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Abstract. The present investigation is concerned with the study of heat and mass
transfer characteristics on MHD boundary layer flow of an electrically conducting mi-
cropolar fluid over a non-isothermal stretching sheet embedded in a porous medium
of variable thermal conductivity by applying prescribed heat flux for the heating pro-
cesses. The thermal boundary layer equation takes into account of Ohmic dissipation
due to transverse magnetic and electric fields. The governing system of partial dif-
ferential equations is transformed into a system of non-linear ordinary differential
equations using similarity transformation. The transformed non-linear coupled dif-
ferential equations are linearized by quasi-linearization method and then solved very
efficiently by finite-difference method. Attention has been focused to study the ef-
fects of various physical parameters on velocity, temperature and concentration in
the boundary layer. Numerical data for the local skin friction coefficient, surface
temperature and surface solutal concentration have also been tabulated for various
parametric conditions.

Keywords: mass transfer, porous medium, magnetohydrodynamics, boundary layer flow,

convection.
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1 Introduction

The study of a non-Newtonian fluid flow due to a stretching surface is impor-
tant in several engineering and industrial applications such as in the extrusion
of a polymer sheet from a die, the drawing of plastic films and heat-treated
materials travelling between a feed roll and a wind-up roll or materials man-
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ufactured by extrusion, glass-fiber and paper production, cooling of metallic
sheets, crystal growing and many others. In all these cases, the final products
depend on the rate of cooling during stretching of the sheet. During manufac-
turing of these sheets, the mixture after passing from a slit is stretched in order
to achieve the desired thickness. The final quality of such a sheet is influenced
by heat and mass transfer between the sheet and the fluid. The heat and mass
transfer of viscous fluids over an isothermal stretching sheet with suction or
blowing have been studied by Gupta and Gupta [17]. Rahman [35] provided
combined effects of internal heat generation and higher order chemical reaction
on the non-Darcian forced convective flow of a viscous incompressible fluid with
variable viscosity and thermal conductivity over a stretching surface embedded
in a porous medium. Starikovicius et al. [38] used the Navier-Stokes-Brinkman
system of equations to describe the coupled flow in 3D domain, consisting of
fluid and porous subdomains and efficient parallel algorithms are developed to
solve this problem.

A new stage in the evolution of fluid dynamics theory is in progress because
of its increasing importance in the processing industries in which behaviour
of the materials cannot be characterized by Newtonian relationship. Due to
this reason, many non-Newtonian models or constitutive equations are pro-
posed. Micropolar fluid obeys the constitutive equations of the considered non-
Newtonian fluid model to analyze the behaviour of exotic lubricants, colloidal
suspensions, polymeric fluid and liquid crystals. Eringen [15] is a pioneering
researcher who has formulated the theory of micropolar fluids. This theory
takes into consideration the effect of local structure and microrotations of the
fluid elements. Unlike other fluids, micropolar fluid consists of microstructure
belonging to a class of fluids with non-symmetrical stress tensor. Physically,
it represents fluid having randomly oriented particles suspended in a porous
medium. The micropolar fluid supports couple stress, body couples, micro-
rotational and micro-inertial effects. The governing differential equations for
micropolar fluid is highly non-linear and subtle in comparison to Newtonian
fluids. A thorough review of this subject and application of micropolar fluid
mechanics have been provided by Ariman et al. [8]. Vajravelu and Rollins
[41] studied flow and heat transfer in viscous fluid over a nonlinearly stretching
sheet without viscous dissipation, but the heat transfer in this flow is analyzed
only in the case when the sheet is held at a constant temperature. Vajravelu
and Hadjinicolaou [40] studied the heat transfer characteristics in a laminar
boundary layer flow of viscous fluid over a linearly stretching continuous sur-
face with viscous dissipation/frictional heating and internal heat generation.
Pop et al. [33] investigated mixed convection in narrow vertical ducts with-
out the effects of viscous dissipation. Effects of higher order chemical reac-
tion on micropolar fluid flow on a power law permeable stretching sheet with
variable concentration in a porous medium are studied by Rahman and Al-
Lawatia [36].

Numerous attempts have been made to analyze the effect of transverse mag-
netic field on boundary layer flow characteristics by keeping in mind some spe-
cific industrial application such as polymer processing technology. Pavlov [32]
and Chakrabarti and Gupta [11] analyzed the magnetohydrodynamic (MHD)
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flows over a stretching sheet without and with suction, respectively by applying
the assumptions of boundary layer theory. Abo-Eldahab and El-Aziz [2] studied
the effects of blowing/suction on hydromagnetic heat transfer by mixed convec-
tion from an inclined continuously stretching surface with internal heat gener-
ation/absorption. Andersson et al. [7] solved analytically the two-dimensional
Navier–Stokes equations for the MHD fluid over a stretching sheet without ap-
plying the boundary layer theory. Makinde and Aziz [25] analyzed MHD mixed
convection from a vertical plate embedded in a porous medium by considering
convective boundary conditions. Makinde [23] investigated similarity solution
of hydromagnetic heat and mass transfer over a vertical plate with a convec-
tive surface boundary condition. Later, Makinde [22] studied MHD heat and
mass transfer over a moving vertical plate with a convective surface boundary
condition. In all the earlier studies, the effects of Ohmic heating have not been
studied by previous authors. However, it is more realistic to include this effect
to explore the impact of magnetic field on the thermal transport in the bound-
ary layer. Recently, Abo-Eldahab and El-Aziz [3] studied the effect of Ohmic
heating on mixed convection boundary layer flow of a micropolar fluid from a
rotating cone with power-law variation in surface temperature. Recently, Abel
et al. [1] studied momentum and heat transfer characteristics in an incom-
pressible electrically conducting viscoelastic boundary layer flow over a linear
stretching sheet in the presence of viscous and Ohmic dissipations.

Radiative heat transfer flow is very important in manufacturing industries
for the design of reliable equipments, nuclear plants, gas turbines and various
propulsion devices for aircraft, missiles, satellites and space vehicles. The ef-
fects of thermal radiation on the forced and free convection flows are important
in the content of space technology and processes involving high temperature.
Chamkha [12] and Chamkha and Khanafer [13] studied solar radiation assisted
free convection in the boundary layer adjacent to a vertical flat plate in a porous
medium of uniform and variable porosity. Mohammadein and El-Amin [26] an-
alyzed the thermal dispersion-radiation effects on non-Darcy natural convection
in a fluid saturated porous medium. Theoretically, a velocity square term and
a viscous term should be introduced in the momentum equations to account for
the inertia and boundary effects, respectively in the study of boundary layer
flow over the surface of a body embedded in high-porosity media. Vafai and
Tien [39] applied the Darcy–Brinkman model to study the effects of bound-
ary and inertia forces on forced convection over a fixed impermeable heated
plate embedded in a porous medium. Barletta et al. [9] presented analytical
approach to the Darcy mixed convection with viscous dissipation in a vertical
channel. In view of the industrial applications, it is interesting to examine the
flow and thermal characteristics of viscous fluid saturated in a porous media
over a stretching sheet. In the physical process of drawing a sheet from a slit
of a container, it is tacitly assumed that only the fluid adhered to the sheet
is moving but the matrix remains fixed to cope the usual assumption of flow
motion in the porous medium. Rahman [34] and Rahman and Sultana [37]
studied flow of micropolar fluid from radiate isothermal porous surfaces with
viscous dissipation and Joule heating. Recently, Makinde [24] analyzed MHD
mixed-convection interaction with thermal radiation and transverse magnetic
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Figure 1. Physical model and coordinate system.

field past a vertical porous plate embedded in a porous medium in the presence
of the n-th order chemical reaction.

The purpose of the present paper is to study the effects of thermal radia-
tion on non-Darcian two-dimensional stagnation-point flow and heat transfer
of a micropolar fluid towards a stretching sheet with Ohmic dissipation in the
porous medium over a non-isothermal stretching sheet with the prescribed sur-
face heat flux condition which is linearly proportional to the distance from the
origin. The flow in a porous media deals with the analysis in which the differ-
ential equation governing the fluid motion is based on the Darcy’s law which
accounts for the drag exerted by the porous medium. The governing non-linear
partial differential equations are transformed into a system of nonlinear or-
dinary differential equations and these equations are then linearized by using
quasi-linearization method. The resulting linearized equations of momentum,
energy and concentration equations are solved numerically using finite differ-
ence method with appropriate boundary conditions. We shall examine the
effects of relevant parameters on the characteristics of flow, heat transfer and
mass transfer in the present study.

2 Mathematical Formulations and Governing Equations

We consider a steady two-dimensional mixed convection flow of an incompress-
ible, electrically conducting micropolar fluid towards a stagnation point at a
surface coinciding with the plane y = 0 and the flow region y > 0. The origin
is fixed as shown in Fig. 1. The x-axis is taken in the direction along which
the stretching sheet is set to motion and the y-axis is taken perpendicular to
it. The flow is generated by the action of two equal and opposite forces along
the x-axis and the sheet is stretched in such a way that the velocity at any
instant is proportional to the distance from the origin (x = 0). We assume
that the sheet is stretched with a linear velocity uw = bx, where b is a posi-
tive constant. Further the flow field is exposed to the influence of an external

transverse magnetic field of strength
−→
B = (0, B0, 0) and uniform electric field

−→
E = (0, 0,−E0). Application of such type of electric field and magnetic field
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stabilizes the boundary layer flow. The electric field
−→
E = (0, 0,−E0) and mag-

netic field
−→
B = (0, B0, 0) are satisfying the Maxwell’s equations: ∇.

−→
B = 0

and ∇ ×
−→
E = 0. When magnetic field is not so strong then electric field and

magnetic field obey Ohm’s law
−→
J = σ(

−→
E +−→q ×

−→
B ), where

−→
J is Joule current.

We have taken into account the frictional heating due to viscous dissipation
since the micropolar fluid also has viscous property. With these assumptions
the governing equations are given by (see Pal and Chatterjee [30]):

(i) The equation of continuity

∂u

∂x
+
∂v

∂y
= 0. (2.1)

(ii) The equation of momentum

u
∂u

∂x
+ v

∂u

∂y
= u∞

du∞
dx

+

(
ν +

k∗1
ρ

)
∂2u

∂y2
+
k∗1
ρ

∂N

∂y
− νϕ

k
(u− u∞)

− Cb√
k
ϕ
(
u2 − u2∞

)
+ gβt(T − T∞) + gβc(C − C∞)

+
σ

ρ

(
E0B0 −B2

0(u− u∞)
)
. (2.2)

(iii) The equation of angular momentum

ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γ

∂2N

∂y2
− k∗1

(
2N +

∂u

∂y

)
. (2.3)

(iv) The equation of energy

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

(
κ
∂T

∂y

)
− 1

ρCp

∂qr
∂y

+
σ

ρCp

(
(u− u∞)B0 − E0

)2
. (2.4)

(v) The equation of mass diffusion

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (2.5)

where u and v are the velocity components along the x and y directions, u∞ is
free stream velocity, ρ is the density of the liquid, ϕ is the porosity, k is per-
meability of the porous medium, βt and βc are the coefficients of thermal and
concentration expansions respectively, T is the temperature of the fluid, Cb is
the form of drag coefficient which is independent of viscosity and other proper-
ties of the fluid but depends on the geometry of the medium, E0 is the strength
of applied electric fluid, B0 is the strength of applied magnetic fluid, g is the
acceleration due to gravity, qr is the radiative heat flux, Cp is the specific heat
at constant pressure, C is concentration of the solute, D is the coefficient of
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diffusivity, ν is the kinematic viscosity, σ is the electrical conductivity of the
fluid, κ is the thermal conductivity, N is the component of microrotation or
angular velocity whose rotation is in the direction of the x–y plane and j, γ
and k∗1 are the microinertia per unit mass, spin gradient viscosity and vortex
viscosity, respectively. Furthermore, the spin gradient viscosity γ, which de-
fines the relationship between the coefficient of viscosity and micro-inertia is as
follows (Kim [19]): γ = µ(1 +K/2)j, in which K = k∗1/µ (> 0) is the material
parameter. Here all the material constants γ, µ, K, j are non-negative and we
take j = ν/b as a reference length.

The appropriate physical boundary conditions for the problem under study
are given by

u = uw, v = 0, N = −n∂u
∂y

at y = 0, (2.6)

u = u∞ = ax, N → 0 as y →∞, (2.7)

T = Tw = T∞ +A0

(
x

l

)2

︸ ︷︷ ︸
(PST case)

, C = Cw = C∞ +A1

(
x

l

)2

︸ ︷︷ ︸
(PST case)

at y = 0, (2.8)

−κ∂T
∂y

= D0

(
x

l

)2

︸ ︷︷ ︸
(PHF case)

, −D∂C
∂y

= D1

(
x

l

)2

︸ ︷︷ ︸
(PHF case)

at y = 0, (2.9)

T → T∞, C → C∞ as y →∞, (2.10)

where l is the characteristic length, Tw is the wall temperature of the fluid and
T∞ is the temperature of the fluid far away from the sheet, Cw is the wall
concentration of the solute and C∞ is the concentration of the solute far away
from the sheet. where D0 and D1 are constants. It should be remarked that n
is a boundary parameter such that 0 6 n 6 1. The case, when n = 0 is called
strong concentration that indicatesN = 0 near the wall represents concentrated
particle flows in which the micro-elements close to the wall surface are unable
to rotate (see Jena and Mathur [18]).

The case when n = 1/2 indicates the vanishing of anti-symmetric part of the
stress tensor and denotes weak concentration whereas n = 1 is used for mod-
elling of turbulent boundary layer flows (see Nazar et al. [29]). This assumption
is invoked to allow the field of equations to predict the correct behaviour in the
limiting case when the microstructure effects become negligible, and the mi-
crorotation N, reduces to the angular velocity which has been well established
by Ahmadi [5] and Kline [20] and being used by many researchers. It is worth
mentioning that the case K = 0 describes the classical Navier–Stokes equation
for a viscous and incompressible fluid.
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2.1 Similarity solutions for momentum equation and angular mo-
mentum equation

The governing Eqs. (2.2) and (2.3) admit a self-similar solution of the form

u = bxf ′(η), v = −
√
bνf(η), η =

√
b

ν
y, N = bx(b/ν)1/2g(η), (2.11)

where f is the dimensionless stream function, g is the dimensionless microro-
tation function and η is the similarity variable. Substituting these in Eq. (2.2)
we obtain the following third-order non-linear ordinary differential equation:

f ′ 2 − ff ′′ = λ2 + (1 +K)f ′′′ −Da−1(f ′ − λ) +Kg′

− α(f ′ 2 − λ2) + Ha2(E1 − f ′ + λ) + Gr th+ Gr cH, (2.12)

where h is non-dimensional temperature, H is non-dimensional concentra-
tion, α = Cb

b
√
k
ϕuw is local inertia coefficient parameter (Mostafa et al. [27]),

Da−1 = ϕν
kb is inverse Darcy number, Ha =

√
σ
ρbB0 is Hartmann number,

λ = a/b is stretching sheet parameter, E1 = E0

B0uw
is local electric parameter,

Gr t = gβt(T−T∞)
b2l is local thermal Grashof number, Gr c = gβc(C−C∞)

b2l is local
solutal Grashof number and K = k∗1/µ is material parameter. Using the trans-
formation (2.11), we obtain the ordinary differential equation for the function
g(η) from Eq. (2.3) as

f ′g − fg′ = (1 +K/2)g′′ −K(2g + f ′′), (2.13)

and the appropriate boundary conditions (2.6) and (2.7) now become

f(η) = 0, f ′(η) = 1, g(η) = −nf ′′(η) at η = 0,

f ′(η)→ λ, g(∞)→ 0 as η →∞.

It is worth mentioning that when n = 1/2, we can use g(η) = −1/2f ′′(η) in
Eq. (2.12) to obtain the following non-linear ordinary differential equation as

f ′ 2 − ff ′′ = λ2 + (1 +K/2)f ′′′ −Da−1(f ′ − λ)

− α
(
f ′ 2 − λ2

)
+ Ha2(E1 − f ′ + λ) + Gr th+ Gr cH, (2.14)

subject to the appropriate boundary conditions

f(η) = 0, f ′(η) = 1, at η = 0, f ′(η)→ λ, as η →∞.

Since the function g(η) does not appear in Eq. (2.14), so Eq. (2.13) is no longer
required and hence Eq. (2.13) is not considered in the solution of Eq. (2.12)
when n = 1

2 (weak concentration). Eq. (2.14) is solved numerically for various
values of the parameter λ by finite difference method. In this method we write
f ′ = q so that Eq. (2.14) becomes

(1 +K/2)q′′ + fq′ − q2 + λ2 −Da−1(q − λ)− α
(
q2 − λ2

)
+ Ha2(E1 − q + λ) + Gr th+ Gr cH = 0. (2.15)
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Using Newton’s linearization method (Anderson et al. [6]), the non-linear terms
fq′ and q2 in Eq. (2.15) can be linearized in the following manner:

(fq′)r+1 = fr(q′)r+1 and
(
qr+1

)2
= 2qrqr+1 −

(
qr
)2
, (2.16)

where r is the iteration level. Then q′′ and q′ in Eq. (2.15) are discretized
using central difference scheme of second order accuracy. After linearization
and discretization of the terms in Eq. (2.15) as discussed above, the discretized
form of Eq. (2.15) yields a tridiagonal system of linear equations which is solved
very efficiently by Thomas algorithm (Fletcher [16]).

2.2 Similarity solution of the heat and mass transfer equations

The thermal conductivity κ is assumed to vary linearly with temperature and
it is of the form (Ahmad et al. [4], Pal and Mondal [31]) κ = κ∞

[
1 + εh(η)

]
for PHF case, where h(η) = (T − T∞)/(Tw − T∞), and ε is a small parameter.
Following Rosseland approximation (Brewster [10]) the radiative heat flux qr
is modeled as,

qr = −4σ∗

3k∗
∂T 4

∂y
, (2.17)

where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption
coefficient. Assuming that the differences in temperature within the flow are
such that T 4 can be expressed as a linear combination of the temperature, we
expand T 4 in Taylor’s series about T∞ as follows

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + · · · ,

and neglecting higher order terms beyond the first degree in (T − T∞), we get

T 4 ∼= −3T 4
∞ + 4T 3

∞T. (2.18)

Now differentiating Eq. (2.17) w.r.t. y and using Eq. (2.18), we obtain

∂qr
∂y

= −16T 3
∞σ
∗

3k∗
∂2T

∂y2
. (2.19)

Using Eq. (2.19) in Eq. (2.4) we obtain

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

((
κ+

16T 3
∞σ
∗

3k∗

)
∂T

∂y

)
+

σ

ρCp

(
(u− u∞)B0 − E0)

)2
.

(2.20)

The thermal boundary conditions for solving Eq. (2.20) depend on the type
of heating process considered. Now the non-dimensional temperature h(η) and
concentration H(η) are defined in PHF case as

h(η) =
T − T∞
Tw − T∞

, H(η) =
C − C∞
Cw − C∞

, (2.21)

T − T∞ =
D0

κ∞

(
x

l

)2√
ν

b
h(η) and Tw − T∞ =

D0

κ∞

(
x

l

)2√
ν

b
, (2.22)

C − C∞ =
D1

κ∞

(
x

l

)√
ν

b
H(η) and Cw − C∞ =

D1

κ∞

(
x

l

)2√
ν

b
. (2.23)
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Using Eq. (2.21) in Eq. (2.20) we obtain the non-linear ordinary differential
equation for h(η) in the form

(1 + Nr + εh)h′′ + Pr(fh′ − 2f ′h) + εh′ 2

+ PrHa2Es
[(
f ′ 2 + λ2 − 2λf ′

)
− E1(E1 − 2f ′ + 2λ)

]
= 0. (2.24)

Using Eq. (2.21) in Eq. (2.5), we get

H ′′ + Sc(H ′f − 2Hf ′) = 0. (2.25)

Corresponding thermal boundary conditions for h(η) are given by

h′(η) = − 1

1 + ε
, H ′(η) = − 1

1 + ε
at η = 0,

h(η)→ 0, H(η)→ 0 as η →∞. (2.26)

Here the prime denotes the differentiation with respect to the similarity vari-

able η. Pr =
µCp

κ∞
is Prandtl number, Nr =

16σ?T 3
∞

3κ∞k∗
is thermal radiation

parameter, Es = Ecκ∞

√
b
ν is the scaled Eckert number, Ec = b2l2

D0Cp
is Eckert

number, E1 = E0

B0bx
is local electric parameter and Sc = ν

D is Schmidt number.

2.3 Skin-friction coefficient

The skin-friction coefficient, (Cf ), is defined by the following relation

Cf =
τw

ρu2w/2
, (2.27)

where the skin-friction on the flat plate τw is given by

τw =

[
(µ+ k∗1)

∂u

∂y

]
y=0

. (2.28)

Using (2.11) we obtain skin-friction coefficient from (2.27) and (2.28) as

CfRe
1/2
x = (1 +K)f ′′(0),

where Rex = uwx/ν is the local Reynolds number.

3 Quasi-Linearization and Finite Difference Method

The flow Eq. (2.14) is coupled with the energy and concentration equations
which is solved numerically along with Eqs. (2.24) and (2.25). The flow
Eq. (2.14) constitute a nonlinear nonhomogeneous differential equation for
which closed form solution cannot be obtained and hence we are required to
solve the problem numerically using finite-difference approximation. A quasi-
linearization technique (see Anderson et al. [6]) is first applied to replace the
nonlinear terms at a linear stage. Then the implicit finite difference method
is used to replace the different terms by their second-order central difference
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approximations. Finally, the resulting tridiagonal system was solved using the
Thomas algorithm to obtain f(η). The energy Eqs. (2.24) and (2.25) are also
non-linear second-order ordinary differential equations with variable coefficient
which are also linearized by the quasi-linearization technique and then solved
using implicit-finite difference method with Thomas algorithm under appropri-
ate boundary conditions given by Eq. (2.26). The resulting system of equations
has been solved in the infinite domain 0 < η < ∞. Instead a finite domain in
η direction can be used, with η chosen large enough which would ensure that
the solutions are not affected by increasing the value of η further. The value
of η∞ = 30 was found to be adequate for all the range of physical parameters
under study. To get the numerical solutions of the velocity, temperature and
concentration fields a numerical code is developed. Uniform step size equal to
∆η = 0.001 gives the converged results.

A quasi-linearization technique as described by Anderson et al. [6] is first
applied to replace the nonlinear terms appearing in Eq. (2.15) to linearize in
the following manner(

q2
)r+1 − (fq′)r+1 − (1 +K/2)(q′′)r+1 + Da−1

(
qr+1 − λ

)
− λ2

+ α
{(
q2
)r+1 − λ2

}
−Ha2

{
E1 − qr+1 + λ

}
−Gr th

r −Gr cH
r = 0. (3.1)

Now the implicit finite difference method is used to replace the second-order
term by the second-order forward difference approximations and first-order
term by forward difference approximation as follows

q′ =
qr+1
j − qr+1

j−1

∆η
, q′′ =

qr+1
j−1 − 2qr+1

j + qr+1
j+1

(∆η)2
. (3.2)

Using Eqs. (2.16) and (3.2) in Eq. (3.1), we get

2qrj q
r+1
j −

(
qrj
)2 − frj{qr+1

j − qr+1
j−1

∆η

}
+ Da−1

{
qr+1
j − λ

}
− (1 +K/2)

{
qr+1
j−1 − 2qr+1

j + qr+1
j+1

(∆η)2

}
−Gr th

r
j −Gr cH

r
j

+ α
{

2qrj q
r+1
j −

(
qrj
)2 − λ2}−Ha2

{
E1 − qr+1

j + λ
}
− λ2 = 0. (3.3)

Rearranging the terms of Eq. (3.3), we get

ajq
r+1
j−1 + bjq

r+1
j + cjq

r+1
j+1 = dj , 3 ≤ j ≤ n− 1, (3.4)

where

aj =
frj
∆η
− (1 +K/2)

(∆η)2
, bj = 2qrj −

frj
∆η

+ 2
(1 +K/2)

(∆η)2
+ Da−1 + 2αqrj + Ha2,

cj =
−(1 +K/2)

(∆η)2
, dj =

{
λ2 +

(
qrj
)2}{1 + α}+ λ

{
Da−1 + Ha2

}
+ Ha2E1

+ Gr th
r
j + Gr cH

r
j . (3.5)
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When j = 2, we have from Eq. (3.4) as

b2q
r+1
2 + c2q

r+1
3 = d2, (3.6)

where

b2 = 2qr2 −
fr2
∆η

+ 2
(1 +K/2)

(∆η)2
+ Da−1 + 2αqr2 + Ha2, c2 =

−(1 +K/2)

(∆η)2
,

d2 =
{
λ2 +

(
qr2
)2}{1 + α}+ λ

{
Da−1 + Ha2

}
+ Ha2E1

+ Gr th
r
2 + Gr cH

r
2 −

{
fr2
∆η
− (1 +K/2)

(∆η)2

}
qr1. (3.7)

When j = n, we have from Eq. (3.4) as

anq
r+1
n−1 + bnq

r+1
n = dn, (3.8)

where

an =
frn
∆η
− (1 +K/2)

(∆η)2
, bn = 2qrn −

frn
∆η

+ 2
(1 +K/2)

(∆η)2
+ Da−1 + 2αqrn + Ha2,

dn =
{
λ2 +

(
qrn
)2}{1 + α}+ λ

{
Da−1 + Ha2

}
+ Ha2E1

+ Gr th
r
n + Gr cH

n
j +

(1 +K/2)

(∆η)2
qrn+1. (3.9)

Similarly, we can linearize the energy Eq. (2.24) by quasi-linearization tech-
nique and then the implicit finite difference method is used to replace the
second-order term by second-order central difference approximations and first-
order term by the central difference approximation given by

h′ =
hr+1
j+1 − h

r+1
j−1

2∆η
, h′′ =

hr+1
j−1 − 2hr+1

j + hr+1
j+1

(∆η)2
. (3.10)

Thus from Eq. (2.24) takes the following form

αjh
r+1
j−1 + βjh

r+1
j + γjh

r+1
j+1 = λj , 3 ≤ j ≤ n− 1, (3.11)

where

αj =
1 + Nr

(∆η)2
−

Prfrj
2∆η

+
εhrj

(∆η)2
−
ε(hrj+1 − hrj−1)

2(∆η)2
, (3.12)

βj = −2Prqrj −
2(1 + Nr)

(∆η)2
−

2εhrj
(∆η)2

,

γj =
1 + Nr + εhrj

(∆η)2
+

Prfrj
2∆η

+
ε(hrj+1 − hrj−1)

2(∆η)2
,

λj =
ε(hrj+1 − hrj−1)2

4(∆η)2
− PrHa2Es

[((
qrj
)2

+λ2−2λqrj
)

+ E1

(
E1 − 2qrj + 2λ

)]
.



MHD Mixed Convection Stagnation-Point Flow of a Micropolar Fluid 509

When j = 2, we have from Eq. (3.11) as

β2h
r+1
2 + γ2h

r+1
3 = λ2, (3.13)

where

β2 = −2Prqr2 −
2(1 + Nr)

(∆η)2
− 2εhr2

(∆η)2
, γ2 =

2(1 + Nr + εhr2)

(∆η)2
,

λ2 = −2(1 + Nr + εhr2)

∆η(1 + ε)
+

Prfr2
(1 + ε)

+
ε(hr3 − hr1)

∆η(1 + ε)
+
ε(hr3 − hr1)2

4(∆η)2

− PrHa2Es
[((

qr2
)2

+ λ2 − 2λqr2
)

+ E1

(
E1 − 2qr2 + 2λ

)]
. (3.14)

When j=n, we have from Eq. (3.11) as

αnh
r+1
n−1 + βnh

r+1
n = λn, (3.15)

where

αn =
1 + Nr + εhrn

(∆η)2
− Prfrn

2∆η
−
ε(hrn+1 − hrn−1)

2(∆η)2
,

βn = −2Prqrn −
2(1 + Nr + εhrn)

(∆η)2
,

λn =
ε(hrn+1 − hrn−1)2

4(∆η)2
− PrHa2Es

[((
qrn
)2

+λ2−2λqrn
)
+E1

(
E1−2qrn+2λ

)]
−
[

1 + Nr + εhrn
(∆η)2

+
Prfrn
2∆η

+
ε(hrn+1 − hrn−1)

2(∆η)2

]
hrn+1.

Similar procedure is adopted for the concentration Eq. (2.25) using quasi-
linearization and central difference method as discussed above, so we obtain

AjH
r+1
j−1 +BjH

r+1
j + CjH

r+1
j+1 = Dj (3 ≤ j ≤ n− 1) (3.16)

where

Aj =
1

(∆η)2
−

Scfrj
2∆η

, Bj = − 2

(∆η)2
− 2Scqrj ,

Cj =
1

(∆η)2
+

Scfrj
2∆η

, Dj = 0. (3.17)

When j = 2, we have from Eq. (3.16) as

B2H
r+1
2 + C2H

r+1
3 = D2, (3.18)

where

B2 = − 2

(∆η)2
− 2Scqr2, C2 =

2

(∆η)2
, D2 =

2Scfr2
(1 + ε)

− 2

∆η(1 + ε)
. (3.19)

When j = n, we have from Eq. (3.16) as

AnH
r+1
n−1 +BnH

r+1
n = Dn, (3.20)
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where

An =
1

(∆η)2
− Scfrn

2∆η
, Bn = − 2

(∆η)2
− 2Scqrn, Dn = −

[
1

(∆η)2
+

Scfrn
2∆η

]
Hr
n+1.

The system of linear Eqs. (3.4)–(3.20) are solved very efficiently by Thomas
algorithm for the unknowns.

4 Discussion of the Results

Present results of the dimensionless skin friction coefficient f ′′(0), temperature
profile h(0) and concentration profileH(0) are compared with those obtained by
Andersson et al. [7] and Chen [14] and excellent agreement has been obtained as
seen from Table 1. This indicates the accuracy and correctness of the numerical
results obtained and also validates the numerical code developed using quasi-
linearization with finite-difference technique. A comparison of numerical results
of skin-friction coefficient with Mahapatra and Gupta [21] and Nazar et al. [28]
are made in Table 2, for PST case.

Table 1. Comparison of skin friction coefficient CfRe
1
2
x for K = 0, Sc = 0.22 (Newtonian

fluid).

Present result
Ha Andersson et al. [7] Chen [14] (PHF case)

0.0 1.00 1.00 1.00
1.0 1.414 1.41421 1.41420
1.5 1.581 1.58114 1.57485
2.0 1.732 1.73205 1.73252

Table 2. Comparison of skin-friction coefficient for PST case (Newtonian fluid).

Present results
λ Mahapatra and Gupta [21] Nazar et al. [28] (PST case)

0.01 −0.9980 −0.99670
0.2 −0.9181 −0.9181 −0.91921
0.5 −0.6673 −0.6673 −0.66732
1.0 0.0 0.0
2.0 2.0175 2.0175 2.01729
5.0 11.7537 11.75029

10.0 36.2687 36.25047
20.0 106.5744 106.4931

The effect of magnetic field, electric field, thermal radiation and inverse
Darcy number on skin friction coefficient f ′′(0), temperature profile h(0) and
concentration profile H(0) for PHF cases are tabulated in Table 3, when λ =
0.5, K = 0.2, n = 0.5, Es = 0.05, Gr t = 0.2, Gr c = 0.1, Pr = 0.71, ε = 0.01,
Sc = 0.22, α = 0.1. It is seen from this table that the effect of magnetic
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Table 3. Values of skin friction coefficient f ′′(0), surface temperature h(0) and surface
concentration H(0).

Ha E1 Nr Da−1 f ′′(0) h(0) H(0)

1.0 0.1 0.2 2.0 −0.66694 0.93462 1.75039
1.5 −0.77418 0.94326 1.76045
2.0 −0.90492 0.95336 1.77332

0.1 0.5 0.2 2.0 −0.57007 0.92695 1.74385
1.0 −0.56661 0.92644 1.74178
1.5 −0.56319 0.92608 1.73971

0.1 0.1 1.0 2.0 −0.52802 1.33411 1.72849
2.0 −0.49170 1.64626 1.71383
3.0 −0.46049 1.90773 1.70100

0.1 0.1 0.2 0.5 −0.78703 0.95082 1.79312
1.0 −0.65114 0.93636 0.17640
2.0 −0.57279 0.92749 1.74551

Table 4. Calculation of absolute error for f ′′(0), h(0), H(0).

Ha η = 5 η = 10 η = 20 η = 30 Percentage
(i) (ii) (iii) (iv) [(iv) − (iii)/(iv)]

1.5 f ′′(0) −0.78957 −0.78880 −0.77781 −0.77718 0.08106
h(0) 0.93049 0.93913 0.94284 0.94326 0.25656
H(0) 1.74589 1.75434 1.75987 1.76045 0.03295

2.5 f ′′(0) −0.92325 −0.92050 −0.91098 −0.91080 0.01976
h(0) 0.94089 0.94343 0.95006 0.95336 0.34614
H(0) 1.75876 1.76545 1.77332 1.77389 0.03213

Table 5. Grid-invariance test for velocity profile.

η∞ η ∆η = 0.04 ∆η = 0.02 ∆η = 0.01

10 0.6 0.74596 0.74403 0.74191
1.0 0.65401 0.65209 0.64998
2.0 0.55301 0.55195 0.55080

20 0.6 0.74598 0.74405 0.74193
1.0 0.65404 0.65212 0.65006
2.0 0.55308 0.55201 0.55086

field is to increase h(0) and H(0) whereas reverse effect is seen for skin friction
coefficient f ′′(0). The effect of electric field is to decrease h(0) and H(0),
whereas reverse trend is observed on f ′′(0). Table 3 also shows the effect of
thermal radiation on f ′′(0), h(0) and H(0). It is seen from this table that
the effect of increasing the value of Nr is to increase the value of f ′′(0) and
h(0) whereas its effect is to decrease the value of H(0). By analyzing this
table it is found that the effect of inverse Darcy number Da−1 is to decrease
the values of f ′′(0) whereas opposite effects are seen for h(0) and H(0). In
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Table 6. Grid-invariance test for temperature profile.

η∞ η ∆η = 0.04 ∆η = 0.02 ∆η = 0.01

10 0.6 0.46310 0.43807 0.40618
1.0 0.33189 0.30114 0.26561
2.0 0.13613 0.12368 0.10920

20 0.6 0.46309 0.43800 0.40618
1.0 0.33188 0.30113 0.26560
2.0 0.13611 0.12363 0.10918

Table 7. Grid-invariance test for concentration profile.

η∞ η ∆η = 0.04 ∆η = 0.02 ∆η = 0.01

10 0.6 1.29098 1.27349 1.26632
1.0 1.05221 1.03865 1.03270
2.0 0.64399 0.63607 0.63273

20 0.6 1.29115 1.27413 1.26648
1.0 1.05240 1.03883 1.03289
2.0 0.64428 0.63635 0.63301
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Figure 2. Variation of velocity profiles f ′

with η for different values of K.
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Figure 3. Variation of velocity profiles
f ′with η for different values of Ha.

all the tables from 4–7 and figures we have considered n = 0.5. Table 4,
represents the different values of skin friction coefficient f ′′(0), temperature
and concentration profiles for different values of Hartmann number. Here it
is seen that the percentage error is very negligible for skin friction coefficient,
temperature profile h(0) and concentration profile H(0). So from our findings
we can say that our numerical technique adopted in this paper is very efficient.
In Table 5, different values of velocity distributions are provided for different
grid sizes, in order to have a clear picture of the grid convergence. Thus it
is seen that the values of velocity distribution f ′(η) have very small changes
when the grid size is reduced for different values of η∞. Accordingly the similar
findings are recorded for temperature and concentration profiles in Table 6 and
Table 7.
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with η for different values of λ.
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Figure 5. Variation of velocity profiles f ′

with η for different values of E1.

In this section the influence of emerging physical parameters on velocity,
temperature and concentration profiles are shown graphically in Figs. 2–11.
Profiles for velocity distributions are plotted in Figs. 2–5. These results il-
lustrate the influence of various physical parameters on velocity profiles. The
values of f ′′(0), h(0) and H(0) have been checked with different values of η∞
and those values are chosen which gave no further changes in the values of
f ′′(0), h(0) and H(0) up to six decimal places. Hence the scheme used in this
paper is found to be suitable and accurate. Fig. 2 is plotted to discuss the
behaviour of velocity profiles for different values of material parameters K. It
is clear from this figure that an increase in the value of K leads to an increase
of the velocity profile. Fig. 3 displays results for the effect of velocity profile
for various values of the Hartmann number Ha. It is clearly observed from
this figure that the velocity profile decreases with increase in the value of the
Hartmann number. It is well known that the Hartmann number represents the
importance of magnetic field on the flow. The transverse magnetic field sets
a Lorentz force which results in retarding force on the velocity field. Hence,
when the Hartmann number increases the Lorentz force also increases due to
which velocity profiles decrease.

Fig. 4 is a plot of the variation of velocity profile for various values of λ in the
boundary layer. It can be clearly seen from this figure that the velocity profile
decreases till it matches the boundary condition at η = ∞ when λ = 0.1, 0.5,
whereas when λ > 1, the velocity profile increases and becomes constant far
away from the stretching sheet. Fig. 5 shows the velocity profiles for various
values of local electric field parameter. We note here that the presence of
local electric field parameter enhances the velocity in the boundary layer. The
analysis of the graph further reveals that the effect of local electric parameter
E1 is more prominently visible near the stretching boundary layer because
Lorentz force arising due to electric field acts as an accelerating force in reducing
fractional resistance which causes the velocity field to increase with electric
field. This figure also shows an exponential decrease in the velocity profile till
it satisfies the boundary condition at infinity.

Fig. 6 illustrates the variation of temperature profiles for various values of
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Figure 8. Variation of temperature
profiles with η for different values of Ha.
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Figure 9. Variation of temperature
profiles with η for different values of λ.

Prandtl number. From this figure it is seen that the temperature decreases
with increasing the values of Prandtl number Pr in the boundary layer. From
this plot, it is evident that temperature in the boundary layer falls very quickly
for large value of the Prandtl number because thickness of the boundary layer
decreases with increase in the value of the Prandtl number. Fig. 7 represents
the temperature profiles for various values of thermal radiation parameter Nr .
This figure indicates that the effect of thermal radiation is to enhance heat
transfer because of the fact that thermal boundary layer thickness increases
with increase in the thermal radiation parameter. Thus it is pointed out that
the radiation should be minimized to have the cooling process at a faster rate.
Fig. 8 depicts the effect of Hartmann number Ha on temperature profile. It is
observed from this plot that the temperature increases with increasing the value
of Hartmann number. Further, it is noted that the thermal boundary layer
thickness increases in the presence of transverse magnetic field. The reason
behind increase of temperature in the thermal boundary layer depends on the
fact that a body force (called Lorentz force) is produced which opposes the
motion in the presence of transverse magnetic field and the resistance offered
to the flow is responsible for increasing the temperature.
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Figure 10. Variation of concentration
profiles with η for different values of λ.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

K=0.22, Pr=0.71, Nr=0.2, Ha=0.1, E
S
=0.02,

E
1
=0.05, Gr

t
=0.2, Gr

C
=0.1, =0.01, =0.1 

H( )

 Sc=0.40
 Sc=0.66
 Sc=0.96

Figure 11. Variation of concentration
profiles with η for different values of Sc and

α = 0.1.

Fig. 9 shows the variation of temperature h(η) with η for several values of λ.
It is seen from this figure that the effect of λ is to reduce the temperature in the
thermal boundary layer which is due to the fact that increase in λ reduces the
thermal boundary layer thickness. The reduction in the thermal boundary layer
thickness in PHF case shows that it takes less time for cooling the stretching
sheet for large values of λ. Fig. 10 is the plot of concentration distribution for
various values of λ. As observed from this figure that concentration decreases
with increase in the value of λ due to the fact that increase in λ causes thinning
of the solutal boundary layer thickness. Similar effect is seen in Fig. 11 for the
increase in the value of Schmidt number Sc.

5 Conclusions

The present paper deals with analyzing the effect of thermal radiation on MHD
heat and mass transfer of a micropolar fluid near a stagnation point towards
a stretching surface with ohmic dissipation and prescribed heat flux. The gov-
erning boundary layer non-linear differential equations are solved numerically
by finite-difference method using quasi-linearization technique. Based on the
results and discussion section, following conclusions are drawn:

(i) The velocity increases with the increase in the value of Electric field pa-
rameter E1, material parameter K and stretching sheet parameter λ but
reverse trend is seen by increasing the Hartmann number Ha in PHF case.

(ii) The temperature decreases as there is increase in the value of Prandtl
number whereas opposite effect is seen by enhancing the value of thermal
radiation and magnetic field when stretching sheet parameter λ = 0.1.

(iii) The concentration decreases with increase of the value of the Schmidt
number Sc and stretching sheet parameter λ.

(iv) The skin friction coefficient decreases with increase in the value of Hart-
mann number whereas reverse trend is seen with increase in λ, Electric
field, E1 and thermal radiation parameter Nr .
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