morrison and
Greene in [22, 23]. In this description, the dynamics is described by means of a noncanonical
Poisson bracket that has Lie algebraic properties (see below), but does not have the usual
canonical form and possesses degeneracy that gives rise to the Casimir invariants. Over
the years this idea has been extended to essentially all kinetic and fluid models in Eulerian
variables, including, for example, the BBGKY hierarchy [30] and recent reduced fluid models
for reconnection and tokamak dynamics such as [31, 32]. Various kinds of derivations are
possible within this context, such as that recently given for the Charney–Hasegawa–Mima
equation in [33].

The Hamiltonian structure for systems that describe continuous media in terms of a generic
set of Eulerian variables, ξ(x) = (ξ1, ξ2, . . . , ξm), has the following form:

∂ξ

∂t
= {ξ, H } , (1)

2
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where H represents the Hamiltonian of the system and usually corresponds to the energy; the
noncanonical Poisson bracket {·, ·} is given by

{F, G} =
∫

δF

δξi

Jij

δG

δξj

dnr, (2)

where i and j are summed 1, 2, . . . , m, F and G are functionals, an example being the total
energy of the system; dnr is the volume element, where for fluids n = 2 or 3; δF/δξi denotes
the functional derivative defined by

δF =
∫

δξi

δF

δξi

dnr;
and the operator J generally depends on ξ and is degenerate, but endows the bracket of
(2) with the properties of antisymmetry, {F, G} = − {G, F }, bilinearity, {F + λK, G} =
{F, G} + λ {K, G}, for all real numbers λ, and the Jacobi identity,

{F, {G, K}} + {G, {K, F }} + {K, {F, G}} ≡ 0,

where the above are to be satisfied for all functionals F, G and K .
The degeneracy in J arises from the fact that the transformation from Lagrangian to

Eulerian variables is not invertible (see, e.g., [34, 35])), and this in turn gives rise to the
Casimir invariants, which satisfy

{C, F } = 0 ⇔ Jij

δC

δξj

= 0 (3)

for all functionals F . The Casimir functionals C, which are determined by the noncanonical
Poisson bracket alone, clearly commute with any Hamiltonian. Thus, the Hamiltonian that
generates the dynamics in the form of (1) is not unique and can be replaced by H + C, because
{ξ, H + C} = {ξ, H }. Thus, from (1) written with Hamiltonian F := H + C,

∂ξi

∂t
= Jij

δF

δξj

,

we see the extrema of F correspond to equilibria.
Although the above explicit connection between extrema of F and equilibria was not

known in the early years of plasma physics, it was known for many cases by direct calculation
that extremization of H + C for various known Cs gave rise to equilibria, and that this kind of
variational principle could be used for addressing stability by computing the second variation
of F (see Kruskal and Oberman [36]). Now we understand this to be an infinite-dimensional
generalization of Dirichlet’s principle of Hamiltonian mechanics where F serves as a Lyapunov
functional (see, e.g., [28]). The name Casimir invariant in this context was introduced in the
early 1980s, in analogy with the invariant associated with the magnitude of angular momentum
for the group of rotations. Many examples of energy-Casimir stability for fluid and plasma
equilibria have been worked out and reviewed in [28, 37–39], but the references particularly
relevant to this paper are [30, 40] where the procedure was first carried out for MHD, that
of [41] where a variational principle for translationally symmetric MHD was obtained, but it
was not shown that the invariants used were in fact Casimir invariants, and [42] where Casimir
invariants and a variational principle with the assumption of the existence of flux surfaces were
obtained (see also [43]). A refined approach by considering a type of constrained variations,
called dynamically accessible, a terminology introduced in [44, 45], has also been given in [42].
In [46] this same approach is used to study the linear stability of Hall MHD equilibria with
flow.

In section 2 we briefly summarize the noncanonical Hamiltonian description of MHD.
In the next five sections we show how to reduce this description to one that imposes axial

3
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symmetry on the generated dynamics and the ramifications that follow from this imposition.
This will lead us to an energy-Casimir variational principle that produces the GE equations
of axisymmetric MHD. In section 3 a representation of the magnetic field in terms of a flux
function is introduced to enforce axial symmetry. A similar representation is also introduced
for the velocity field in terms of a stream function and momentum potential. This is done in
order to facilitate the HD limit (B → 0), but is not necessary for the MHD description. In
section 4 it is shown how to transform the Poisson bracket of section 2 into the axisymmetric
variables of section 3, and then in section 5 condition (3) is solved for the axisymmetric
Poisson bracket to obtain the Casimir invariants. These invariants are then used in section 6
to obtain the variational principle for the GE equations. Next, in section 7, the hydrodynamic
limit is presented: the HD Poisson bracket for axisymmetric configurations is deduced from
the general MHD form by neglecting the variables associated with the magnetic field and the
Casimirs are determined for this model. Section 8 concerns translational symmetry, and here
the previous results are adapted to this case for both the HD and MHD models. Finally, we
conclude in section 9.

2. Noncanonical Hamiltonian dynamics of MHD

The MHD equations are often written in terms of Eulerian variables as follows:

∂ρ

∂t
= −∇ · (ρv) , (4)

∂v

∂t
= −v · ∇v − 1

ρ
∇p +

1

4πρ
(∇ × B) × B, (5)

∂s

∂t
= −v · ∇s, (6)

∂B

∂t
= −B∇ · v + B · ∇v − v · ∇B, (7)

where ρ is the plasma density, v is the velocity field, s is the plasma entropy per unit mass and
B is the magnetic field. The pressure p in (5) and the plasma temperature, T , can be expressed
in terms of the plasma internal energy per unit mass, U(ρ, s), by means of the thermodynamic
relationships

p = ρ2Uρ, T = Us, (8)

where U is a function of ρ and s and subscripts indicate partial derivatives. With an appropriate
choice for U one can eliminate the entropy equation and replace it by a pressure or temperature
equation.

The noncanonical Poisson bracket of Morrison and Greene [22, 23], which is the Eulerian
counterpart to the Lagrangian variable canonical Hamiltonian description of MHD given by
Newcomb [47], is given by the following:

{F, G} = −
∫

V

{
δF

δρ
∇ · δG

δv
− δG

δρ
∇ · δF

δv
+

∇ × v

ρ
·
(

δG

δv
× δF

δv

)

+
∇s

ρ
·
(

δF

δs

δG

δv
− δG

δs

δF

δv

)
+ B ·

[(
1

ρ

δF

δv
· ∇

)
δG

δB
−

(
1

ρ

δG

δv
· ∇

)
δF

δB

]

+ B ·
[(

∇
1

ρ

δF

δv

)
· δG

δB
−

(
∇

1

ρ

δG

δv

)
· δF

δB

]}
d3r. (9)

4
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The bracket of (9) together with the Hamiltonian

H [ξ ] =
∫

V

[
1

2
ρv2 + ρU +

1

8π
B2

]
d3r (10)

casts the MHD equations of (4)–(7) into the form of (1), where the generic Eulerian variable
ξ constitutes an element of the set {ρ, v, s, B}. To show the equivalence of (4)–(7) to (1) the
functional derivatives,

δH

δρ
= 1

2
v2 + U + ρUρ,

δH

δv
= ρv, (11)

δH

δs
= ρUs,

δH

δB
= 1

4π
B,

together with

δξi(x
′)

δξi(x)
= δ(x′ − x),

where x = (x, y, z) denotes the usual Cartesian coordinates, are used. See [27] for further
details.

Sometimes it is more convenient to use a different set of Eulerian variables, in particular,
the densities ζ := {ρ, M , σ, B}, where

M = ρv, σ = ρs.

The Hamiltonian in terms of these new variables is

H [ζ ] =
∫

V

[
M2

2ρ
+ ρU +

B2

8π

]
d3r. (12)

Using the chain rule for functional derivatives

δF

δρ

∣∣∣∣
v,s

= δF

δρ

∣∣∣∣
M,σ

+
M

ρ
· δF

δM
+

σ

ρ

δF

δσ
,

δF

δv
= ρ

δF

δM
and

δF

δs
= ρ

δF

δσ
,

it was shown in [22] that in terms of the set ζ , the bracket of (9) obtains Lie–Poisson form:

{F, G} = −
∫

V

[
ρ

(
δF

δM
· ∇

δG

δρ
− δG

δM
· ∇

δF

δρ

)
+ Mi

(
δF

δMj

∂

∂xj

δG

δMi

− δG

δMj

∂

∂xj

δF

δMi

)

+ σ

(
δF

δM
· ∇

δG

δσ
− δG

δM
· ∇

δF

δσ

)
+ B ·

(
δF

δM
· ∇

δG

δB
− δG

δM
· ∇

δF

δB

)

+ B ·
(

∇
δF

δM
· δG

δB
− ∇

δG

δM
· δF

δB

)]
d3r, (13)

i.e. it is linear with respect to each dynamical variable. With the bracket of (13), equations
(4)–(7) are equivalent to

∂ρ

∂t
= {ρ, H } ,

∂M

∂t
= {M , H } ,

∂σ

∂t
= {σ, H } ,

∂B

∂t
= {B, H } (14)

which is equivalent to MHD in conservation form.

5
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3. Axial symmetry

Introducing the cylindrical coordinate system (r, φ, z), B and M can be expressed in terms
of their azimuthal components, Bφ and Mφ , and their poloidal components, Bp and Mp,
respectively. We assume the azimuthal angle φ is an ignorable coordinate and introduce scalar
fields ψ , χ and ϒ to express B and M as follows:

B = Bφφ̂ + ∇ψ × ∇φ, (15)

M = Mφφ̂ + ∇χ × ∇φ + ∇ϒ, (16)

where φ̂ = r∇φ is the unit vector in the azimuthal direction. As noted above, it is not necessary
to introduce the variables χ and ϒ for Mp, and indeed the Casimirs we eventually obtained
are unchanged by this choice, but we do this for convenience in considering the HD limit.
With the above assumptions, ∇ · B = 0 and ∇ · M = 
ϒ , where 
 denotes the Laplacian,
and since B · ∇ψ = 0, (15) implies that each magnetic flux surface coincides with a constant
ψ surface. For two generic magnetic flux surfaces, the difference between the values of ψ is
equal to the flux of the magnetic field enclosed between them and thus ψ is usually called the
magnetic flux function.

In order to simplify expressions below, we introduce

D := ∇ · M = 
ϒ (17)

and assume 
 has an inverse so that ϒ is given by

ϒ = 
−1 (∇ · M) . (18)

Similarly, the function χ is related to � := ∇φ · ∇ × M , through the equation

� = −∇· (|∇φ|2 ∇χ
)

:= Lχ, (19)

where the elliptic operator L is formally self-adjoint. We assume it has an inverse so that

χ = L−1 (∇φ · ∇ × M) . (20)

Thus, by the above, we have defined a noninvertible coordinate change: given ζAS :=
{ρ, χ, ϒ, Mφ, σ, ψ, Bφ} we can construct ζ = {ρ, M , σ, B} but in general not vice versa. In
the next section we will see that in spite of this noninvertibility, the Poisson bracket in terms
of the variables ζAS can be constructed.

4. Axisymmetric Poisson bracket

Now, with the assumptions of section 3, we reduce the Poisson bracket of (13) to one that
generates axisymmetric dynamics. To this end we must map the functional derivatives with
respect to elements of the set ζ to ones with respect to elements of the set ζAS. This requires
making use of the chain rule for functional derivatives, which we describe in detail.

Suppose F [ζ ] is a functional of the MHD density variables. By functional we mean a
quantity, usually involving a volume integration, that gives a real number when evaluated on
particular choices for the fields ζ (see [27, 28] for more details). The axisymmetric Poisson
bracket will naturally depend on functionals of the form F̄ [ζAS]. To relate functional derivatives
we suppose F̄ obtains its dependence on ζAS through functionals of ζ , i.e.

F̄ [ζAS] = F [ζ ] (21)

with (15) and (16) inserted into the right-hand side of (21). Variation of (21) gives∫
V

δF

δM
· δM d3r =

∫
V

[
δF̄

δMφ

δMφ +
δF̄

δχ
δχ +

δF̄

δϒ
δϒ

]
d3r, (22)

6
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while variation of (18) and (20) gives

δχ = L−1 (∇φ · ∇ × δM) and δϒ = 
−1 (∇ · δM) . (23)

Using (23) and the fact that both L and 
 are formally self-adjoint, (22) can be rewritten as
follows:∫

V

δF

δM
· δM d3r =

∫
V

[
δF

δMφ

φ̂ · δM + ∇
(
L−1 δF

δχ

)
× ∇φ · δM − ∇
−1 δF

δϒ
· δM

]
d3r,

(24)

where the last two terms have been integrated by parts with surface terms dropped. In the
following we either consider variations such that δM vanishes at the domain boundaries or
assume that natural conditions hold, thus neglecting surface terms [21, 48]. On the right-hand
side of (24) we have dropped the ‘bars’ on the functionals; we do this henceforth since the
proper arguments are clear from context. Considering the arbitrariness of the variation δM ,
expression (24) yields

FM = FMφ
φ̂ + ∇ (

L−1Fχ

) × ∇φ − ∇
(

−1Fϒ

)
(25)

where a compact subscript notation for the functional derivatives,

δF

δζAS
= FζAS ,

has been introduced.
Moreover, we can use definitions (18) and (19) in order to deduce expressions for the

functional derivatives, i.e.∫
V

Fϒδϒ d3r =
∫

V

FDδD d3r =
∫

V


FDδϒ d3r (26)

and ∫
V

Fχδχ d3r =
∫

V

F�δ� d3r =
∫

V

LF�δχ d3r, (27)

where again we have exploited the self-adjointness of the two operators 
 and L. Because δϒ

and δχ are arbitrary, we conclude

Fϒ = 
FD and Fχ = LF�. (28)

Inverting and substituting (28) into (25) yield

FM = FMφ
φ̂ + ∇F� × ∇φ − ∇FD, (29)

and it is straightforward to prove the relationships

�FD = Fϒ = −∇ · FM , LF� = Fχ = ∇φ · ∇ × FM , and FMφ
= FM · φ̂.

(30)

In a similar way, we can prove that the functional derivative with respect to Bφ and ψ satisfies

FBφ
= FB · φ̂ and Fψ = ∇φ · ∇ × FB . (31)

7
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Now upon substitution of the expressions for the functional derivatives of (29) and (31)
into the Poisson bracket (13) and enforcing ∂/∂φ = 0 produces

{F, G}AS = −
∫

V

{
ρ

([
Gρ, F�

] − [
Fρ, G�

]) − ρ
(
∇FD · ∇Gρ − ∇GD · ∇Fρ

)
+ rMφ

([
GMφ

r
, F�

]
−

[
FMφ

r
, G�

])

− rMφ

(
∇FD · ∇

GMφ

r
− ∇GD · ∇

FMφ

r

)

+ � [G�, F�] − � (∇G� · ∇FD − ∇F� · ∇GD) +
�

|∇φ|2 [GD, FD]

+ ϒ ([Gϒ, F�] − [Fϒ, G�]) − ϒ (∇FD · ∇Gϒ − ∇GD · ∇Fϒ)

− |∇φ|2 ∇χ · (∇F�Gϒ − ∇G�Fϒ) − χ ([FD, Gϒ ] − [GD, Fϒ ])

+ σ ([Gσ , F�] − [Fσ , G�]) − σ (∇FD · ∇Gσ − ∇GD · ∇Fσ )

+
Bφ

r

([
rGBφ

, F�

] − [
rFBφ

, G�

])
− Bφ

r

(
∇

(
rGBφ

) · ∇FD − ∇
(
rFBφ

) · ∇GD

)
+ ψ

([
Gψ, F�

] − [
Fψ, G�

]) − ψ
(
∇FD · ∇Gψ − ∇GD · ∇Fψ

)
+ ψ

([
rGBφ

,
FMφ

r

]
−

[
rFBφ

,
GMφ

r

])
+ ψ

(
GϒFψ − FϒGψ

)}
d3r, (32)

where

(∇A × ∇B) · ∇φ = [A, B] = ∇ · (B∇φ × ∇A) . (33)

is used to simplify the notation. Details of this calculation can be found in appendix A.
Expression (32) represents the noncanonical Poisson bracket for axisymmetric MHD.

The Hamiltonian in terms of the variables ζAS is given by

HAS [ζAS] =
∫

V

(
M2

φ

2ρ
+

|∇χ |2
2ρr2

+
|∇ϒ |2

2ρ
+

[ϒ, χ ]

ρ
+ ρU +

|∇ψ |2
8πr2

+
B2

φ

8π

)
d3r. (34)

With the Hamiltonian (34), the equations of motion for axisymmetric MHD can be expressed
in terms of the Poisson bracket (32) as follows:

∂ζAS

∂t
= {ζAS, HAS}AS. (35)

The calculations implied by the above are carried out in detail in appendix B, and in this way
the equations for axisymmetric MHD in the ζAS variables are explicitly obtained.

5. Axisymmetric Casimirs

Now we seek the Casimir invariants associated with the axisymmetric MHD bracket (32), i.e.
functionals that satisfy

{F, C}AS = 0 (36)

for all functionals F . Casimir invariants are constants of motion that are built into the phase
space, which for MHD is a function space, and the set of Casimirs, {Ci |i = 1, 2, . . .}, define
families of subspaces to which the solution is confined in the course of the MHD dynamics.

8
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With (32) we see that (36) implies∫
V

[
FρC1 +

FMφ

r
C2 + FσC3 + rFBφ

C4 + FψC5 + F�C6 + FDC7

]
d3r = 0,

where the functions Ci are given by

C1 = [ρ, C�] − ∇ · (ρ∇CD) , (37)

C2 = [σ, C�] − ∇ · (σ∇CD) , (38)

C3 = [
rMφ, C�

] − ∇ · (
rMφ∇CD

)
+

[
ψ, rCBφ

]
, (39)

C4 =
[
Bφ

r
, C�

]
− ∇ ·

(
Bφ

r
∇CD

)
+

[
ψ,

CMφ

r

]
, (40)

C5 = [ψ, C�] − ∇ · (ψ∇CD) + ψCϒ, (41)

C6 = [
ρ, Cρ

]
+

[
rMφ,

CMφ

r

]
+ [σ, Cσ ] +

[
Bφ

r
, rCBφ

]
+

[
ψ, Cψ

]
+ [�, C�] − ∇ · (�∇CD) + [ϒ, Cϒ ] + ∇ · (

Cϒ |∇φ|2 ∇χ
)
, (42)

C7 = ∇ · (
ρ∇Cρ

)
+ ∇ ·

(
rMφ∇

CMφ

r

)
+ ∇ · (σ∇Cσ ) + ∇ ·

(
Bφ

r
∇rCBφ

)
+ ∇ · (

ψ∇Cψ

)
+ ∇ · (�, ∇C�) +

[
r2�, CD

]
+ ∇ · (ϒ∇Cϒ) + [χ, Cϒ ]

+ � (
[ϒ, C�] − ∇ · (ϒ∇CD) + [χ, CD] + |∇φ|2 ∇χ · ∇C� − ψCψ

)
. (43)

Since each term in the bracket must vanish separately, it can be seen that this implies a set of
Casimir conditions

Ci = 0 for i = 1–7.

A further simplification of the Casimir conditions is possible. In fact, (37) is equivalent to

∇ · (ρ∇C� × ∇φ − ρ∇CD) = 0, (44)

and thus the term inside the divergence satisfies

ρ

(
∇C� − ∇φ

|∇φ|2 × ∇CD

)
= ∇A, (45)

where A is an arbitrary function. If the plasma density is assumed to be strictly positive
everywhere inside the domain, then (45) can be divided by ρ to give

∇C� − r2∇φ × ∇CD = 1

ρ
∇A. (46)

Because the curl of (46) only has an azimuthal component, this equation yields

�CD = Cϒ = ∇φ · ∇A × ∇
1

ρ
=

[
A,

1

ρ

]
. (47)

Moreover, upon multiplying equation (46) by |∇φ|2 and taking its divergence, we obtain

LC� = Cχ = −∇ ·
(

|∇φ|2 1

ρ
∇A

)
. (48)

Thus, the single condition (37) is satisfied by every functional C for which

Cχ = −∇ ·
(

|∇φ|2 1

ρ
∇A

)
, Cϒ =

[
A,

1

ρ

]
, (49)

where A is an arbitrary function.

9
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Using (46) in the Casimir conditions (38)–(41) produces the following:

0 =
[
σ

ρ
, A

]
, (50)

0 =
[
rMφ

ρ
, A

]
+

[
ψ, rCBφ

]
, (51)

0 =
[
Bφ

rρ
, A

]
+

[
ψ, CMφ

/r
]
, (52)

0 = 1

ρ
[ψ, A] , (53)

while conditions (42) and (43) represent the curl and the divergence of the equation

ρ∇Cρ + σ∇Cσ + rMφ∇
Cφ

r
+

Bφ

r
∇

(
rCBφ

) − Cψ∇ψ

+ (�/ρ) ∇A − M⊥

[
A,

1

ρ

]
+ ∇

(
1

ρ
M⊥ · ∇A × ∇φ

)
= 0. (54)

From these equations, with A ≡ 0 we directly obtain the following Casimir invariants

C1σ =
∫

V

ρK
(

σ

ρ

)
d3r, (55)

C1ψ =
∫

V

ρJ (ψ) d3r, (56)

C2 =
∫

V

Bφ

r
H (ψ) d3r, (57)

C3 =
∫

V

rMφG (ψ) d3r, (58)

where the Casimir invariant C1σ is to be expected, since it is a Casimir invariant also for the
general, nonaxisymmetric MHD bracket (first shown in [27, 34, 35]).

Now, stepping back to the general form of the Casimir conditions (A �= 0), the two
equations (50) and (53) imply an overspecification of the functionA. Thus, unless the constraint[

ψ,
σ

ρ

]
= 0 (59)

is assumed, no other solution of the system is possible. This feature of MHD was already
pointed out in [27], where Casimir invariants were first sought, and again in [34, 35] in the
context of MHD relabelling symmetry. However, if the constraint (59) holds (which is the case
needed for the derivation of the GE equations) one more Casimir invariant exists. Whence
(51) and (52) can be rewritten as

0 =
[
A

′ rMφ

ρ
− rCBφ

, ψ

]
and 0 =

[
A

′ Bφ

rρ
− CMφ

r
, ψ

]
, (60)

which imply

rCBφ
= A

′ rMφ

ρ
+ f1 and

CMφ

r
= A

′ Bφ

rρ
+ f2, (61)

where f1 and f2 are two arbitrary functions of ψ . By integrating conditions (49) and (61), we
obtain

C4 =
∫

V

(
MφBφ

ρ
A

′
+

|∇φ|2
ρ

∇A · ∇χ +
[ϒ, A]

ρ

)
d3r =

∫
V

v · B A
′
d3r, (62)

10
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where A is a function of ψ or σ/ρ. Note that because f1 and f2 give rise to additional terms
of the form of (57) and (58), they can be neglected. It is straightforward to prove that C4 also
satisfies (54).

6. Axisymmetric variational principle

Now we proceed as described in section 1 to construct the energy-Casimir variational principle
for axisymmetric MHD. With the knowledge that extrema of the energy-Casimir functional
correspond to equilibria, we consider

FAS = HAS −
∫

V

ρJ d3r −
∫

V

Bφ

r
H d3r −

∫
V

rMφG d3r −
∫

V

v · B F d3r, (63)

where HAS is given by (34) and F ≡ A
′
, G, H and J are four arbitrary functions of ψ . Note

from (59) the entropy is also a function of the magnetic flux, s = I (ψ), except possibly for
regions where ∇ψ = 0. Using this, U in HAS obtains ψ dependence through its dependence
on s.

Setting the first variation of FAS equal to zero yields the following set of equations:

δFAS

δϒ
= −∇ ·

(∇ϒ

ρ

)
−

[
1

ρ
, χ

]
+ F

[
1

ρ
, ψ

]
= 0, (64)

δFAS

δχ
= −∇ ·

(∇χ

ρr2

)
+

[
1

ρ
, ϒ

]
+ ∇ ·

(
F
ρ

∇ψ

r2

)
= 0, (65)

δFAS

δMφ

= Mφ

ρ
− rG − F

ρ
Bφ = 0, (66)

δFAS

δBφ

= Bφ

4π
− H

r
− F

ρ
Mφ = 0, (67)

δFAS

δψ
= −Lψ

4π
+ ρUsI

′ − ρJ ′ − Bφ

r
H′ − rMφG ′

+

(
∇ ·

(∇χ

ρr2

)
−

[
1

ρ
, ϒ

])
F − MφBφ

ρ
F ′ = 0, (68)

δFAS

δρ
= − M2

2ρ2
+ (ρU)ρ − J +

MφBφ

ρ2
F +

F
ρ2r2

∇ψ · ∇χ +
F
ρ2

[ϒ, ψ] = 0, (69)

Equations (64)–(69) can be seen to be equivalent to the GE equations previously obtained
in [9, 11, 19–21]. To this end observe that (64) and (65) can be rewritten as

∇ × W = 0 and ∇ · W = 0,

where

W := 1

ρr2

(
∇χ − r2∇ϒ × ∇φ − F∇ψ

)
.

Thus, except for the gradient of a harmonic function, we obtain

F∇ψ = ∇χ − r2∇ϒ × ∇φ (70)

and, consequently, 
ϒ = D = ∇ · M = 0.

11
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Upon making use of (70) with ϒ ≡ 0 and some manipulation and rearrangement of
(64)–(69), we can summarize as follows:

F (ψ) = 4πχ ′, (71)

G (ψ) = vφ

r
− FBφ

4πρr
, (72)

H (ψ) = rBφ − rFvφ, (73)

I (ψ) = s, (74)

J (ψ) = U + ρUρ +
v2

2
− rvφG, (75)

where in (71) χ = χ (ψ) with the prime indicating differentiation with respect to ψ , (74)
is necessary for the cross helicity Casimir and (75) is a Bernoulli-like equation. These five
functions must be assigned in order to find a specific equilibrium configuration, and in turn
these functions are determined by the specification of the Casimir invariants. In addition to
the above we have the partial differential equation

∇ ·
[(

1 − F2

4πρ

)
∇ψ

r2

]
+

FF ′

4πρ

|∇ψ |2
r2

= −4πρ
(
J ′ + rvφG ′)

− 1

r2
(H + rvφF)(H′ + rvφF ′) + 4πUsI ′, (76)

which is the sought after GE equation.

7. Axisymmetric HD

The above formulation for axisymmetric MHD can be effectively adapted to limiting cases.
For example, from it we can directly obtain the axisymmetric formulations of ideal HD or
MHD with zero poloidal flow by neglecting the appropriate terms in both the Poisson bracket
and the Hamiltonian. In the hydrodynamic limit, i.e. ψ ≡ 0 and Bφ ≡ 0, we obtain for the
Poisson bracket

{F, G}ASHD = −
∫

V

{
ρ

([
Gρ, F�

] − [
Fρ, G�

]) − ρ
(
∇FD · ∇Gρ − ∇GD · ∇Fρ

)
+ rMφ

([
GMφ

r
, F�

]
−

[
FMφ

r
, G�

])

− rMφ

(
∇FD · ∇

GMφ

r
− ∇GD · ∇

FMφ

r

)

+ � [G�, F�] − � (∇G� · ∇FD − ∇F� · ∇GD) +
�

|∇φ|2 [GD, FD]

+ ϒ ([Gϒ, F�] − [Fϒ, G�]) − ϒ (∇FD · ∇Gϒ − ∇GD · ∇Fϒ)

− |∇φ|2 ∇χ · (∇F�Gϒ − ∇G�Fϒ) − χ ([FD, Gϒ ] − [GD, Fϒ ])

+ σ ([Gσ , F�] − [Fσ , G�]) − σ (∇FD · ∇Gσ − ∇GD · ∇Fσ )
}

d3r, (77)

while the Hamiltonian becomes

HASHD
[
ρ, χ, ϒ, Mφ, σ

] =
∫

V

(
M2

φ

2ρ
+

|∇χ |2
2ρr2

+
|∇ϒ |2

2ρ
+

[ϒ, χ ]

ρ
+ ρU

)
d3r. (78)

The Casimir condition (49) remains unchanged, while conditions (50)–(53) reduce to

0 =
[
σ

ρ
, A

]
, (79)

12
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0 =
[
rMφ

ρ
, A

]
, (80)

and (54) becomes

ρ∇Cρ + σ∇Cσ + rMφ∇
CMφ

r
+

�

ρ
∇A − M⊥

[
A,

1

ρ

]
+ ∇

(
1

ρ
M⊥ · ∇A × ∇φ

)
= 0.

(81)

These conditions produce the Casimirs

C1σ =
∫

V

ρK
(

σ

ρ

)
d3r, (82)

C1φ =
∫

V

ρM
(

rMφ

ρ

)
d3r, (83)

whereas the Casimirs (56) and (58) reduce to less general forms of C1σ and C1φ,

C1ψ =
∫

V

ρJ0 d3r and C3 =
∫

V

rMφG0 d3r

where J0 and G0 are constants.
For the HD bracket, (79) and (80) yield[

rMφ

ρ
,
σ

ρ

]
= 0, (84)

i.e. rMφ/ρ and σ/ρ should be functionally dependent or the problem is over-constrained. If this
constraint is assumed, then C1σ = C1φ . Moreover, the functional obtained by integrating (49)

C4 =
∫

V

(
|∇φ|2

ρ
∇A · ∇χ +

[ϒ, A]

ρ

)
d3r =

∫
V

A
′

2
v · ∇ × v d3r (85)

is a Casimir, where A is a function of rMφ/ρ or σ/ρ (this can be easily proven by substituting
(85) into (81)).

The energy-Casimir functional for HD equilibria is then given by

FASHD = HASHD −
∫

V

ρM d3r −
∫

V

N
2

v · ∇ × v d3r,

where N = A
′
. Using (78) we obtain

FASHD =
∫

V

(
M2

φ

2ρ
+

|∇χ |2
2ρr2

+
|∇ϒ |2

2ρ
+

[ϒ, χ ]

ρ
+ ρU − ρM − N

2
v · ∇ × v

)
d3r (86)

and setting the first variation of FASHD equal to zero yields the following:

δFASHD

δϒ
= −∇ ·

(∇ϒ

ρ

)
−

[
1

ρ
, χ

]
+ N

[
1

ρ
, rMφ/ρ

]
= 0, (87)

δFASHD

δχ
= −∇ ·

(
∇χ

ρr2

)
+

[
1

ρ
, ϒ

]
+ ∇ ·

(
N
ρ

∇
(
rMφ/ρ

)
r2

)
= 0, (88)

δFASHD

δMφ

= Mφ

ρ
+ rUsI

′ − rM′
+

r

ρ

(
∇ ·

(
∇χ

ρr2

)
−

[
1

ρ
, ϒ

])
N = 0, (89)

δFASHD

δρ
= M2

2ρ2
+ (ρU)ρ − M = 0, (90)
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where the last equation has been obtained by using (89) and the relation

N∇
(
rMφ/ρ

) = ∇χ − r2∇ϒ × ∇φ, (91)

which follows from (87) and (88).
From the above, the GS (or more accurately the Bragg–Hawthorne) equation can be easily

obtained. If we assume ρ is constant and ϒ ≡ 0, consistent with (91), then upon multiplying
(89) by r and dividing by N , in order to obtain functional dependences in terms of χ , we
see that the χ term of (89) is the GS operator. Since ϒ is zero, r2M′/N corresponds to a
Bernoulli-like term and thus is a function of χ defined by (90) and the term (rMφ/ρ)/N is
equivalent to the C dC/dψ term of, e.g., [7]. One of the reasons we introduced the variable χ

was to facilitate this derivation.

8. Translation symmetry

Although the above calculations were for axial symmetry, it is clear how to proceed for any
symmetry that reduces the problem to two-dimensions. Here we treat the case of translational
symmetry along one of the Cartesian axes. Thus we introduce the Cartesian coordinates
(x, y, z) and assume z is the ignorable coordinate, i.e. ∂/∂z = 0. In analogy with (15) and
(16), the magnetic field and momentum density can be represented as

B = Bzẑ + ∇ψ × ẑ, (92)

M = Mzẑ + ∇χ × ẑ + ∇ϒ, (93)

where ẑ is the unit vector in the z-direction.
The functional derivative with respect to M results

FM = FMz
ẑ + ∇F� × ẑ − ∇FD, (94)

where


FD = Fϒ = −∇ · FM , 
F� = −Fχ = ẑ · ∇ × FM (95)

and

FMz
= FM · ẑ. (96)

In a similar way, we can prove that the functional derivative with respect to Bz and ψ results

FBz
= FB · ẑ and Fψ = ẑ · ∇ × FB . (97)

As to be expected, in this case the Poisson bracket has a form significantly similar to the
axisymmetric one,

{F, G}TS = −
∫

V

{
ρ

([
Gρ, F�

] − [
Fρ, G�

]) − ρ
(
∇FD · ∇Gρ − ∇GD · ∇Fρ

)
+ Mz

([
GMz

, F�

] − [
FMz

, G�

]) − Mz

(
∇FD · ∇GMz

− ∇GD · ∇FMz

)
+ � [G�, F�] − � (∇FD · ∇G� − ∇GD · ∇F�) + � [GD, FD]

+ ϒ ([Gϒ, F�] − [Fϒ, G�]) − ϒ (∇FD · ∇Gϒ − ∇GD · ∇Fϒ)

− ∇χ · (∇F�Gϒ − ∇G�Fϒ) − χ ([FD, Gϒ ] − [GD, Fϒ ])

+ σ ([Gσ , F�] − [Fσ , G�]) − σ (∇FD · ∇Gσ − ∇GD · ∇Fσ )

+ Bz

([
GBz

, F�

] − [
FBz

, G�

]) − Bz

(
∇FD · ∇GBz

− ∇GD · ∇FBz

)
+ ψ

([
Gψ, F�

] − [
Fψ, G�

]) − ψ
(
∇FD · ∇Gψ − ∇GD · ∇Fψ

)
+ ψ

([
GBz

, FMz

] − [
FBz

, GMz

])
+ ψ

(
GϒFψ − FϒGψ

)}
d3r, (98)
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where

[A, B] = ẑ · (∇A × ∇B) = ∇ · (
ẑ × B∇A

)
. (99)

All the differences from (32) lie in the metric elements used. In terms of the set of variables
ζTS = (ρ, χ, ϒ, Mz, σ, ψ, Bz), the Hamiltonian becomes

HTS [ζTS] = 1

2

∫
V

(
M2

ρ
+

B2

4π
+ 2ρU

)
d3r

=
∫

V

(
M2

z

2ρ
+

|∇χ |2
2ρ

+
|∇ϒ |2

2ρ
+

[ϒ, χ ]

ρ
+

|∇ψ |2
8π

+
B2

z

8π
+ ρU

)
d3r. (100)

The same holds for the Casimir conditions and thus for the Casimirs themselves. Thus,
replacing rMφ by Mz and Bφ/r by Bz, the Casimirs result

C1σ =
∫

V

ρJ
(

σ

ρ

)
d3r, (101)

C1ψ =
∫

V

ρK (ψ) d3r, (102)

C2 =
∫

V

BzH (ψ) d3r, (103)

C3 =
∫

V

MzG (ψ) d3r, (104)

and, if the condition [ψ, σ/ρ] = 0 is assumed,

C4 =
∫

V

(
MzBz

ρ
A

′
+

1

ρ
∇A · ∇χ +

[ϒ, A]

ρ

)
d3r =

∫
V

v · BA
′
d3r. (105)

Translational symmetry is also interesting for the HD problem. As described in section 7, the
Poisson bracket for the HD limit can be deduced from (98) simply neglecting the terms with
ψ and Bz. In this case, we obtain

{F, G}TSHD = −
∫

V

{
ρ

([
Gρ, F�

] − [
Fρ, G�

]) − ρ
(
∇FD · ∇Gρ − ∇GD · ∇Fρ

)
+ Mz

([
GMz

, F�

] − [
FMz

, G�

]) − Mz

(
∇FD · ∇GMz

− ∇GD · ∇FMz

)
+ � [G�, F�] − � (∇FD · ∇G� − ∇GD · ∇F�) + � [GD, FD]

+ ϒ ([Gϒ, F�] − [Fϒ, G�]) − ϒ (∇FD · ∇Gϒ − ∇GD · ∇Fϒ)

−∇χ · (∇F�Gϒ − ∇G�Fϒ) − χ ([FD, Gϒ ] − [GD, Fϒ ])

+ σ ([Gσ , F�] − [Fσ , G�]) − σ (∇FD · ∇Gσ − ∇GD · ∇Fσ )} d3r, (106)

and the Hamiltonian becomes

HTSHD
[
ρ, χ, ϒ, Mz, σ

] =
∫

V

(
M2

z

2ρ
+

|∇χ |2
2ρ

+
|∇ϒ |2

2ρ
+

[ϒ, χ ]

ρ
+ ρU

)
d3r. (107)

The HD Casimirs are

C1σ =
∫

V

ρJ
(

σ

ρ

)
d3r, (108)

C1z =
∫

V

ρM
(

Mz

ρ

)
d3r, (109)

C4 =
∫

V

1

ρ
∇A · ∇χ +

1

ρ
[ϒ, A] d3r =

∫
V

A
′

2
v · ∇ × v d3r, (110)

where C4 exists if the additional assumption
[
Mz/ρ, σ/ρ

] = 0 holds.
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Therefore, variational energy-Casimirs formulations for translation symmetric
configurations can be written for both the MHD and HD problems.

9. Conclusions

In summary, we have described how to use the chain rule for functionals to reduce the
noncanonical Poisson bracket for MHD to one for axisymmetric and translationally symmetric
MHD and HD. We have described a procedure for obtaining Casimir invariants from
noncanonical Poisson brackets and used the procedure for obtaining the Casimir invariants
for the considered symmetrical theories.

We have described in general why extrema of the energy plus Casimir invariants correspond
to equilibria, thereby giving an explanation for the ad hoc variational principles that have
existed in plasma physics, and we have explicitly obtained such variational principles for
general equilibria. Thus, we have clarified that the Lagrangian functional of previous work is
actually a Hamiltonian.

In the search of extrema we have either considered variations that vanish at the domain
boundaries or have assumed that natural conditions hold, thus neglecting surface terms.
Boundary conditions are application specific and there are many possibilities. For example,
in a free boundary problem one must include the dynamical variables that describe the motion
of the boundary and this is one means to further complicate the situation. Clearly when
applying this procedure to a specific geometrical plasma configuration, the shape and position
of the boundaries must also be specified and the physics of the situation will determine how to
do so.

The procedures we have described are quite general. Although we have explicitly
considered axial symmetry and translational symmetry, with slight modification the results
can be adapted to helical symmetry, and it is clear how the procedure works for any dimension
reducing symmetry. Through the years, the procedure has been applied to theories more general
than MHD, such as the Hamiltonian four-field model of [24] that includes gyroviscosity and
more recently the reconnection model of [31, 49] and the electromagnetic gyrofluid model
of [32]. We emphasize the point that it is important to show that invariants are Casimir
invariants because if one changes the Hamiltonian they remain invariant. In [49] this idea was
used to add external forcing, for possible application to resonant magnetic perturbations. In
future work we hope to explore such perturbations. In any event we are poised to address
stability with or without assuming dynamically accessibility.

Appendix A. Axisymmetric Poisson bracket derivation

Here we show the details of the transformation of the noncanonical Poisson bracket of (13) to
that of (32) in terms of the variables ζAS = (

ρ, χ, ϒ, Mφ, σ, ψ, Bφ

)
, defined by (15)–(16) and

with the assumption ∂/∂φ = 0. For convenience we label the terms of (13) as follows:

{F, G} = −
∫

V

{
ρ

(
FM · ∇Gρ − GM · ∇Fρ

)︸ ︷︷ ︸
A

+ M · [(FM · ∇) GM − (GM · ∇) FM ]︸ ︷︷ ︸
B

+ σ (FM · ∇Gσ − GM · ∇Fσ )︸ ︷︷ ︸
C

+ B [(FM · ∇) GB − (GM · ∇) FB]︸ ︷︷ ︸
D

+ B · (∇FM · GB − ∇GM · FB)}︸ ︷︷ ︸
E

d3r. (A.1)
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The term A can be written as follows by exploiting (29):

ρ
(
FM · ∇Gρ − GM · ∇Fρ

) = ρ
([

Gρ, F�

] − [
Fρ, G�

])
− ρ

(
∇FD · ∇Gρ − ∇GD · ∇Fρ

)
, (A.2)

where we have introduced the notation

(∇A × ∇B) · ∇φ = [A, B] . (A.3)

The term B can be decomposed as

M · [(FM · ∇) GM − (GM · ∇) FM ] = Mφφ̂ · [(FM · ∇) GM − (GM · ∇) FM ]︸ ︷︷ ︸
B1

+ Mp · [(FM · ∇) GM − (GM · ∇) FM ]︸ ︷︷ ︸
B2

. (A.4)

The first term on the right, labelled B1, can be rewritten as

Mφφ̂ · [(FM · ∇) GM − (GM · ∇) FM ] = rMφ

(
FMp

· ∇
GMφ

r
− GMp

· ∇
FMφ

r

)

= rMφ

([
GMφ

r
, F�

]
−

[
FMφ

r
, G�

])

−rMφ

(
∇FD · ∇

GMφ

r
− ∇GD · ∇

FMφ

r

)
(A.5)

where in the last step we have again used expression (29). By using vector identities and
considering that Fϒ = ∇ · FM , the second term of (A.4) can be further decomposed as

Mp · [(FM · ∇) GM − (GM · ∇) FM ] = Mp · ∇ × (GM × FM )︸ ︷︷ ︸
B2a

− Mp · (FMGϒ − GMFϒ)︸ ︷︷ ︸
B2b

. (A.6)

The term labelled B2a yields

Mp · ∇ × (GM × FM ) = (
∇ × Mp

) · (GM × FM ) = �

|∇φ|2 ∇φ · (
GMp

× FMp

)
,

which upon substituting the expressions for GMp
and FMp

of (29) and (31), respectively, we
obtain

Mp · ∇ × (GM × FM ) = � [G�, F�] − � (∇G� · ∇FD − ∇F� · ∇GD)

+
�

|∇φ|2 [GD, FD] . (A.7)

The second term on the right side of (A.6), i.e. the term labelled B2b, can be rewritten as

Mp · (FMGϒ − GMFϒ) = (∇χ × ∇φ + ∇ϒ) · (FMGϒ − GMFϒ)

= (∇χ × ∇φ) · (FMGϒ − GMFϒ) + ∇ϒ · (FMGϒ − GMFϒ) .

(A.8)

The first part of this expression results in

(∇χ × ∇φ) · (
FMp

Gϒ − GMp
Fϒ

) = − |∇φ|2 ∇χ · (∇F�Gϒ − ∇G�Fϒ)

−χ ([FD, Gϒ ] − [GD, Fϒ ]) (A.9)
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and integrating the last term by parts, we obtain

∇ϒ · (FMGϒ − GMFϒ) = −ϒ (FM · ∇Gϒ − GM · ∇Fϒ) , (A.10)

since ∇ · FM = Fϒ and ∇ · GM = Gϒ . It is straightforward to reduce expression (A.10) to
the forms of (A.2) and (A.5),

− ϒ (FM · ∇Gϒ − GM · ∇Fϒ) = −ϒ ([Gϒ, F�] − [Fϒ, G�])

+ ϒ (∇FD · ∇Gϒ − ∇FD · ∇Gϒ) . (A.11)

In the same way, the term C results in

σ (FM · ∇Gσ − GM · ∇Fσ ) = σ ([Gσ , F�] − [Fσ , G�])

− σ (∇FD · ∇Gσ − ∇GD · ∇Fσ ) . (A.12)

The part of the Poisson bracket which depends on the magnetic field, i.e. terms D and E,
can be rewritten as

B ((FM · ∇) GB − (GM · ∇) FB) + B · (∇FM · GB − ∇GM · FB)

= B · (GB × (∇ × FM ) − FM × (∇ × GB)) , (A.13)

where we have used vector identities and ∇ · B = 0. The term on the right side of (A.13) can
be decomposed into three parts:

B · (GB × (∇ × FM ) − FM × (∇ × GB))

= Bφφ̂ ·
(
GMp

×
(
∇ × FBφ

φ̂
)

− FMp
×

(
∇ × GBφ

φ̂
))

︸ ︷︷ ︸
D1

+ Bp ·
(
GMφ

φ̂ ×
(
∇ × FBφ

φ̂
)

− FMφ
φ̂ ×

(
∇ × GBφ

φ̂
))

︸ ︷︷ ︸
D2

+ Bp · (
GMp

× (
∇ × FBp

) − FMp
× (

∇ × GBp

))︸ ︷︷ ︸
D3

. (A.14)

The term D1 becomes

Bφφ̂ ·
(
GMp

×
(
∇ × FBφ

φ̂
)

− FMp
×

(
∇ × GBφ

φ̂
))

= Bφ

r

([
rGBφ

, F�

] − [
rFBφ

, G�

])
− Bφ

r

(
∇

(
rGBφ

) · ∇FD − ∇
(
rFBφ

) · ∇GD

)
, (A.15)

while the term D2 can be rewritten as

Bp ·
(
GMφ

φ̂ ×
(
∇ × FBφ

φ̂
)

− FMφ
φ̂ ×

(
∇ × GBφ

φ̂
))

= ψ

([
rGBφ

,
FMφ

r

]
−

[
rFBφ

,
GMφ

r

])
, (A.16)

where we have used the expression Bp = ∇ψ × ∇φ and integrated by parts. Then, the last
term of (A.14) yields

Bp · (
GMp

× (
∇ × FBp

) − FMp
× (

∇ × GBp

)) = −∇ψ · (
FMp

Gψ − GMp
Fψ

)
, (A.17)

which can be rewritten by integrating by parts and exploiting expression (29) as

− ∇ψ · (
FMp

Gψ − GMp
Fψ

) = ψ
(
FMp

· ∇Gψ − GMp
· ∇Fψ

) − ψ
(
FϒGψ − GϒFψ

)
= ψ

([
Gψ, F�

] − [
Fψ, G�

]) − ψ
(
∇FD · ∇Gψ − ∇GD · ∇Fψ

)
+ ψ

(
GϒFψ − FϒGψ

)
. (A.18)

Finally, by substituting all of the expressions A − E derived above into (A.1), we obtain
the axisymmetric MHD Poisson bracket of (32).
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Appendix B. Axisymmetric equations of motion

Here we explicitly calculate the set of equations implied by (35) and thereby obtain the
axisymmetric equations of motion.

The first equation of the set is the mass conservation equation
∂ρ

∂t
= {ρ, HAS}AS = [H�, ρ] + ∇ · (ρ∇HD) = −∇ · (ρ∇H� × ∇φ − ρ∇HD) (B.1)

where in the second equality on the right we drop the subscript AS on HAS to lessen notational
clutter. We do this in the rest of this appendix. Because

∇H� × ∇φ − ∇HD = HMp
= Mp

ρ
, (B.2)

we obtain from (B.1) the mass conservation equation in the form
∂ρ

∂t
= −∇ · Mp = −
ϒ. (B.3)

Conservation of poloidal momentum is described in terms of the time derivatives of χ and ϒ .
These become

∂χ

∂t
= {χ, HAS}AS = −L−1

( [
ρ, Hρ

]
+

[
rMφ,

HMφ

r

]
+ [σ, Hσ ] +

[
Bφ

r
, rHBφ

]

+
[
ψ, Hψ

]
+ [�, H�] − ∇ · (�∇HD) + [ϒ, Hϒ ] + ∇ · (

Hϒ |∇φ|2 ∇χ
) )

(B.4)

and

∂ϒ

∂t
= {ϒ, HAS}AS = −
−1

(
∇ · (

ρ∇Hρ

)
+ ∇ ·

(
rMφ∇

HMφ

r

)
+ ∇ · (σ∇Hσ)

+ ∇ ·
(

Bφ

r
∇rHBφ

)
+ ∇ · (

ψ∇Hψ

)
+ ∇ · (�∇H�) +

[
r2�, HD

]
+ ∇ · (ϒ∇Hϒ) + [χ, Hϒ ] + � ([ϒ, H�] − ∇ · (ϒ∇HD) + [χ, HD]

+ |∇φ|2 ∇χ · ∇H� − ψHψ

) )
. (B.5)

Using the relations D = ∇ · M = 
ϒ and � = −∇ · (|∇φ|2 ∇χ
) = Lχ , the poloidal

components of the momentum equation can then be represented in terms of the curl and
divergence of Mp,

∂�

∂t
= ∇φ · ∇ × ∂Mp

∂t
= −∇φ · ∇ ×

(
ρ∇Hρ + rMφ∇

HMφ

r
+ σ∇Hσ +

Bφ

r
∇rHBφ

+ ψ∇Hψ + �∇H� − �r2∇φ × ∇HD + ϒ∇Hϒ + Hϒ∇φ × ∇χ

)
(B.6)

and

∂D

∂t
= ∇ · ∂Mp

∂t
= −∇ ·

(
ρ∇Hρ + rMφ∇

HMφ

r
+ σ∇Hσ +

Bφ

r
∇rHBφ

+ ψ∇Hψ + �∇H� − �r2∇φ × ∇HD + ϒ∇Hϒ + Hϒ∇φ × ∇χ

+ ∇
(−ϒHϒ + Mp · HMp

− ψHψ

) )
. (B.7)
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Thus, combining these two equations we obtain

∂Mp

∂t
= −

(
ρ∇Hρ + rMφ∇

HMφ

r
+ σ∇Hσ +

Bφ

r
∇rHBφ

+ ∇ψHψ + �r2∇φ × HMp
− HϒMp + ∇

(
Mp · HMp

) )
. (B.8)

The functional derivatives of the Hamiltonian HAS of (34) with respect to the variables ζAS are
given by the following:

Hχ = −∇ ·
(

1

ρ

∇χ

r2

)
+

[
1

ρ
, ϒ

]
= −∇ ·

(
∇φ × Mp

ρ

)
(B.9)

Hϒ = −∇ ·
(

1

ρ
∇ϒ

)
+

[
χ,

1

ρ

]
= −∇ ·

(
Mp

ρ

)
(B.10)

and

Hρ = −1

2

( |M |
ρ

)2

+ U + ρUρ, Hσ = Us,

HMφ
= Mφ

ρ
, HBφ

= Bφ

4π
, Hψ = − 1

4π
Lψ. (B.11)

Using these expressions it is possible to rewrite (B.8) as

∂Mp

∂t
= −ρ∇

[
1

2

( |M |
ρ

)2

+ U + ρUρ

]
+

Mφ

r
∇

(
rMφ

ρ

)
− σ∇Us − Bφ

r
∇

(
r
Bφ

4π

)

+
1

4π
Lψ∇ψ − Lχ

r2∇φ × Mp

ρ
− Mp∇ ·

(
Mp

ρ

)
+

∣∣Mp

∣∣2 ∇
1

ρ
. (B.12)

Upon substituting (B.12) into (B.6) and (B.7) yields,

∂�

∂t
= ∇φ · ∇ ×

{
−ρ∇

[
1

2

( |M |
ρ

)2

+ U + ρUρ

]
+

Mφ

r
∇

(
rMφ

ρ

)
− σ∇Us

− Bφ

r
∇

(
r
Bφ

4π

)
+

1

4π
Lψ∇ψ − Lχ

r2∇φ × Mp

ρ
− Mp∇ ·

(
Mp

ρ

)
+

∣∣Mp

∣∣2 ∇
1

ρ

}
(B.13)

and

∂D

∂t
= ∇ ·

{
−ρ∇

[
1

2

( |M |
ρ

)2

+ U + ρUρ

]
+

Mφ

r
∇

(
rMφ

ρ

)
− σ∇Us − Bφ

r
∇

(
r
Bφ

4π

)

+
1

4π
Lψ∇ψ − Lχ

r2∇φ × Mp

ρ
− Mp∇ ·

(
Mp

ρ

)
+

∣∣Mp

∣∣2 ∇
1

ρ

}
, (B.14)

respectively.
The time derivative of the magnetic flux function is given by

∂ψ

∂t
= {ψ, HAS}AS = [H�, ψ] + ∇ · (ψ∇HD) − ψHϒ = −Mp

ρ
· ∇ψ, (B.15)

which expresses the fact that ψ is a Lagrangian invariant. Moreover, the time derivative of the
azimuthal component of the magnetic field is given by
∂Bφ

∂t
= {

Bφ, HAS
}

AS = r

([
Bφ

r
, H�

]
+ ∇ ·

(
Bφ

r
∇HD

)
−

[
ψ,

HMφ

r

])

= −r∇ ·
(

Bφ

rρ
Mp − Mφ

ρr
Bp

)
. (B.16)
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Now, the azimuthal momentum density is easily seen to satisfy

∂Mφ

∂t
= {

Mφ, HAS
}

AS = 1

r

([
H�, rMφ

]
+ ∇ · (

rMφ∇HD

) − [
ψ, rHBφ

])
= −1

r
∇ ·

(
rMφ

ρ
Mp − rBφ

4π
Bp

)
. (B.17)

Finally, paralleling the manipulations used for the mass conservation equation, the entropy
equation is seen to be

∂σ

∂t
= {σ, HAS}AS = [H�, σ ] + ∇ · (σ∇HD) = −∇ ·

(
σ

ρ
Mp

)
. (B.18)

For time-independent configurations, (B.15)–(B.18) imply conditions (71)–(74) and thus
the system of GE equations.
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