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ABSTRACT

This paper analyzes a hypothesis of the 2−dimensional thermal transport behavior of Newtonian axisymmetric, viscous heating flow in a horizontal
pipe. The flow is subjected to an externally applied uniform suction across the pipe wall in the polar direction, a constant magnetic field perpendicular
to the wall and a uniform heat source/sink on the surface of the cylinder. The thermal boundary condition is imposed as a uniform heat flux.
The Velocity fields are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Graphs are
designed to analyze the significant effect on temperature and velocity fields of different flow and geometric parameters. Streamline, isotherm and
pressure contours are also presented. It is observed that the temperature distribution increases with an increase in Prandtl number, whereas it decreases
with an increase in Eckert number (viscous dissipation effect).

Keywords: Magnetohydrodynamics, Circular pipe, HAM, Suction,
Heat source/sink, Nusselt number, Stokes operator, Stream function.

1. INTRODUCTION

Newtonian channels or pipes are abundant in industrial applications, in-
cluding cooling systems, petrochemical transport (natural gas and heavy
oil) and biotechnology. The aforementioned flows are often accompanied
by heat transport with a classic example being the expulsion of thermal
energy from the hydronic space heating framework (Rhee et al., 2011) by
spreading water in the heater and then by funnels to the applicable areas.
Other heat transport systems in the viscous tube flow are heat exchang-
ers, space heating management (Walker et al., 2013), and solar collector
arrangements ( Hussein et al., 1999).

In recent past, engineers have also investigated the modification of
viscous flows via wall permeability of the pipe/channel. Injecting or
removing fluid through pores is a robust flow control mechanism (Tien
(1975)). The present technology has great potential in engineering areas
like rocket and cooling technology, and food protection. Mathematical
modelling about flows in channel or tubes with wall suction has therefore
stimulated some interest in the research community. Berman (1953) first
introduced a progression of answer for uniform infusion and/or suction
impacts of the Newtonian stream in a penetrable straight channel. Bansal
(1967) enlarged this work for steady viscous fluid through a permeable
pipe. He acquired an investigative articulation for velocity and skin fric-
tion affected by a suction parameter on the pressure gradient. In addition,
(Terril, 1982, 1983), detailed a scientific response for moving through a
horizontal pipe with consistent suction/infusion at the wall. Tsangaris
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and Kondaxakis (2007) checked the time-dependent viscous flow in a
suction porous pipe. They introduced a correct answer as time-differing
suction on the porous wall. Cox and Hill (2011) have examined the vis-
cous liquid flow crosswise over carbon nanotubes went with Navier slip
condition at wall. Ramana Murthy et al., (2012) have examined micropo-
lar flow created by a permeable vertical pipe displaying rotatory motions.

Magentohydrodynamics (MHD) is also an active area of modern en-
gineering sciences and involves the interaction of magnetic forces and
electrical fluids. MHD tube flows occur in ionized accelerators, flow re-
striction in nuclear reactors, generators of energy, processes of manufac-
turing of liquid metals, levitation of bubbles, etc. (Anwar et al., 2011).
MHD flows with wall effects of absorption/injection have attracted con-
siderable attention. In a channel affected by a Lorenz force, Terrill and
Shrestha (1963) showed a systematic examination of laminar flow. They
found that surface contact upgrades with an expansion in magnetic pa-
rameter. Attia (2003) investigated the time dependent non-Newtonian
flow across a tube with pressure gradient in flow direction. Attia and
Ahmed (2005) computed solutions for unsteady magnetic viscoplastic
flow in a straight tube. They found that skin friction is hoisted because
of an ascent in molecule stage thickness. Moustafa (2006) has consid-
ered the partial viscoelastic fluid in a roundabout cylinder. He introduced
velocity arrangements as far as Fox’s H-work. Two−dimensional dou-
ble diffusive magnetized Non−newtonian fluid through a stretching sheet
with radiation, hear source and chemical reaction was investigated by
Nagaraju et al., (2016). Amanulla et al., (2018) examined a theoretical
study of Mhd free convection flow of a Williamson fluid through vertical
cylinder with momentum and thermal slips. They observe that increasing
thermal slip parameter, decelerates temperature.

The above studies have ignored the effects of dissipation that in
many applications can exert a large influence. The effect of dissipation
also depends heavily on if the tube is hot or cool (Davaa et al., (2004)).
Furthermore it has been established that viscous heating has a key role
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in liquids with small thermal conductivity and greater viscosity. Histori-
cally Brinkman (1951) initiated studies of viscous heating. An important
study about viscous dissipation was communicated by Gebhart (1962), in
occurrence of boundary layer flows. Ou and Cheng (1973) examined the
impact of viscous heating at the passage for a round pipe with consistent
heat flux. Aydin (2005) has presented closed-form solutions for viscous
heating effects in fully developed heat transfer pipe flow. Anwar et al.,
(2009) computed electro-thermal numerical solutions for nonlinear MHD
transient flow and energy transport in Darcian channel through Ohmic
dissipation (Joule heating). Other motivating and current investigations
into pipe thermofluid dynamics have been communicated in (Nabil et al.,
(2002); Ahmet et al., (2003); Rached et al., (2005); Srinivas et al., (2014);
Nagaraju et al.,(2017) ).

In the present article, we inspect hypothetically the 2D heat transport
responses in a horizontal pipe under related magnetic field, constant suc-
tion and heat source/sink forced at surface of the tube. With the Homo-
topy Investigation Technique (HAM) (Lio (2003)), the transformed over,
dimensionless boundary value problem (BVP) is solved. The present
work sums up past examinations by considering heat source impacts and
moreover gives a strong analytical benchmark against which numerical
arrangements might be contrasted and an examination is relevant with
MHD vitality structures.

2. MATHEMATICAL HYDROMAGNETIC HEAT TRANSFER
MODEL

Consider an electrically leading Newtonian (viscous) liquid in an infinitely
long cylinder of radius a, is exposed to a remotely related uniform suction
over the divider the typical way as appeared in Fig. 1. As the tube is of
semi infinite length, the flow is considered to be fully developed. This
flow is exposed to an outwardly applied perpendicular suction across the
wall and a constant magnetic force field B0 in polar direction. The num-
ber of magnets is small enough to neglect the effects of the magnetic
field being induced. The primitive equations for viscous flow (Bird et al.,
(1960)) are:

Fig. 1 Schematic diagram
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The boundary conditions on the axis are obtained by taking the flow to be
symmetrical, so that
At R = 0, ∂W
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= U = ∂T
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= 0

At R = a,W = 0, U = v0, and KT
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To continue, we present the accompanying transformations: (Na-

garaju et al., (2018))
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Substituting relations Eq. (5) into Eqs. (1) -(4), following dimensionless
system of equations, emerge:
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A stream function ψ might be characterized to satisfy the mass conserva-
tion Eq. (6):
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Eliminating the pressure gradient terms from Eq. (7) and Eq. (8), yields:
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Assume ψ = (N − z) f (r) (Terril and Shresta (1963)) (12)
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is a differential operator.
The corresponding boundary conditions are

f = D2f = θ′ = 0 at r = 0,
f ′ = 0, f = θ′ = 1, at r = 1.

}
(14)
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2.1. Pressure Distribution

The pressure(p) is the result of Eqs. (7) - (8),
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2.2. Skin Friction

The wall shear stress (τrz) of the pipe is known by:
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2.3. Nusselt number

The wall thermal flux (or heat flux) is known by:
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The dimensionless heat transfer rate may be couched by:
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From Eq. (20) and Eq. (21), the Nusselt number (Nu) obtained in the
form:

Nu = −∂θ
∂r
|(r=1) = constant (22)

3. HOMOTOPY SOLUTION

The initial approximations of the velocity f (r) and temperature θ (r) are
chosen for HAM solutions as:
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)
and θ′0 (r) = 1 (23)

with the auxiliary linear operators are: L1 (f) = D4 and L2 (θ) = 52.
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Where Ci (i = 1 to 8) are constants. h1 and h2 (the convergence control
parameters) are introduced in zeroth-order deformations.
The zeroth-order deformations; non-linear operators N1 and N2 are con-
sidered as explained in the work of (Nagaraju et al., (2018); Nagaraju and
Mahesh (2019)).
h-curves are plotted with M = 5, Re = 10, Pr = 0.7, Ec = 0.05, Q = 0.5,
N=2, z=0.75 and r =0.25 for the optimal values of h1 and h2 and are
shown in Figs. 2-3. The admissible values of h1 and h1 are noted as
h1=h2=-0.1.

Fig. 2 h curve for f (r)

Fig. 3 h curve for θ (r)

4. RESULTS AND DISCUSSION

Figures 4-6 display the response of M on f, f ′ and θ. It can be observed
from these figures that the radial velocity and temperature magnitudes are
enhanced with an increase in the parameter M, where the axial velocity
the maximum values of f ′ are reduced and shifted towards the origin (axis
of the cylinder) with the increasing values of M. The radial acceleration
and axial deceleration are due to the Lorentzian magnetic body forces.
The radial component assists momentum development and enhances the
flow in the r-direction. The axial Lorentzian magnetic force acts to in-
hibit flow especially at larger values of the radial coordinate. In Fig. 6
we observe that as magnetic parameter increases, the temperature also in-
creases. The presence of magnetic field implies that greater work must be
expended to drag the fluid against the action of the inhibiting field (axial
flow). The present energy is dissipated as heat and this demonstrations to
hoist temperatures in Newtonian liquid.
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Fig. 4 Response of M on f

Fig. 5 Response of M on f ’

Fig. 6 Response of M on θ

From Fig. 7, clearly the velocity of the r-direction increases as Re
increases. From Fig. 8, we notice that while Re increases, the maximum
values of f ′ are reduced. This finding is opposite to the response of M
which enhances the maximum values of f ′ . This may occur despite the
fact that greater Re implies a greater inertial force in the regime relative
to viscous force, thereby decelerating the radial flow. Re can not induce
a force in perpendicular direction as in the case of magnetic number. It
is also evident from Fig. 9 that as the Re increases, the temperature dis-
tribution decreases near axis of cylinder. This indicates that when Re

increases, thermal diffusion in the laminar regime is inhibited.

Fig. 7 Response of Re on f

Fig. 8 Response of Re on f ’

Fig. 9 Response of Re on θ

From Fig. 10 and Fig. 11, we observe that when the Eckert number
(Ec) increases the temperature near the axis of a pipe and as the number
of Prandtl (Pr) increases, θ increases. The conflicting behavior of Pr and
Ec is well known in thermal transport. The impact of Q on θ is shown in
Fig. 12 at the point when evaluated that heat source gives an expansion
in θ, despite the fact that heat sink decelerates in temperature (θ).
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Fig. 10 Response of Ec on θ

Fig. 11 Response of Pr on θ

Fig. 12 Response of Q on θ

The Eq. (22) is identical to that considered in Srinivas et al., (2014)
and Nagaraju et al., (2018). The solution comparison is documented in
Table 2 excellent correlation is accomplished and therefore confidence in
the current alternatives is reasonably high.

Table 1 Variation of Nusselt number for different values of various flow
parameters.

Re Q M Ec
Nu

Pr =
0.15

Pr =
0.3

Pr =
0.45

Pr =
0.6

2

-0.5 3 0.75

9.3001 9.33229 9.36449 9.39668
4 6.1585 6.07011 5.98171 5.89331
6 1.3988 0.931253 0.463653 -0.00395
8 -5.4808 -6.71935 -7.95793 -9.19651

3 -0.5 3

0.2 0.9126 -0.57783 -2.42565 -4.68941
0.4 4.2547 3.03265 1.4799 -0.45998
0.6 7.5968 6.64313 5.38545 3.76944
0.8 10.9388 10.2536 9.291 7.99887

3 -0.5

2

0.75

10.0251 9.27069 8.23334 6.86049
4 10.2318 9.48261 8.44786 7.07462
6 10.7348 9.99673 8.96841 7.59626
8 11.8436 11.1269 10.1125 8.74594

3

-1.5

3 0.75

10.0906 9.33353 8.30318 6.94999
-0.5 10.1033 9.35099 8.31461 6.94151
0.5 10.1161 9.36849 8.32606 6.93286
1.5 10.1289 9.38605 8.33752 6.92402

Table 2 Comparison of Nusselt number for various values of Pr with Re
=10, M = 0.25, Ec=0.3, Q = 0

Pr
Nu

Nagaraju et al., (2018) Srinivas et al., (2014) Present
0.15 -1.7123 -1.7093 -1.72282
0.3 -11.5664 -11.5694 -11.5868

0.45 -28.9654 -29.0964 -29.2861
0.6 -57.8920 -58.4890 -58.74

It is evident from Fig. 13 that streamlines are non-positive for z >
N and positive for z ≤ N . Numerically, the streamlines for the z = N
line are symmetrical. The streamlines are more clustered for lower z
values and more dispersed for greater z values indicating that the intensity
of the flow is greater at lower z (axial coordinate).

Fig. 13 Velocity Stream lines:

It is noted from Fig. 14 that the distribution of temperature is sym-
metrical about the line z = N . The temperature is nearest to the cylinder
surface (white coloring is available in this locale). The highest tempera-
ture has to be at z = N, r = 1. Extents of temperature are brought down
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for higher estimations of spiral arrange (r). Figure. 15 shows that the
pressure on z = N is symmetrical and decreases as range r ≥ 1/2 and
increases as r < 1/2. Pressure increments to higher qualities close to the
pipe birthplace as z increments or diminish.

Fig. 14 Temperature Isotherms

Fig. 15 Pressure contours

5. CONCLUSIONS

Analytical solutions are obtained in the viscous magnetohydrodynamic
pipe flow for heat transfer using the HAM method. Viscous heating,
injection/absorption of walls and internal heat source/sink effects have
been incorporated in the energy equation. The observations from the fig-
ures show that:

(i) Increasing magnetic body force parameter accelerates the radial
flow, whereas it tends to decelerate axial flow. This means that
external magnetic force decelerates the flow in axial direction and
enhances the flow in radial direction.

(ii) As magnetic Parameter M increases velocity in axial direction in-
creases and hence dissipation of energy increases and this causes
raise in temperature.

(iii) Increase suction Reynolds number slow down axial velocity and
enhances the radial velocity. This may be due to conservation of
mass law, because in flow and out flow are to be balanced.

(iv) As the Eckert number or Prandtl number increases, the temperature
on the axis of the pipe decreases.

(v) As Q increases temperature on the axis of the tube numerically
increases. When Q is fixed the temperature increases in the radial
direction and suddenly decreases near the surface of the tube.
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NOMENCLATURE

W,U velocity components in (Z, R) directions (m/s)
w, u Dimensionless axial and radial velocity coefficients
P, p Dimensional and dimensionless presure (Pa)
cp specific heat at constant pressure (J/kg · K)
ρ density (kg/m3)
µ Viscosity (m2/s)
σ specific conductance(W/m2 · K4)
kT thermal conductivity (W/m · K)
Q0 heat source/sink (j)
T1 temperature at surface (K)
π dissipation function
v0 Suction velocity
Re suction Reynolds number
M Magnetic parameter
Pr Prandtl number
Ec Eckert number (viscous heating parameter)
Q Heat source/sink parameter
E2 stoke’s stream function operator
N = U0/v0
U0 entrance velocity
52 Laplacian operator
qw uniform wall heat flux per unit area(W/m2)
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