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Abstract 
 
An analysis is made for the steady two-dimensional, laminar boundary layer flow of a 
viscous, incompressible, electrically conducting fluid near a stagnation point of 
stretching sheet in the presence of a magnetic field. It is assumed that the sheet is 
stretched in its own plane with velocity and temperature proportional to the distance 
from the stagnation point. The governing boundary layer equations are transformed to 
ordinary differential equations by taking suitable similarity variables. The solutions of 
momentum and energy equations have been obtained independently by a perturbation 
technique for a small magnetic parameter. The effects of the various parameters such 
as velocity parameter, Hartmann number, Prandtl number and Eckert number for 
velocity and temperature distributions have been discussed in detail with graphical 
representation. 
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1. Introduction 
 
Flow and heat transfer of an incompressible viscous fluid over a stretching sheet has 
wide important applications in several manufacturing process from industry such as 
the extrusion of polymers, the cooling of metallic plates, the aerodynamic extrusion of 
plastic sheets, etc. The study of heat transfer and flow field is necessary for 
determining the quality of the final products of such processes. Crane (1970) studied 
the flow over a linearly stretching sheet in an ambient fluid and gave a similarity 
solution in closed analytical form for the steady two-dimensional problem. Gupta and 
Gupta (1977), Carragher and Crane (1982), Dutta et al. (1985), Chiam (1994), 
Magyari  and  Keller (1999, 2000) and more recently Mahapatra and Gupta (2002,  
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2004) studied the heat transfer in the steady two-dimensional stagnation-point flow of 
a viscous, and incompressible Newtonian and viscoelastic fluids over a horizontal 
stretching sheet considering the case of constant surface temperature. 
Based on the above mentioned investigations and applications, this paper is concerned 
with a steady, two-dimensional stagnation flow of an electrically conducting fluid, 
over a stretching surface in the presence of magnetic field. Numerical solution 
obtained for the governing momentum and energy equations using perturbation 
technique. 
 
2. Formulation of the problem 
 
Consider the two-dimensional steady flow of a viscous incompressible electrically 
conducting fluid near a stagnation point over a flat sheet such that the sheet is 
stretched in its own plane with velocity proportional to the distance from the 
stagnation point in the presence of an externally applied normal magnetic field of 
constant strength 0H . The stretching surface has uniform temperature wT  and a linear 
velocity wu  while the velocity of the flow external to the boundary layer is ( )xue . The 
system of boundary layer equations (which model the figure 1) are given by: 
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where υ  is the coefficient of kinematic viscosity , ρ  the density, eσ  the electrical 
conductivity, eμ  the magnetic permeability, pC  the specific heat at constant pressure, 
κ  the thermal conductivity of the fluid under consideration and μ  the coefficient of 

viscosity. The other symbols have their usual meanings. 
The boundary conditions are: 
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where c is a proportionality constant of the velocity of stretching sheet, a  is a 
constant proportional to the free stream velocity far away from the sheet and ∞T  is the 
temperature of the ambient fluid. 
 
3. Analysis 
 
The continuity equation (1) is identically satisfied by stream function ( )yx,ψ , defined 
as 
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For the solution of the momentum and energy equation (2) and (3), the following 
dimensionless variables are defined: 
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Substituting (5) – (8) into Eqs. (2) and (3) we obtain 
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The corresponding boundary conditions are: 
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For numerical solution of the equations (9) and (10), we apply a perturbation 
technique as: 
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substituting equations (12) and (13) and its derivatives in equations (9) and (10) and 
then equating the coefficients of like powers of 2

aH , we get the following set of 
equations: 
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with the boundary conditions: 
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The equation (14) is that obtained by Mahapatra and Gupta (2002) for the non-
magnetic case and the remaining equations are ordinary linear differential equations 
and have been solved numerically by Runge-Kutta method of fourth order.   
 
 
4. Results and discussion 
 
The velocity profiles for various values of λ  and the Hartmann number aH  are 
plotted against η  in Fig. 2. It is observed from the figure that the thickness of the 
velocity boundary layer decreases with the increase in λ . Also, it can be seen that the 
flow has an inverted boundary layer structure when 1<λ  and velocity distribution 
decreases with increase in aH . When 1>λ  the velocity distribution increases with 
increasing values of  λ  and aH . 
The Figure 3 shows that for a fixed value of λ  and Ec  i.e. 1.0=λ  and 0.0=Ec  the 
temperature distribution decreases with the increasing values of both, Pr  and aH . 
Further for fixed values of  λ , Pr and Ec , the temperature distribution increase with 
the increasing values of aH . Fig. 4 shows the temperature distribution  with η  for 
various values of λ  and aH  with 05.0Pr =  and 0.0=Ec . It is observed from the 
figure that the temperature distribution decreases with the increase in λ , while it 
increases with the increase in aH  for 1<λ , and decreases with the increase in aH  for 

1>λ .Fig. 5 shows that for a fixed value of λ  and Pr  i.e. 1.0=λ  and 05.0Pr =  the 
temperature distribution decreases with the increasing values of  Ec  while it increases 
with the increase in aH .Fig. 6 shows the variation of temperature distribution with η  
for various values of Ec  and aH  when 0.3=λ  and 05.0Pr = . It can be seen that the 
temperature distribution increases with decreases in Ec  and aH . 
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Fig.1. A sketch of the physical problem. 
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Fig. 2. Velocity distribution against η  for different values of λ  and aH . 
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Fig. 3. Temperature distribution against η  for various values of aH  and Pr  with 

1.0=λ  and 0.0=Ec . 
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Fig. 4. Temperature distribution against η  for various values of aH  and λ  with 

05.0Pr =  and 0.0=Ec . 
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Fig. 5. Temperature distribution against η  for various values of aH  and Ec  with 

1.0=λ and 05.0Pr = . 
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Fig. 6. Temperature distribution against η  for various values of aH  and Ec  with 

0.3=λ and 05.0Pr = . 
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