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Abstract: The current study uses the multi-physics COMSOL software and the Darcy–Brinkman–
Forchheimer model with a porosity of ε = 0.4 to conduct a numerical study on heat transfer by
Cu-TiO2/EG hybrid nano-fluid inside a porous annulus between a zigzagged triangle and different
cylinders and under the influence of an inclined magnetic field. The effect of numerous factors is
detailed, including Rayleigh number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 100), volume
percent of the nano-fluid (0.02≤ φ≤ 0.08), and the rotating speed of the cylinder (−4000 ≤ w ≤ 4000).
Except for the Hartmann number, which decelerates the flow rate, each of these parameters has a
positive impact on the thermal transmission rate.
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1. Introduction

Convection has always been the primary focus of research [1] for a variety of heating
and cooling engineering systems. A modification of the geometrical shape of the sys-
tem [2,3] was recently agreed upon among researchers in order to achieve spectacular
optimization of the heat-transfer performance, from circular [4] and square geometries [5]
to non-square geometries [6–9] (triangular, trapezoidal, etc.) as it has been proven by many
research papers that aspect ratio and type of the geometry have a huge impact on thermal
performance [10–12]. Heat-transfer fluid has also been the subject of significant devel-
opment. Conventional fluids such as water and ethylene glycol now contain dispersed
nanoparticles [13] that ensure an enhancement in thermal conductivity [14]. Therefore,
these “nano-fluids” with improved physical properties yield great results, improving heat
transfer [15]. Other attempts have been made [16–20] resulting in hybrid nano-fluids with
two suspended nanoparticles, supporting the notion of lower costs and greateradvantages;
therefore, they are regarded as enhancing parameters for heat systems, considering their
superior thermal characteristics due to the combination of nanoparticles, when compared
to mono nano-fluids and classical fluids [21,22].

In this context, Kahveci [23] studied heat transfer in a differentially heated square
enclosure filled with nano-fluids and reported improvement in Nusselt number when
inserting nanoparticles. Torki and Etesami [24] experimentally investigated the impact
of the volume fraction of nano-fluids on Nusselt number in a rectangular enclosure and
reported a proportional relationship between these two features.

Mansour et al. [25] explored an inclined square cavity with nano-fluids and heating
circular solid, while Alsaberi et al. [26] inserted a hot solid square in a cold square under
the effect of a magnetic field and reported a non-linear influence on heat transfer. Selcuk
et al. [27] reported that increasing magnetic induction decreases velocity, which, in turn,
decelerates the flow. The work of Zhang et al. [28] supports these results, finding a 33%
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reduction in cooling efficiency with increasing Hartmann number. Furthermore, Mahmoudi
et al. [29] considered the Hartmann number parameter that restricted the heat-transfer rate.
In this context, many studies were used to establish this research [30–36].

Ravnik et al. [37] studied natural convection in a cubic enclosure with a heated elliptical
cylinder. Ishak et al. [38] numerically analyzed entropy generation in a classic trapezoid
filled with alumina/water nano-fluid and an implemented immobile circular cylinder
using the finite element method. Mebarek-Oudina et al. [39] studied the characteristics of a
hybrid nano-fluid MHD flow in an annulus between a trapezoid and a rotating cylinder
with a zigzagged wall.

Mahmoudi et al. [40] investigated nano-fluid flow in a triangular enclosure partially
heated from below with a cold inclined wall. Majdi et al. [41] examined mixed convection
in a lid-driven triangular enclosure with a motionless circle. Wang et al. [42] maintained
a numerical approach for convection of a nano-fluid between a rotating circular cylinder
and a conventional right-angled triangle, while Triveni and Panua [43] evaluated the
impact of the aspect ratio of the hot wall in a triangular cavity and noticed a significant
difference in the heat transfer rate as the caterpillar and zigzagged walls are more efficient
than a linear wall. Other authors [44,45] studied convective flow inside enclosures with
different hot-shaped inner cylinders. Several other references were utilized to establish this
work [46–51].

These studies reported interesting results regarding the impact of motion, speed of
rotation, placement of the internal cylinder, and the properties of nano-fluids, and it has
been demonstrated that triangular-shaped enclosures are incredibly effective in the process
of altering the efficiency of the heat system [52,53].

Based on the preceding investigations, this paper numerically analyzes thermal trans-
port in a previously unseen configuration: an original triangular porous chamber filled with
magnetized Cu-TiO2/EG hybrid nano-fluid and a spinning cylinder. The findings of this re-
search will aid in achieving a better understanding of the effect of different cylinders inside
the cavity, as well as expanding the contribution of sophisticated triangular geometries,
which already have wide spread applications in industry [54–56] and are unquestionably
adaptable in real-world applications, such as cooling electronic devices, solar heating sys-
tems, heat exchangers, solar collectors, etc. Aiming for high heat transmission efficiency
under unusual settings, this work provides a significant contribution to future applications.

2. Physical Model

This study provides numerical insight into convection, owing to the magneto-hydrody-
namic flow of a hybrid nano-fluid in a porous triangular enclosure described by the Darcy–
Forchheimer–Brinkman model. The configuration presents a right-angled triangular cavity
of 1m length with a zigzagged inclined wall and an elliptical rotating cylinder along the
x-direction inserted in the center of the geometry in order to investigate mixed convection;
this is combined with heat transfer due to the buoyancy forces that lead tonatural convec-
tion and to the rotational velocity of the cylinder that drives forced convection. Figure 1
depicts the porous setup that is exposed to a magnetic induction, B0, detailed in Table 1,
and filled with the Cu-TiO2/EG hybrid nano-fluid featured in Table 2. The right-angled
wall is cold with a fixed temperature, Tc, while the inclined wall is subject to a heating
source and set as Th. The base of the triangle and the cylinder are both adiabatic.
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Figure 1. Configuration of the physical model.

Table 1. Magnetic flux-density range.

Ha 2550 100
B0 (Tesla) 1351 2702 5404

Table 2. Mesh-quality parameters.

Mesh Extra Coarse Coarse Fine Extra Fine

Maximum element size (m) 0.13 0.067 0.035 0.013

Minimum element size (m) 0.005 0.003 0.001 0.00015

Curvature factor 0.8 0.4 0.3 0.25

Growth rate 1.3 1.2 1.13 1.08

Number of elements 840 1984 3944 22184

Average quality 0.7110 0.7736 0.7803 0.8003

Boundary conditions of the domain:

The right-angled wall: U = 0, V = 0 and T = Tc; (1)

The inclined wall: U = 0, V = 0 and T = Th; (2)

The base wall : U = 0, V = 0 and
∂T
∂n

= 0; (3)

The cylinder : U = w, V = 0 and
∂T
∂n

= 0. (4)

3. Grid Test

The grid test is performed by studying several types of meshes in COMSOL multi-
physics and assessing different parameters to enable the selection of the relevant mesh that
provides valid results, considering our convective flow. Because algorithms in this software
only provide high-quality elements with a value greater than 0.1 [57], our inquiry examined
four types of elements indicated in Table 2 with satisfactory quality. The skewness measure
quality is detailed; it allowed us to determine that increasing the element number improves
the average quality of the mesh, indicating the dependability of the extra-fine mesh in
numerical simulations. Furthermore, these four meshes performed an independence test at
Ra = 105 and φ = 0.04 to calculate the Nusselt number. Table 3 shows the obtained results,
which reveal that the deviations in Nusselt number decreased as the mesh quality increased,
and we can conclude that the mesh with the highest quality, “extra fine” ensured accurate
outcomes. Therefore, the extra-fine mesh presented in Figure 2 was selected for our study.
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Table 3. Grid-independence test.

Mesh Quality Nu Nu Deviation %

0.7110 3.9 12.05%

0.7736 4.37 7.09%

0.7803 4.68 0.64%

0.8003 4.71 /
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4. Formulation of the Problem
4.1. Equations

The two-dimensional laminar convective flow in the studied triangular geometry is
assumed to be stationary and incompressible. Thus, continuity and energy distribution in
Cartesian coordinates are expressed as the following, according to [58,59]:

∂u
∂x

+
∂v
∂y

= 0; (5)

∂u
∂x

+
∂v
∂y

= 0; (6)

while the Navier–Stocks equations, which characterizethe flow of the hybrid nano-fluid, are
described using the Darcy–Brinkman–Forchheimer model, which examines single-phase
fluid circulation in a porous medium under the influence of magnetic fields [60], a model
that has proven efficient and yields accurate outcomes [61]:

1
ε2

(
u ∂u

∂x + v ∂u
∂y

)
= − 1

ρhn f

∂p
∂x − ϑhn f

u
K+

σhn f B2
0

ρhn f

(
v sin(γ) cos(γ)− u sin

2
(γ)
)
− FC√

K
u|u|+ ϑhn f

ε

(
∂

2
u

∂x2 + ∂
2
u

∂y2

)
;

(7)

1
ε2

(
u ∂v

∂x + v ∂v
∂y

)
= − 1

ρhn f

∂p
∂y − ϑhn f

v
K + βhn f g

(
T − Tavg

)
+

σhn f B2
0

ρhn f

(
u sin(γ) cos(γ)− v sin

2
(γ)
)
− FC√

K
v|u|+ ϑhn f

ε

(
∂

2
v

∂x2 +
∂

2
v

∂y2

)
;

(8)
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where K is permeability, Fc is the Forchheimer coefficient, |u| is the amplitude velocity,
and Tavg is the average temperature:

K =
ε3dm

2

150(1− ε)2 , Fc =
b
√

aε
3
2

with (a = 150 , b = 1.75), |u| =
√

u2 + v2 , Tavg =
Th + Tc

2

The following dimensionless numbers and variables are used to adjust the MHD flow
distribution:

• Dimensionless numbers

Ra =
βb f g(Th − TC)L3

αb f ϑb f
, Ha = LB0

√
σb f

µb f
, Da =

K
L2 , Pr =

ϑb f

αb f

• Dimensionless variables

θ =
T − Tf

Th − Tf
, Y =

y
L

, X =
x
L

, V =
vL
αb f

, U =
uL
αb f

, P =

(
p + ρb f gy

)
L

2

αb f
2
ρb f

The final governing dimensionless equations turn to:

∂U
∂X

+
∂V
∂Y

= 0; (9)

1
ε2

ρhn f

ρb f

(
U

∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
−

ϑhn f

ϑb f

Pr

Da
√

Ra
U+

σhn f
ρhn f

ρb f
ρhn f

Pr
ε

Ha
2

√
Ra

(
V sin(γ) cos(γ)−U sin

2
(γ)
)
− FC√

Da
U|U|

+ 1
ε

ϑhn f
ϑb f

Pr√
Ra

(
∂

2
U

∂X2 + ∂
2
U

∂Y2

)
;

(10)

1
ε2

ρhn f
ρb f

(
U ∂V

∂X + V ∂V
∂Y

)
= − ∂P

∂Y −
ϑhn f
ϑb f

Pr
Da
√

Ra
V + Pr

βhn f
βb f

gθ+

σhn f
ρhn f

ρb f
ρhn f

Pr
ε

Ha
2

√
Ra

(
U sin(γ) cos(γ)−V sin

2
(γ)
)
− FC√

Da
V|U|

+ 1
ε

ϑhn f
ϑb f

Pr√
Ra

(
∂

2
V

∂X2 +
∂

2
V

∂Y2

)
;

(11)

U
∂θ

∂X
+ V

∂θ

∂Y
=

αhn f

αb f

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(12)

4.2. Validation

The finite-element method (FEM) was used and applied in the COMSOL multi-physics
software 5.6 to solve the dimensionless governing equations presented above with the
given boundary conditions. The accuracy of the present program was assessed, and the
results are reported in Figure 3, which compares the current isotherms and streamlines to
those of the numerical findings of [62], in which natural convection was explored in a basic
triangular enclosure.
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4.3. Properties of the Hybrid Nano-Fluid

The volume fraction of the hybrid nano-fluid can be calculated as follows:

ϕ = ϕCu + ϕTiO2 (13)

The equations of the specific heat capacity, density, thermal conductivity, thermal
expansion, and electrical conductivity of Cu and TiO2 nanoparticles, respectively, were
obtained from [63,64] and can be calculated as follows:

Cpnp =
ϕCuCpCu + ϕTiO2 ρCpTiO2

ϕ
(14)

ρnp =
ϕCuρCu + ϕTiO2 ρTiO2

ϕ
(15)

knp =
ϕCukCu + ϕTiO2 kTiO2

ϕ
(16)

βnp =
ϕCuβCu + ϕTiO2 βTiO2

ϕ
(17)

σnp =
ϕCuσCu + ϕTiO2 σTiO2

ϕ
(18)

while the equations of the hybrid nano-fluid are as follows [63,64]:
The density of the hybrid nano-fluid is defined as:

ρhn f = (1− ϕ)ρb f + ϕρnp (19)

where ρb f ,σb f are the density and electrical conductivity of the base fluid, respectively; and
ρnp, σnp are the density and electrical conductivity of the used nanoparticles, respectively.
Thus, the electrical conductivity of the hybrid nano-fluid is given by:
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σhn f = (1− ϕ)σb f + ϕσnp (20)

As a result, the thermal expansion and specific heat of the hybrid nano-fluid are
calculated to as follows:

(ρβ)hn f = (1− ϕ)(ρβ)b f + ϕ(ρβ)np (21)

(ρCp)hn f = (1− ϕ)(ρCp)b f + ϕ(ρCp)np (22)

while the thermal and electrical conductivity of the hybrid nano-fluid are obtained from
the following equations:

khn f

kb f
=

knp + (n− 1)kb f − (n− 1)
(

kb f − knp

)
ϕ

knp + (n− 1)kb f −
(

kb f − knp

)
ϕ

(23)

σhn f

σb f
= 1 +

3
(

σnp − σb f

)
ϕ(

σnp + 2σb f

)
−
(

σnp − σb f

)
ϕ

(24)

Thermal diffusivity of the hybrid nano-fluid is considered as:

αhn f =
khn f

(ρCp)hn f
(25)

The dynamic viscosity is given as follows, according to the Brinkman model [58]:

µhn f =
µb f

(1− ϕ)2.5 (26)

The thermo-physical characteristics of the hybrid nano-fluid used in this study are
presented in Table 4 [65].

Table 4. Thermo-physical properties of Cu- TiO2/ EG hybrid nano-fluid.

Cu TiO2 EG

CP (J. K−1·Kg−1) 385 686.2 2415
ρ(Kg·m−3) 8933 4250 1114

k(W. K−1·m−1) 401 8.95 0.252
β (K−1) 1.67 × 10−5 0.9 × 10−5 57 × 10−5

σ(Ohm·m)−1 5.96 × 10−7 2.38 × 10−6 5.5 × 10−6

5. Results and Discussion

This section will provide the numerical results obtained by streamline and isotherm
contours, as well as the average Nusselt number for three major parameters: Rayleigh
number (103 ≤ Ra ≤ 106), to study the convective heat transfer in the laminar regime and
explore its features near the transition mode; Hartmann number (0 ≤ Ha ≤ 100), in order
to investigate the relation between magnetic-field strength heat-transfer efficiency; and
the volume fraction of the hybrid nano-fluid (0.02 ≤ φ ≤ 0.08), to evaluate the presence
of nanoparticle in a porous medium with constant properties: Darcy number, Da = 0.1;
porosity, ε=0.4. Additionally the following geometrical factors are discussed: the impact of
the rotation of the internal cylinder with a speed, w, of (−4000 ≤ w ≤ 4000), as well as the
placement of the cylinder and several shaped obstacles (square, circle, elliptic, and triangle).

5.1. Impact of the Nano-Fluid Volume Fraction

At Ra = 105(Figure 4), the average Nu number appears to grow with the volume
fraction where natural convection significantly dominates. Augmenting the concentration
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of the hybrid nano-fluid corresponds to an increase in the presence of nanoparticles, both
Cu and TiO2, that present enhanced thermo-physical characteristics compared to classical
fluids, as presented in Table 4, particularly their thermal conductivity. It worth mentioning
that these properties improve the thermal conductivity of the hybrid nano-fluid and also
increment the surface area of the nanoparticles [58]. Therefore, Nuavg is proportional to the
presence and the volume fraction of the hybrid nano-fluid, and such correlation contributes
to convective transfer.
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Figure 5 presents the impact of the hybrid nano-fluid concentration on heat-transfer
features, isotherms, and streamlines. It is shown that incrementing the volume fraction of
the nanoparticles has only a minor effect on streamline and isotherm contours, with a slight
modification to the detected stream-function value. The enhanced heat transfer properties
provided by the increase in the volume fraction also intensify entropy generation [66,67],
which results in decremented stream-function values and a reduced heat-transmission rate.

Although the presence of nano-fluids is intended to boost convection, increasing
their concentration also increases entropy production. Therefore, an equilibrium must be
considered when augmenting φ.

5.2. Impact of Rayleigh Number

Figure 6 illustrates the influence of Ra number on streamlines for 2% of the hybrid
Nano-fluid and no presence of the magnetic field. The results reveal that increasing Ra
causes linear growth in the stream functions.

It is shown in Figure 6 that an increasing Ra number causes the vortices in the sur-
roundings of the cylinder to grow larger and stronger, enabling the free convection to be
significantly exploited, which strengthens the velocity field and speeds up the flow. As
a result, the hybrid nano-fluid is heated up and becomes less dense, allowing buoyancy
forces to ascend the hybrid nano-fluid and focus the flow on the upper part of the cylinder.
Therefore, heat transfer is a trend of Rayleigh number since its enhancement indicates
better heat transmission.

This enhancement is noted to be in a high range for Ra = 106, with a stream-function
value a hundred times greater than Ψmax at Ra = 104 and ten times greater than Ψmax at



Micromachines 2022, 13, 224 9 of 17

Ra = 105. These results show that approaching the critical Rayleigh value (almost 109)
engenders significant values of heat transfer.
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5.3. Impact of Hartmann Number

On the other hand, as shown in Figure 7, the presence of a magnetic field diminishes
the convective transfer rate, as Lorentz forces inhibit the development of vortices and thus
reduce the velocity of the nano-fluid and suppress the flow distribution. In the case where
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no magnetic induction was introduced, two large vortices were formed around the cylinder,
which smoothed the flow of the hybrid nano-fluid. With an increasing Hartmann number,
stream-function values were reduced as vortices shrunk in size and nearly disappeared in
the upper part of the enclosure, causing the flow to aggregate towards the bottom wall. In
conclusion, Hartmann number might be regarded as a limiting parameter for heat flow.
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5.4. Impact of the Geometrical Features
5.4.1. Effect of Cylinder Placement

Figure 8 highlights the distinctions between the two elliptical obstacle placements for
2% of the hybrid nano-fluid and no subjection to a magnetic field. It is observed that for
Ra = 104, the temperature distribution is directly affected by the location of the cylinder; the
temperature variation in the configuration in the case of (b) provides better heat transfer,
as it enables the flow to be distributed in the surrounding central section of the enclosure,
with a large vortex that provides great stream-function values, which permits buoyancy
forces to freely drive the hybrid nano-fluid flow, thereby significantly exploiting natural
convection. In contrast to case (a), where the elliptical cylinder is positioned in the center
of the enclosure, in this scenario, the flow is divided into two vortices: a large upper big
vortex that offers a lower stream-function value than case (b) and a smaller one obstructed
in the bottom of the enclosure, therefore obtaining less thermal transmission. According
to these findings, it has been demonstrated that placing the obstacle at the bottom of the
enclosure improves the heat-transfer rate.

5.4.2. Effect of the Rotation of the Cylinder

Mixed convection was investigated at Ra=105, and for 4% of the hybrid nano-fluid, the
findings are shown in Figure 9, which displays several streamlines, exhibiting the impact
of the ellipse’s rotational velocity. A negative rotation value indicates a clockwise motion.
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Figure 9. Streamlines via w and Ra = 105, φ = 0.04, and Ha = 0.

Leading the cylinder counter-clock wise reveals the benefits of the convective transfer;
convection, due to the positive rotation, is concentrated around the cylinder, where this
movement produces a increase in stream functions as an outcome of high values of velocity.
As a result, large vortices are created; hence, the flow of the hybrid nano-fluid is accelerated.
Natural convection is oriented towards the walls of the enclosure, where buoyancy forces
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are amplified. Therefore, augmenting the cylinder’s angular velocity in a counter-clockwise
direction intensifies mixed convection and results in a higher heat-transfer rate. Clockwise
movement, on the other hand, diminishes the heat-transfer rate, and fewer stream-function
values are reported.

According to these findings, the direction of movement and the value of the angular
rotational velocity of the cylinder may be employed as essential parameters for improving
heat transmission.

5.4.3. Effect of the Different Obstacles

The streamlines and isotherms produced and illustrated in Figure 10 investigate
the influence of several obstacles in the considered geometry on the flow distribution.
The findings demonstrate that the square and circular obstruction appear to slow the
flow by producing small vortices compared to the triangular obstacle, which provides
increased heat-transfer since it delivers the greatest values of stream function. The two
vortices arestretched around this cylinder, which provides more space for flow distribution,
thereby strengthening heat transfer. Temperature variations also significantly contribute to
improved buoyant forces, which drive and boost natural convection.
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Furthermore, Figure 11 demonstrates that the triangular barrier provides improved
heat-transfer efficiency by presenting the highest peak of Nuavg values when compared
to the other cylinders. The geometrical features of the triangle and the uniform space
provided around it make it easier for the hybrid nano-fluid to disperse, which can help
amplify and alter the average Nu number and therefore convective transfer [68].

Additionally, the square, elliptic, and circular cylinders appear to have similar average
Nusselt values; these cylinders should be further investigated by altering their radius.
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6. Conclusions

In this paper, we performed a numerical study in order to investigate geometrical
parameters and discussed which configuration is advantageous in terms of enhancement of
convective heat transmission. The findings concerning streamlines, isotherms, and average
Nusselt number obtained by altering Ra, φ, and Ha in the first examination documenting
heat transfer in such a setup, using Cu- TiO2/ EG hybrid nano-fluid under magnetic-field
influence reveal that incrementing the concentration of the working fluid from 0.02 to 0.08
improves the Nusselt number by 19%. Enhancing the Rayleigh number also accelerates the
flow and strengthens the velocity field.

This enhancement is further boosted by the inclusion of counter-clockwise rotating
cylinders in the enclosure, as well as triangular obstacles, which augment the Nu number
by almost 120% compared to square, circular, and elliptical obstacles. However, this im-
provement is decremented when theenclosure is subjected to a magnetic field, as increasing
Hartmann number reduced stream-function values and weakened the convective flow.
Based on these findings, the following conclusions can be drawn:

• Rayleigh number and the volume fraction of the nanoparticles can be considered
crucial features in modulating convection.

• The existence of a magnetic field, and therefore increasing Hartmann number, restricts
heat transfer.

• Thermal transmission can be improved by using triangular obstacles.
• The angular velocity of the cylinder can alter the efficiency of the convective flow.
• The location of the obstacle is a key parameter to adjust the thermal transfer.
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Abbreviations

u, v Velocity components (m·s−1)
U, V Dimensionless velocity components
x, y Cartesian coordinates (m)
X, Y Dimensionless Cartesian coordinates
p Pressure (N·m−2)
P Dimensionless pressure
ρ Density (Kg·m−3)
g Gravitational acceleration (m·s−2)
T Temperature (K)
Tavg Average temperature (K)
θ Dimensionless temperature
α Thermal diffusivity (m2·s−1)
υ Kinematic viscosity (m2·s−1)
K Permeability (H·m−1)
ε Porosity
σ Electric conductivity (Ohm m)−1

B0 Magnetic field density (Tesla)
k Thermal conductivity ratio (W K−1 m−1)
Cp Specific heat (J K−1 Kg−1)
β Thermal expansion (K−1)
µ Dynamic viscosity (Kg·m−1·s−1)
φ Volume fraction of the nanoparticles
γ Inclination angle of the magnetic field
w Velocity of rotation(rad/s)
Ψ Stream function
L Length of the enclosure (m)
Subscripts
h Hot
c Cold
EG Ethylene glycol
Cu Copper
TiO2 Titanium dioxide
MHD Magneto-hydrodynamic
Nf Nano-fluids
hnf Hybrid nano-fluid
Bf Base fluid
np Nanoparticle
Max Maximum
Fc Forcheimer coefficient
Ra Rayleigh
Nu Nusselt
Ha Hartmann
Da Darcy
Pr Prandtl
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