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Abstract: In this paper, a 2D numerical study of natural convection heat transfer in a W-shaped

inclined enclosure with a variable aspect ratio was performed. The enclosure contained a porous

medium saturated with Ag/Al2O3 hybrid nanofluid in the presence of uniform heat generation or

absorption under the effect of a uniform magnetic field. The vertical walls of the enclosure were heated

differentially; however, the top and bottom walls were kept insulated. The governing equations

were solved with numerical simulation software COMSOL Multiphysics which is based on the

finite element method. The results showed that the convection heat transfer was improved with

the increase of the aspect ratio; the average Nusselt number reached a maximum for an aspect ratio

(AR) = 0.7 and the effect of the inclination was practically negligible for an aspect ratio of AR = 0.7.

The maximum heat transfer performance was obtained for an inclination of ω = 15 and the minimum

is obtained for ω = 30. The addition of composite nanoparticles ameliorated the convection heat

transfer performance. This effect was proportional to the increase of Rayleigh and Darcy numbers,

the aspect ratio and the fraction of Ag in the volumetric fraction of nanoparticles.

Keywords: free convection; W-shaped inclined enclosure; porous medium; hybrid nanofluid; uniform

heat generation or absorption

1. Introduction

Magneto hydrodynamic (MHD) heat transfer has attracted a great deal of attention in the last

few years, and it has been the subject of a vast number of research articles. This is because of the

importance of this topic in different engineering applications for different domains such as crystal

formation, geothermal energy and nuclear energy.

The enhancement of heat transfer has been the objective of many research articles in different

applications such as discharge lamps [1–11]. In the same research area, many studies have been

established to examine the natural convection heat transfer inside a porous medium due to the
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importance of this scientific research in many engineering applications, such as in solar collectors,

the cooling of micro-electromechanical systems (MEMS) and various industrial applications, as reported

by Pop and Ingham [12], Bejan et al. [13], Vafai [14], Sankar et al. [15] and Ben Hamida et al. [16].

Chamkha and Selimefendigil [17] examined the generation of entropy and the natural convection

inside a square corrugated cavity filled with porous medium saturated with nanofluid under the

magnetic field effect. The results showed that the increase of Grashof and Darcy numbers enhanced

the convection heat transfer. Shao et al. [18] made a comparison between their own results obtained

with the Fourier–Galerkin spectral method for the Darcy–Brinkman model and other results obtained

with the developed finite element model. Importantly, they found a high degree of similarity of the

results from the two methods.

Nanofluids are used to ameliorate the heat performance of heat exchangers, as reported in

different works such as Mohammed et al. [19,20]; in refrigeration systems, based on the absorption

phenomenon on automotive air-conditioning, as reported by Ramanathan et al. [21]; for falling film

bubble absorption processes in vertical plates on refrigerating systems by using copper nanofluid,

as reported by Ben Hamida et al. [22,23] and Ben Jaballah et al. [24]; and the effect of operating

conditions such as those reported by Benhmidene et al. [25]. The results have shown an enhancement

of the effective absorption ratio with the addition of copper solution nanofluid and that the heat flux

depends on the tube diameter. In addition, Abdollahi et al. [26] studied the case of an interrupted

microchannel heat sink with elliptical and diamond ribs using Al2O3/water nanofluid with different

volume fractions. They showed that the ellipse ribs result in better performance for the microchannel

than diamond ribs and no ribs.

Some works, such as that by Sheikholeslami et al. [27], have investigated the effect of the heat

source length on the heat transfer performance of a nanofluid inside a cavity under a magnetic field.

They found that the average Nusselt number was ameliorated by the augmentation of the heat source

length; however, it was reduced by the increase of the Hartmann number.

Recently, several researchers have examined the magneto hydrodynamic heat transfer inside a

cavity with different shapes. Yuan Ma et al. [28] and Hosseinizadeh and Sourtiji [29] successively

numerically studied the convection heat transfer inside a U-shaped and L-shaped cavity filled with

nanofluid. The results obtained show that the heat transfer performance was improved with the

addition of nanoparticles and with the augmentation of the aspect ratio of cavity. Other studies, such as

that by Abedini et al. [30], investigated the magneto hydrodynamic heat transfer performance inside a

C-shaped baffled enclosure filled with nanofluid. The results showed that the increase of the aspect

ratio and the introduction of baffles improved the heat transfer performance, and the maximum heat

transfer was obtained for an aspect ratio of AR = 0.7 and a baffle length of Bf = 0.2. Another study

performed by Hussein et al. [31] examined the magnetohydrodynamic heat transfer inside a T-shaped

enclosure. They found that the promotion of the aspect ratio improved the circulation of dynamic flow

and the Nusselt number; by contrast, an increase of the Hartmann number reduces these factors. In the

same way, other studies, such as that by Armaghani et al. [32], investigated the effect of the addition of

a baffle to the T-shaped enclosure. They discovered that the addition of a baffle significantly enhanced

the heat transfer performance inside the cavity. The maximum performance was obtained for an aspect

ratio of AR = 0.2 and a baffle length of Bf = 0.6. In some context, several works, such as those by

Ahmed et al. [33], Hasan et al. [34] and Hussain et al. [35], studied the heat transfer inside a corrugated

cavity containing porous media saturated with nanofluid under the magnetic field effect. This again

highlights the importance of this geometry on the thermal designs of such systems. The results show

that the corrugated shapes have a significant effect on the control of the convection inside cavities.

However, returning to the literature, no study has examined the magneto hydrodynamic heat

transfer inside a W-shaped inclined enclosure which presents a portion of corrugated cavity with a

porous medium saturated with hybrid nanofluid with variable aspect ratios. Therefore, the aim of

this study was to perform a bi-dimensional numerical study of the natural convection in a W-shaped

inclined enclosure. The W-shaped cavity with a variable aspect ratio (AR) contained a porous medium
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saturated with Ag-Al2O3/ethylene glycol hybrid nanofluid in the presence of uniform heat generation

or absorption (q∗). The enclosure was under the effect of horizontal and uniform magnetic fields.

This study is performed using COMSOL Multiphysics commercial simulation software, based on the

finite element method. Various parameters are examined in this study, such as Rayleigh, Hartmann

and Darcy numbers, the aspect ratio, the angle of inclination ω, the solid volume of composite

nanoparticles ϕ and the fraction of Ag in the volumetric fraction of nanoparticles (Fr) on the thermal

and hydraulic characteristics.

2. Numerical Model

2.1. Simplifying Assumptions

In order to solve the governing equations, some simplifying assumptions are considered as follows:

• A thermal equilibrium is supposed between the water base fluid and the nanoparticles;

• The nanofluid is supposed to be Newtonian and incompressible;

• The flow is assumed to be steady and laminar;

• The radiation, the dissipation and Joule heating effects, the displacement currents and the induced

magnetic field are neglected.

2.2. Boundary Conditions

The schematic diagram of the W-shaped inclined enclosure with a porous medium saturated with

Ag-Al2O3/ethylene glycol hybrid nanofluid in the presence of uniform heat generation or absorption

is shown in Figure 1. The temperature (Th) is uniformly imposed along the vertical wall (1) and the

temperature (Tc) is uniformly imposed along walls 2–5. The top and bottom walls—6 and 7—are kept

insulated. The W-shaped inclined cavity is under the effect of a magnetic field with uniform strength

B0. The gravitational effect presents two components along the x and y-axes. The W-shaped cavity is

inclined with an angle ω compared to the horizontal as shown in Figure 1.

Figure 1. A schematic diagram of the physical model problem.

The boundary conditions used in a dimensionless form are presented in Table 1.
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Table 1. The boundary conditions in dimensionless form.

Border Condition On u* Condition On v* Condition On T*

1 0 0 1
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

6 0 0 ∂T∗

∂y∗
= 0

7 0 0 ∂T∗

∂y∗
= 0

2.3. Non-Dimensional Governing Equations

The Darcy law model was used to express the permeability of the porous medium. The following

dimensionless parameter groups were proposed to express the dimensionless conservation equation

system presented as follows:

x∗ =
x

L
, y∗ =

y

L
, u∗ =

u L

α f
, v∗ =

v L

α f
, T∗ =

T − Tc

Th − Tc
, p∗ =

p L2

ρhn fα
2
f

, Pr =
ϑ f

α f
,

Ha = B0L

√

σhn f

ρhn f ϑ f
, Ra =

g β f L3(Th − Tc)

ϑ fα f
, Da =

K

L2
, q∗ =

qL2

αhn f

(

ρCp

)

hn f

The mass conservation equation is as follows:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (1)

where u∗ and v∗ are the dimensionless velocities according to x∗ and y∗, respectively.

The momentum conservation equation according to x∗ is as follows:

u∗
∂u∗

∂x∗
+ v∗
∂u∗

∂y∗
= −
∂p∗

∂x∗
+ Pr

αhn f

α f

(

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
−

u∗

Da

)

+
(ρβ)hn f

ρhn fβ f
RaPrθ sin(ω) (2)

where ρhn f and p∗ are the density of the hybrid nanofluid and the dimensionless fluid pressure,

respectively.

The momentum conservation equation according to y∗ is as follows:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −
∂p∗

∂y∗
+ Pr

αhn f

α f

(

∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
−

v∗

Da

)

+
(ρβ)hn f

ρhn fβ f
RaPrθ cos(ω) −Ha2Prv∗ (3)

where β is the thermal expansion coefficient of the hybrid nanofluid.

The energy conservation equation is as follows:

u∗
∂T∗

∂x∗
+ v∗
∂T∗

∂y∗
=
αhn f

α f

(

∂2T∗

∂x∗2
+
∂2T∗

∂y∗2

)

+
αhn f T∗

α f
q∗ (4)

where αn f is the thermal diffusivity of the nanofluid.

The effective density and electrical conductivity of the hybrid nanofluid can be calculated using

ρhn f = (1−ϕ)ρ f + ϕAgρAg + ϕAl2O3
ρAl2O3

(5)

σhn f = (1−ϕ)σ f + ϕAgσAg + ϕAl2O3
σAl2O3

(6)
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where ϕ is the overall volume concentration of composite nanoparticles:

ϕ = ϕAg + ϕAl2O3

Furthermore, the fraction of Ag in the volumetric fraction of nanoparticles is defined as

Fr =
ϕAg

ϕAg + ϕAl2O3

(7)

The effective heat capacitance and coefficient of thermal dilatation of the nanofluid are given

by [36]
(

ρCp

)

hn f
= (1−ϕ)

(

ρCp

)

f
+ ϕAg

(

ρCp

)

Ag
+ ϕAl2O3

(

ρCp

)

Al2O3
(8)

(ρβ)hn f = (1−ϕ)(ρβ) f + ϕAg(ρβ)Ag + ϕAl2O3
(ρβ)Al2O3

(9)

αhn f =
khn f

(

ρCp

)

hn f

(10)

Brinkman’s [37] model is used for the effective dynamic viscosity of the hybrid nanofluid:

µhn f =
µ f

(

1− (ϕAg + ϕAl2O3

)

)2.5
(11)

The effective thermal conductivity of the hybrid nanofluid is given by Maxwell [38]:

khn f

kn f
=

1
ϕ (ϕAgkAg + ϕAl2O3

kAl2O3
) + 2k f + 2(ϕAgkAg + ϕAl2O3

kAl2O3
) − 2ϕk f

1
ϕ (ϕAgkAg + ϕAl2O3

kAl2O3
) + 2k f − (ϕAgkAg + ϕAl2O3

kAl2O3
) + ϕk f

(12)

The thermophysical properties of the base fluid (ethylene glycol) with Ag and Al2O3 [39] are

given in Table 2.

Table 2. The thermophysical properties of the base fluid (ethylene glycol) with Ag and Al2O3 nanoparticles.

Basic Fluid and
Nanoparticles

Pr ρ (kg/m3) Cp (J/kg·K) k (W/m·K)
β × 10−5

(K−1)

µ
(Kg/ms)

Ethylene Glycol 151 1109 2400 0.26 65 0.0163
Al2O3 3970 765 40 0.85 -

Ag 10,500 535.6 429 0.85 -

The governing equations are solved by using the commercial simulation software COMSOL

Multiphysics, which is based on the finite element technique.

2.4. Nusselt Number Calculation

The local Nusselt number on the left hot wall can be formalized as

Nul = −
kn f

k f

(

∂T∗

∂x∗

)

x∗=0

(13)

The average Nusselt number (Num) is calculated by integrating Nux∗ along the hot wall:

Num =

∫ 1

0
−

kn f

k f

(

∂T∗

∂x∗

)

x∗=0

∂y∗ (14)
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2.5. Solution Procedure and Grid Sensitivity Test

The system of governing equations is solved considering the boundary conditions by using the

commercial simulation software COMSOL Multiphysics, which is based on the finite element technique.

Figure 2 shows the triangular mesh distribution along the enclosure. The sensitivity of several

grids for choosing a sufficient predefined mesh size for which the results are independent is presented

in Table 3. As indicated in Table 3, a finer mesh was chosen for the numerical estimation taking into

account the exactness and the calculation time.

Figure 2. A schematic of the mesh distribution.

Table 3. Grid sensitivity check for Ra = 105, Ha = 0, ϕ = 0.04, q∗ = 1, Da = 10−2 and ω = 0.

Ra: Rayleigh number; Ha: Hartmann number; Da: Darcy number; ϕ: solid volume of composite

nanoparticles; ω : angle of inclination.

Predefined Mesh Size Mesh Elements Num CPU Time (s)

Extremely coarse 1846 4.6897 4.63
Extra coarse 2210 4.6924 5.589

Coarser 3092 4.6976 7.56
Coarse 3654 4.6974 9.072
Normal 4608 4.6980 11.475

Fine 4710 4.6980 12.796
Finer 5784 4.6984 14.901

Extra fine 9182 4.6980 20.765
Extremely fine 28,368 4.6981 108.848

3. Results and Discussion

The numerical simulations were conducted under the condition of natural convection heat

transfer in a W-shaped inclined enclosure with a porous medium saturated with hybrid nanofluid,

with variable aspect ratios and with the presence of uniform heat generation or absorption. Various

parameters are examined in this study, such as Rayleigh, Hartmann and Darcy numbers, the aspect

ratio, the angle of inclination ω, the solid volume of composites nanoparticles ϕ and the fraction of Ag

in the volumetric fraction of nanoparticles (Fr) on the thermal and hydraulic characteristics. The effects

of these parameters on the thermal and hydraulic characteristics are interpreted and presented in

this section.
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3.1. Validation

In order to validate the present results, a comparison was performed between the present results

obtained with the results from a 2D study by Chamkha and Selimefendigil [17]. The streamlines

and isotherms for different values of Da = 10−4, 10−3 and 10−1 for Gr = 104, Ha = 10 and ϕ = 0.02

were compared. As shown in Figures 3 and 4, a good agreement was found between the two results.

In addition, the average Nusselt number at the hot wall for Gr = 5104, Da = 10−2 and ϕ = 0.02 was

compared with the results obtained by Chamkha and Selimefendigil [17]. The numerical domain was

divided into 51 × 51 uniform spatially grids, and the same grids were adopted for this study. Table 4

shows an acceptable agreement between the present results and the results obtained by Chamkha and

Selimefendigil [17].

Table 4. Validation of numerical code.

Ha NumPresent Work Num Chamkha and Selimefendigil [17]

0 7.4103 7.4019

10 7.1514 7.1315

20 6.5125 6.5059

30 5.8725 5.8709

40 5.17 5.1612

50 4.5505 4.5483

Figure 3. Streamlines for different Darcy numbers with Grashof number Gr = 104, Ha = 10 and

ϕ = 0.02.
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Figure 4. Isotherms for different Darcy numbers with Grashof number Gr = 104, Ha = 10 and ϕ = 0.02.

The analysis is performed for a constant Prandtl number value of 151 and the effects of the Rayleigh

number (Ra), Hartmann number (Ha), the Darcy number (Da), the aspect ratio (AR), the angle of

inclination (ω), the solid volume of composite nanoparticles (ϕ) and the fraction of Ag in the volumetric

fraction of nanoparticles (Fr) on the distribution of the isotherms, the streamlines, the average Nusselt

number and the heat transfer performance inside the cavity are presented and discussed in the

following sections.

3.2. Effect of Rayleigh and Hartmann Numbers

In this section, the effect of Rayleigh and Hartmann numbers on the isotherms, streamlines and

heat transfer performance is examined. The aspect ratio AR = 0.3, ω = 0, Fr = 0.75, Da = 10−2 and

q∗ = 1 are kept constant.

Figures 5 and 6 present the distribution of the isotherms and streamlines between the hot and cold

walls for different values of Rayleigh and Hartmann numbers; respectively, Ra = 103, 104, 105 and 106

and Ha = 0, 15, 30 and 45 for a constant of ϕ = 0.04. The results exhibited in Figures 5 and 6 show

that, for a low Rayleigh number, the flow behavior takes a circular shape with a deformation of the

circular shape near the cold wall. The augmentation of the Rayleigh number leads to a deformation of

the circular flow shape, which is stretched in form, especially near the cold wall, for higher Rayleigh

numbers. In addition, it can be observed that that the increase of the Rayleigh number intensifies the

flow velocity of the hybrid nanofluid, which is because of the augmentation of the effect of buoyancy

force inside the cavity, especially near the walls. Therefore, it is observed that the promotion of the

convective heat transfer compared to the conductivity inside the cavity between the hybrid nanofluid

and the hot wall is more pronounced. In the same context, the effect of the buoyancy force inside

the cavity by the increase of the Rayleigh number is made more pronounced by the change in the

distribution of the isotherms. For a low Rayleigh number, where a conductive regime is predominant,

the isotherms between the cold and hot walls are parallel; then, they become horizontal between the

top and bottom walls for a higher Rayleigh number where the convection is predominant. Therefore,

the results show that the augmentation of the Rayleigh number enhances the convection heat transfer

inside the cavity due to the augmentation of the effect of the buoyancy force. To better examine the

effect of the Rayleigh number on the heat transfer rate, the variation of the average Nusselt number at

the hot wall for different values of Rayleigh numbers is shown in Figure 7. As illustrated in Figure 7,

it can clearly be seen that the increase of the Rayleigh number leads to the promotion of the average
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Nusselt number at the level of the hot wall, which means that the enhancement of the convection heat

transfer between the hybrid nanofluid and the hot wall is more significant. The increase of the average

Nusselt number Num with the augmentation of the solid fraction of composite nanoparticles ϕ can

also be observed, as shown in Figure 7.

Figure 5. Isotherms for different values of Rayleigh numbers (Ra = 103, 104, 105 and 106) and

Hartmann numbers (Ha = 0, 15, 30 and 45), Da = 10−2, aspect ratio (AR) = 0.3, ω = 0, ϕ = 0.04,

Fr = 0.75 and q∗ = 1.

Figure 6. Streamlines for different values of Rayleigh numbers (Ra = 103, 104, 105 and 106) and

Hartmann numbers (Ha = 0, 15, 30 and 45), Da = 10−2, AR = 0.3, ω = 0, ϕ = 0.04, Fr = 0.75 and

q∗ = 1.
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Figure 7. The average Nusselt number Num according to the solid fraction of composite nanoparticles

ϕ for different values of Rayleigh numbers (Ra = 103, 104, 105 and 106) with Ha = 15, Da = 10−2,

AR = 0.3, ω = 0, Fr = 0.75 and q∗ = 1.

According to Figures 5 and 6, it can be observed that the space between the streamlines is

reduced, particularly near the top and bottom walls. Moreover, a deformation represented as a

vertical prolongation of the circular shape of the streamlines can be observed with a reduction in

the intensification of the flow velocity field near the walls. This can be explained by the effect of the

Lorentz forces created by the magnetic field; these forces surmount the effect of the buoyancy force

and hinder the flow rate. Looking at the isotherms, the distortion of the horizontal lines of isotherms

can obviously be seen between the top and bottom walls in proportion to the augmentation of the

Hartmann number. Consequently, the demotion of the convection heat transfer inside the cavity with

the increase of the Hartmann number and the transition from a dominant convection to conduction

regime is observed.

Figure 8 presents the evolution of the average Nusselt number according to the Hartmann number

for different Rayleigh numbers (Ra = 103, 104, 105and 106). It can be seen that that the maximum

average Nusselt number is obtained for Ha = 0, which shows the absence of a magnetic field effect.

Thus, the diminution of the average Nusselt number is proportional and related to the increase of the

effect of the Lorentz forces induced by the application of the magnetic field, especially for a medium

convection flux inside the cavity for Ra = 105.

Figure 8. The average Nusselt number Num for different values of Rayleigh number (Ra = 103,

104, 105 and 106) with Da = 10−2, AR = 0.3, ω = 0, ϕ = 0.04, Fr = 0.75 and q∗ = 1.
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3.3. Effect of Darcy Number

In this section, the effect of the Darcy number on the isotherms, the streamlines and the convection

heat transfer performance is investigated. The Hartmann number is kept constant at Ha = 15, AR = 0.3,

ω = 0, Fr = 0.75 and q∗ = 1.

Figures 9 and 10 present the isotherms and streamlines and for different Darcy and Rayleigh

numbers for a Hartmann number of Ha = 15. It can be seen that for a low Darcy number and low

permeability of porous medium, a conduction regime is predominant inside the cavity, and this is

pronounced due to the vertical repartition of the isotherms between the heated walls. The increase of

the Darcy number leads to the amelioration of the convection heat transfer between walls. Figure 11

shows the average Nusselt number according to the Darcy number for different Rayleigh number

values. It can be observed that the increase of the Darcy number does not present a significant effect on

the variation of the average Nusselt number for a low Rayleigh number when the conduction regime

is predominant. In contrast, for a medium and higher Rayleigh number when medium and strong

convection inside the cavity is predominant, it can be observed that the increase of the Darcy number

leads to the promotion of the average Nusselt number, and consequently, the convection heat transfer

is ameliorated in proportion to the increase of the permeability of the porous medium.

Figure 9. Isotherms for different values of Darcy numbers (Da = 10−4, 10−3, 10−2 and 10−1) and

Rayleigh numbers (Ra = 103, 104, 105 and 106), Ha = 15, AR = 0.3, ω = 0, ϕ = 0.04, Fr = 0.75 and

q∗ = 1.
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Figure 10. The streamlines for different values of Darcy numbers (Da = 10−4, 10−3, 10−2 and 10−1)

and Rayleigh numbers (Ra = 103, 104, 105 and 106), Ha = 15, AR = 0.3, ω = 0, ϕ = 0.04, Fr = 0.75 and

q∗ = 1.

Figure 11. The average Nusselt number Num according to the Darcy number Da for different values of

Rayleigh number (Ra = 103, 104, 105 and 106) with AR = 0.3, ω = 0, ϕ = 0.04, Fr = 0.75 and q∗ = 1.

Figure 12 presents the average Nusselt number according to the solid fraction of the composite

nanoparticles for different ranges of Darcy numbers. It can be clearly seen that the addition of composite

nanoparticles increases the average Nusselt number. This effect is proportional to the increase of the

Darcy number when the heat transfer regime changes from a conductive to a convective regime.
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Figure 12. The average Nusselt number Num according to solid fraction of composite nanoparticles

ϕ for different values of Darcy number (Da = 10−4, 10−3, 10−2 and 10−1) with Ra = 105, Ha = 15,

AR = 0.3, ω = 0 and q∗ = 1.

3.4. Effect of the Aspect Ratio of the W-Shaped Enclosure

In this section, the effect of the aspect ratio on the isotherms, streamlines and the convection heat

transfer performance is investigated. The Hartmann number is fixed at Ha = 15, ω = 0, Fr = 0.75 and

q∗ = 1.

The results shown in Figure 13 present the streamlines for different aspect ratios and Rayleigh

number values, revealing that the augmentation of the aspect ratio leads to a decrease in the volume

of the vortices inside the cavity. Moreover, it can be seen that the circular form of the current lines

undergoes a vertical dilation in terms of their shape, as well as a rapprochement occurring between the

lines, due to the reduction in the circulation space of the fluid flow inside the cavity; this is proportional

to the increase of the aspect ratio. In addition, it can be seen that the augmentation of the aspect ratio

reduces the space for the fluid flow circulation near the heated walls.

Figure 13. Streamlines for different values of aspect ratio (AR = 0.1, 0.3, 0.5 and 0.7) and Rayleigh

number (Ra = 103, 104, 105 and 106) with Ha = 15, Da = 10−2, ω = 0 and q∗ = 1.
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It can also be noticed that, for the case of AR = 0.7, the creation of two vortices near the top

and bottom left walls is more pronounced. Moreover, the streamlines become more intensified

near the heated walls, meaning the increase of the velocity is proportional to the augmentation of

buoyancy forces.

Figure 14 presents the isotherms for different aspect ratios and Rayleigh number values. According

to Figure 14, the isotherms between the boundary heated walls become compressed as soon as the

aspect ratio increases; this has the result of decreasing the flow of hybrid nanofluid between the heated

walls, and consequently an improvement in heat transfer occurs.

Figure 14. Isotherms for different values of aspect ratio (AR = 0.1, 0.3, 0.5 and 0.7) and Rayleigh number

(Ra = 103, 104, 105 and 106) with Ha = 15, Da = 10−2, ω = 0 and q∗ = 1.

Figure 15 shows the average Nusselt number for different aspect ratios and Darcy number values.

This figure illustrates that the increase of the aspect ratio leads to the amelioration of the convection

heat transfer inside the cavity. The maximum heat transfer is obtained for an aspect ratio of AR = 0.7.

On the other hand, Figure 16 presents the average Nusselt according to the Hartmann number for

different aspect ratios; the increase of the Hartmann number causes a decrease in the convection heat

transfer. It can be seen that the effect of the magnetic field is minor for an aspect ratio of AR = 0.7

when the diminution of the average Nusselt number is slight. This is due to the predominance of the

convection flow compared to the Lorentz forces.

3.5. Effect of the Inclination of the W-Shaped Cavity

In this section, the effect of the inclination of the W-shaped cavity on the isotherms, streamlines

and the convection heat transfer performance is investigated. The Hartmann and Rayleigh numbers

are fixed successively at Ha = 15, Ra = 105, Da = 10−2 and q∗ = 1.
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The effect of the angle of inclination of the cavity on the isotherms, streamlines and the heat

transfer performance for different aspect ratios—respectively, AR = 0.1, 0.3, 0.5 and 0.7—is shown in

Figures 17 and 18. As shown in Figures 17 and 18, for AR = 0.3, the deformation of the streamlines and

the isotherms between the heated walls can be observed with the variation of the inclination of the

cavity, especially for the two case where s ω = 15; it is clear that the cold isotherms move closer to the

top hot wall and an enhancement of convection heat transfer is obtained, which indicates an increasing

effect of the buoyancy forces compared to the Lorentz forces. However, for ω = 30, the distortion of the

isotherms and a change from convective to conductive regime inside the cavity can be clearly observed.

On the other hand, for AR = 0.7, it can be seen that the variation of the inclination of the cavity does

not have an important effect on the isotherms and the streamlines between the boundary heated walls,

with the exception of ω = 30, for which the location of the flow is concentrated on the bottom wall.

Figure 15. The average Nusselt number Num according to the Darcy number with different aspect

ratios (AR = 0.1, 0.3, 0.5 and 0.7) with Ra = 105, Ha = 15, ϕ = 0.04, Fr = 0.75, ω = 0 and q∗ = 1.

Figure 16. The average Nusselt number Num according to the Hartmann number for different aspect

ratios (AR = 0.1, 0.3, 0.5 and 0.7) with Ra = 105, Da = 10−2, ϕ = 0.04, Fr = 0.75, ω = 0 and q∗ = 1.
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Figure 17. Isotherms for different angles of inclination ω and aspect ratios with Ra = 105, Ha = 15,

Da = 10−2, ϕ = 0.04, Fr = 0.75 and q∗ = 1.

Figure 18. Streamlines for different angles of inclination ω and aspect ratios with Ra = 105, Ha = 15,

Da = 10−2, ϕ = 0.04, Fr = 0.75 and q∗ = 1.

Figure 19 presents the average Nusselt number according to the angle of inclination for different

aspect ratios. It can be seen that the convection heat transfer reaches a maximum value for ω = 15 and

a minimum value for ω = 30.

In addition, it can be seen that the effect of the inclination of the cavity has a minor effect on the

variation of the average Nusselt number for the case of AR = 0.7, for which the convection is dominant

inside the cavity. Thus, the effect of the Lorentz and the buoyancy forces on the convection heat transfer

is related to the value of angle of inclination of the cavity.
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Figure 19. The average Nusselt number Num according to the angle of inclination of the cavity for

different aspect ratios (AR = 0.1, 0.3, 0.5 and 0.7) with Ra = 105, Da = 10−2, ϕ = 0.04, Fr = 0.75,

and q∗ = 1.

3.6. Effect of the Fraction of Ag in the Volumetric Fraction of Nanoparticles

In this section, the effect of the fraction of Ag in the volumetric fraction of nanoparticles (Fr) on the

convection heat transfer rate is investigated. The Hartmann, Rayleigh and Darcy numbers are fixed at

Ha = 15, Ra = 105, Da = 10−2, AR = 0.3, ω = 0 and q∗ = 1.

Based on the results obtained in Figures 7 and 12, and as shown in Figure 20, it can be noted that the

increase of the solid volume of composite nanoparticles leads to the promotion of the average Nusselt

number; consequently, the convection heat transfer rate is enhanced between the hybrid nanofluid

and the hot wall. In addition, the augmentation of the average Nusselt number is proportional to

the fraction of Ag in the volumetric fraction of nanoparticles (Fr); the more the fraction of Ag (Fr) is

increased, the more the average Nusselt number is ameliorated.

Figure 20. The average Nusselt number Num for different fractional values of Ag in the volumetric

fraction of nanoparticles (Fr = 0.25, 0.5 and 0.75) with Ra =105, Ha = 15, Da = 10−2, AR = 0.3, and q∗ = 1.
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4. Conclusions

The MHD heat transfer inside a W-shaped inclined cavity filled with a porous medium saturated

with Ag/Al2O3 hybrid nanofluid in the presence of uniform heat generation or absorption with a

variable aspect ratio was studied in this work. The effects of the Rayleigh, Hartmann and Darcy

numbers, the aspect ratio, the angle of inclination, the solid fraction of composites nanoparticles and

the fraction of Ag in the volumetric fraction of nanoparticles were investigated.

The main conclusions obtained are as follows:

• The increase of the Rayleigh and Darcy numbers leads to the intensification of the hydrodynamic

flow near the boundary heated walls and improves the convection heat transfer performance

inside the cavity.

• The increase of the Hartmann number attenuates the convection heat transfer inside the cavity;

this effect is insignificant for the case of an aspect ratio of AR = 0.7.

• The augmentation of the aspect ratio intensifies the hydrodynamic field and ameliorates the

heat convection heat transfer performance. The convection heat transfer reaches a maximum for

AR = 0.7.

• The average Nusselt number reaches its maximum for an angle of inclination ω = 15 and a

minimum for ω = 30; the effect of the inclination angle is negligible for an aspect ratio of AR = 0.7.

• The convection heat transfer performance is ameliorated with the addition of composite

nanoparticles. This effect is proportional to the increase of Rayleigh and Darcy numbers,

the aspect ratios and the fraction of Ag in the volumetric fraction of nanoparticles.
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Nomenclature

AR Aspect ratio, H/L

B0 Magnetic field strength

Bf Length of baffle

Cp Specific heat, (J Kg.K−1)

Da Darcy number

Fr Fraction of Ag in the volumetric fraction of nanoparticles

g Gravitational acceleration, (m s−2)

Gr Grashof number

H Width of corrugation of cavity (m)

Ha Hartmann number

K Permeability of porous medium, m2

k Thermal conductivity,
(

Wm−1K−1
)

L Length of cavity, (m)

Nu Nusselt number

p Fluid pressure,
(

Pa = Nm−2
)

p* Dimensionless pressure
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Pr Prandtl number

Q0 Heat generation or absorption

q* Dimensionless heat generation or absorption

Ra Rayleigh number

T Temperature, (K)

T* Dimensionless temperature

u, v, Velocity components in x, and y directions

u*, v* Dimensionless velocity components

x, y, Cartesian coordinates

x*, y* Dimensionless coordinates

Greek symbols

α Thermal diffusivity m2s−1

σ Electrical conductivity, Am V−1

ϕ1 Solid volume fraction of Ag nanoparticles

ϕ2 Solid volume fraction of Al2O3 nanoparticles

β Expansion coefficient, K−1

ρ Local density, kg m−3

∆T Temperature difference, Th − Tc , K

µ Dynamic viscosity, kg m−1s−1

ν Cinematic viscosity, m2s−1

ω Angle of inclination

Subscripts

c Cold wall

h Hot wall

hn f Hybrid nanofluid

f Fluid

l Local

m Average

p Nanoparticle
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