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We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD) heat
andmass transfer 
ow of a steady viscous incompressible 
uid over a 
at plate. By using the one parameter groupmethod, similarity
transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead
of the usual boundary conditions of constant surface temperature or constant heat 
ux. In addition it is assumed that viscosity,
thermal conductivity, and concentration di�usivity vary linearly. Our study indicates that a similarity solution is possible if the

convective heat transfer related to the hot 
uid on the lower surface of the plate is directly proportional to (�)−1/2 where � is the
distance from the leading edge of the solid surface. Numerical solutions of the ordinary di�erential equations are obtained by the
Keller Box method for di�erent values of the controlling parameters associated with the problem.

1. Introduction

A review of the literature shows that to the best of our
knowledge not much research has been reported on MHD

ow over a 
at plate with convective surface boundary
conditions by applying the one parameter continuous group
method. For this problem we apply similarity transforma-
tions on the partial di�erential equations. 	e transformed
nonlinear coupled ordinary di�erential equations are solved
numerically by the Keller Box method for di�erent values of
controlling parameters.

Analysis of natural phenomena usually leads to partial
di�erential equations and nonlinear ordinary di�erential
equations. Nonlinear di�erential equations appear in physics,
appliedmathematics, and engineering sciences. Inmost cases
for these problems exact solutions cannot be obtained. One
of the most widely used applications of nonlinear di�erential
equations is boundary-layer problems. Fluid 
ow and heat

transfer are a relevant problem in many industrial processes
such as metal and polymer extrusion processes, glass-�ber
and paper production, manufacture and drawing of plastics
and rubber sheets, and crystal growing. Magnetohydrody-
namics (MHD) is the 
ow of an electrically conducting 
uid
in the presence of amagnetic �eld.	is e�ect is of importance
in various areas of technology and engineering such as
MHD 
ow meters, MHD power generation, and MHD
pumps [1–4]. 	e study of the interaction of conducting

uids with electromagnetic phenomena is important and
such problems have received much attention from many
researchers. Mukhopadhyay et al. [5], Andersson [6], Rashidi
et al. [7], and Parsa et al. [8] investigated the e�ect ofmagnetic
�eld over a stretching surface in various states. Numerical
results for MHD free convection 
ow over a wedge in the
presence of a magnetic �eld were presented by Watanabe
and Pop [9]. Kumari and Nath [10] studied unsteady MHD
viscous 
ow and heat transfer of Newtonian 
uids induced by
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an impulsively stretched plane surface in two lateral direc-
tions by employing the homotopy analysis method. Rashidi
et al. [1] solved the governing equations of suction and
injection e�ects on the free convection boundary-layer 
ow
over a vertical cylinder. In addition, a complete investigation
of MHD studies and their technological applications was
undertaken byMoreau [11]. Several interesting computational
studies of reactive MHD boundary-layer 
ows with heat and
mass transfer have appeared in recent years [12–15]. E�ects
of anisotropic scattering on steady nonsimilar free convective
radiative hydromagnetic boundary-layer 
ow over a di�use
re
ecting surface and solution of a separate equation for
the magnetic �eld distribution were presented by Chen [16].
Ishak [17] studied steady laminar boundary-layer 
ow and
heat transfer over a stationary permeable 
at plate immersed
in a uniform free streamwith convective boundary condition.
	e problem of a vertical plate with convective boundary
conditions was considered byMakinde [18]. Rashidi et al. [19]
presented the �rst and second law analyses of an electrically
conducting 
uid past a rotating disk in the presence of
a uniform vertical magnetic �eld by using the homotopy
analysis method (HAM) and then applied arti�cial neural
networks (ANN) and the particle swarm optimization (PSO)
algorithm to minimize the entropy generation.

	emain objective in this paper is to investigate similarity
solutions and scaling transformations of MHD heat and
mass transfer 
ow of a steady viscous incompressible 
uid
over a 
at plate with convective surface boundary conditions
by using the one parameter continuous group method. A
convective boundary condition instead of the commonly
used constant surface temperature or constant heat 
ux
boundary conditions is applied. 	e governing boundary-
layer equations are transformed to a two-point boundary
value problem in similarity variables, and the problem is
solved numerically by the Keller Box method. 	e e�ects of
governing parameters on 
uid velocity, temperature, and par-
ticle concentration are investigated and shown graphically.

2. Mathematical Formulation of the Problem

	e problem of two-dimensional steady MHD heat and
mass transfer laminar 
ow of a viscous incompressible and
electrically conducting 
uid past a 
at plate is considered.
	e � axis is taken along the plate and the � axis is normal
to the plate. 	e gravitation acceleration vector is parallel
to plate. A magnetic �eld of uniform strength �0 is applied
perpendicular to the direction of the plate. 	e viscosity,
thermal conductivity, and concentration di�usivity of 
uid
are assumed to vary linearly. 	e top surface of the plate
is kept at uniform temperature �� which is assumed to be
greater than the full stream temperature �∞. 	e species
concentration�� at the surface is uniform and the full stream
concentration is�∞.	e bottom surface of the plate is heated
by convection from a hot 
uid of temperature �� which
provides a heat transfer coe�cient ℎ�. 	e induced magnetic
�eld due to the motion of the electrically conducting 
uid
is negligible. 	is assumption is valid for small magnetic
Reynolds numbers. It is also assumed that the external
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Figure 1: Physical con�guration and the coordinate system.

electric �eld is zero and the electric �eld due to polarization
of charges is negligible. It is also assumed that the pressure
gradient and viscous and electrical dissipation are neglected.
	e physical con�guration and schematic of the problem are
shown in Figure 1. It is known that this is a type of Falkner-
Skan 
ow.

Furthermore the following assumptions are considered:
(i) 
uid has constant kinematic viscosity and thermal di�u-
sivity and the Boussinesq approximation may be adopted for
steady laminar 
ow, (ii) the particle di�usivity is constant,
(iii) the concentration of particles is su�ciently dilute that
particle coagulation in the boundary layer is negligible, and
(iv) the magnetic Reynolds number is small so that the
induced magnetic �eld is negligible in comparison with
the applied magnetic �eld. Under these assumptions the
governing Prandtl boundary-layer equations in dimensional
form are as follows (see Kays et al. [20] and White [21]):

�	
�� + �V

�� = 0, (1)

	�	
�� + V

�	
�� = 	� 
	�
� + 1

�∞
�
�� [
 (�) �	��]

+ ��� (� − �∞) + ��� (� − �∞)

− ��20
� (	 − 	�) ,

(2)

	���� + V

��
�� = 1

�∞��
�
�� [� (�) ����] , (3)

	���� + V

��
�� = �

�� (� (�) ���� ) , (4)

where 	 and V are the velocities in the � and � directions,
respectively, � is the temperature within the boundary layer,
�∞ is the temperature far away from the plate, � is the
species concentration, � is the acceleration due to gravity,
�� is the volumetric coe�cient of thermal expansion, �� is
the volumetric coe�cient of concentration expansion, � is
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the thermal conductivity, and � is the molecular di�usivity.
	e respective boundary conditions are

V = 0, 	 = �1 ] �	
�� , � = �� + �1 ���� ,

� = �� at � = 0, 	 �→ 	�, � �→ �∞,
� �→ �∞ as � �→ ∞,

(5)

where 	� is the velocity over the plate that should be in the
form 	� = ��	. 	is condition will be imposed later. 
(�),
�(�), and � (�) are variable viscosity, thermal conductivity,
and molecular di�usivity, respectively; the dimensions of

�1 are (velocity)−1 and the dimension of �1 is length. It
is assumed that the temperature dependent viscosity and
thermal conductivity vary linearly and are given by (see
Seddeek and Salem [22])


 (�) = 
∞ [1 + �1 (�� − �)] ,
� (�) = �∞ [1 + � (� − �∞)] ,

(6)

where 
∞ and �∞ are the constant undisturbed viscosity and
undisturbed thermal conductivity, �1 is a constantwith �1 > 0,
and � is a constant which depends on the 
uid. It is assumed
that the concentration di�usivity varies linearly and is given
by (see Seddeek and Salem [22])

�(�) = �	 [1 + � (� − �∞)] = �	 [1 + �
 %] , (7)

where�	 is the constant concentration di�usivity.
	e following dimensionless variables are introduced:

� = �
& , � = �

&Re
1/2, 	 = 	

'∞ , V = V

'∞Re
1/2,

* = � − �∞
�� − �∞ , % = � − �∞

�� − �∞ ,
(8)

where Re is the Reynolds number, & is the characteristic
length, * is the dimensionless temperature variable, and %
is the dimensionless concentration variable. Introducing the
stream function - such that 	 = �-/�� and V = −�-/��,
continuity equation (1) is satis�ed identically and (2)–(4) now
yield

Δ 1 ≡ �-
��

�2-
���� − �-

��
�2-
��2 − 	� 
	�
� − (3 + 4 (1 − *)) �

3-
��3

+ 4�2-
��2

�*
�� − � (�� − �∞) &

'2∞ ��*

− � (�� − �∞) &
'2∞ �� % + 5(�-

�� − 	�) = 0,

Δ 2 ≡ �-
��

�*
�� − �-

��
�*
�� − 1

Pr
[1 + 6*] �2*��2 −

1
Pr

6(�*
��)
2

= 0,

Δ 3 ≡ �-
��

�%
�� − �-

��
�%
�� − 1

Sc
[1 + �
%] �2%

��2

− 1
Sc

�
(�%
��)
2
= 0.

(9)

	e boundary conditions are

�-
�� = 0, �-

�� = 3�
2-
��2 , * = 1 + ��*�� ,

% = 1 at � = 0,
�-
�� �→ 	� (�) , * �→ 0, % �→ 0 as � �→ ∞.

(10)

In the above equations the parameters are de�ned as

Re = '∞&
]

, Sc = ]

�, 5 = ��20&
�'∞ ,

Pr = 
��
� , 4 = �1 (�� − �∞) ,

6 = � (�� − ��) , 3 = �1]
& √Re,

� = �1√Re

& , �
 = � (�� − �∞) ,

(11)

where Re is the Reynolds number, Sc is the Schmidt number,
5 is the magnetic parameter, Pr is the Prandtl number
of the 
uid, 6 is the thermal conductivity parameter, 4 is
the viscosity parameter, �
 is the concentration di�usivity
parameter, 3 is the velocity slip parameter, and � is the
thermal slip parameter.

3. Application of Group Transformations

Determining similarity solutions of (9)-(10) is equivalent
to determining invariant solutions of these equations under
a particular continuous one parameter group (Hamad et
al. [23] and Kandasamy et al. [24]). 	us we search for
a transformation group from the elementary set of one-
parameter scaling transformations as one of the techniques
that are de�ned by the following group which is called G1:

G1 : �∗ = �9�
1 , �∗ = �9�
2 , -∗ = -9�
3 ,
*∗ = *9�
4 , %∗ = %9�
5 , �∗� = ��9�
6 ,
�∗� = ��9�
7 , 	∗� = 	�9�
8 .

(12)

Here ;( ̸= 0) is a parameter of the group and the �’s are
arbitrary real numbers whose connection will be determined
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by our analysis. 	e transformations listed in (12) may
be treated as point transformations which transform the
coordinates

(�, �, -, *, %, ��, ��, 	�) to (�∗, �∗, -∗, *∗, %∗, �∗�, �∗�, 	∗� ) .
(13)

	e system (9)-(10) remains invariant under the group
transformationG1.Hencewe have the following relationships
among the parameters, namely,

2�3 − �1 − 2�2 = 2�8 − �1 = �3 − 3�2
= �3 − �2 = �3 + �4 − 3�2 = �8
= �4 + �6 = �5 + �7,

�3 + �4 − �1 − �2 = �4 − 2�2 = 2�4 − 2�2,
�3 + �5 − �1 − �2 = �5 − 2�2 = 2�5 − 2�2.

(14)

From boundary conditions (10), these will be invariant if

�2 − �3 = 2�2 − �3, −�4 = �2 − �4,
�5 = 0, �2 − �3 = −�8.

(15)

Solving (14) and (15), we obtain

�2 = �4 = �5 = 0, �1 = �3 = �6 = �7 = �8. (16)

With these relations the boundary conditions remain
invariant.

	e set of transformations G1 in (12) then reduces to

�∗ = �9�
1 , �∗ = �, -∗ = -9�
1 ,
*∗ = *, %∗ = %, �∗� = ��9�
1 , �∗� = ��9�
1 ,

	∗� = 	�9�
1 .
(17)

Using a Taylor series expansion in powers of ;, retaining
terms up to �rst order, and neglecting higher powers of ;
results in

�∗ − � = ;�1�, �∗ − � = 0,
-∗ − - = ;�1-, *∗ − * = 0,
%∗ − % = 0, �∗� − �� = ;�1��,
�∗� − �� = ;�1��, 	∗� − 	� = ;�1	�.

(18)

	e characteristic equations are


�
�1� = 
�

0 = 
-
�1- = 
*

0 = 
%
0 = 
��

�1�� = 
��
�1�� = 
	�

�1	� .
(19)

Solving the above characteristic equations gives

A = �, - = �B (A) , * = * (A) ,
% = % (A) , �� = ��0�, �� = ��0�,

	� = '∞�.
(20)

Substituting (20) into (9)-(10) yields

[1 + 4 (1 − *)] B��� + (B − 4*�) B�� − B�2
− 5(B� − 1) + 1 + Gr * + Gc % = 0,

[1 + 6 *] *�� + 6 *�2 + Pr B*� = 0,
[1 + �
 %] %�� + �
 %�2 + Sc B%� = 0.

(21)

Here Gr = �(�� − �∞)&��0/'2∞ and Gc = �(�� −
�∞)&�
0/ '2∞ are Grashof numbers based on temperature
and on concentration, respectively.

	e corresponding boundary conditions are

B (0) = 0, B� (0) = 3B�� (0) ,
* (0) = 1 + � *� (0) , % (0) = 1,

B� (∞) �→ 1, * (∞) �→ 0, % (∞) �→ 0.
(22)

To obtain a similarity solution for the energy equation,
the quantity �must be independent of � and for this to occur
the heat transfer coe�cient ℎ� must be directly proportional

to (�)−1/2.
3.1. Parameters of Physical Interest. We are interested in
the friction factor ��, Nusselt number Nu, and Sherwood
number Sh, respectively. Physically, �� indicates wall shear
stress and Nu indicates the rate of heat transfer whilst Sh
indicates the rate of mass transfer. 	ese quantities may be
conveniently determined from

�� = 

�'2∞(� 	

� �)
�=0

, Nu = −�
�� − �∞(��

��)
�=0

,

Sh = −�
�� − �∞(��

��)
�=0

.
(23)

By substituting (10) and (19) into (23), we obtain

Re1/2�� = [1 + 4 (1 − * (0))] B�� (0) ,
Re−1/2Nu = −*� (0) ,
Re−1/2Sh = −%� (0) .

(24)

From (24) it can be shown that the skin friction factor
��, the Nusselt number Nu, and the Sherwood number Sh

are proportional to the numerical values B��(0), −*�(0), and
−%�(0), respectively.
4. The Keller Box Method

Equation (21) subject to boundary conditions (22) is solved
numerically using a very e�cient �nite di�erence scheme
known as the Keller Box method. 	e details of this method
are described in Cebeci and Bradshaw [25] and Na [26]. For
more information refer to Keller [27, 28].
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Figure 2: E�ects of the viscosity parameter 4 and the magnetic
parameter5 on the dimensionless velocity.

5. Results and Discussion

Applying scaling group transformations to analyze the gov-
erning equations and the boundary conditions, the two
independent variables are reduced by one. Consequently the
governing equations reduce to a system of nonlinear ordinary
di�erential equations with the appropriate boundary condi-
tions. 	e transformed momentum, energy, and concentra-
tion equation (21) subject to the boundary conditions (22)
were solved numerically by using the Keller Box method.
We obtained velocity, temperature, and concentration pro�le
graphs for di�erent values of governing parameters.

Figures 2, 3, and 4 show the e�ects of the viscosity
parameter and the magnetic parameter on the velocity,
temperature, and concentration distributions, respectively.
	e velocity distribution decreases with increasing 4 and 5
whereas they have no signi�cant e�ect on the temperature
and concentration distributions. 	is behavior can be pre-
dicted from (21) and also the physical de�nition of parameters
4 and 5, since the viscosity and magnetic parameters only
appear in the momentum equation. Figures 5, 6, and 7 show
the e�ect of the thermal and mass Grashof numbers on
the velocity, temperature, and concentration distributions,
respectively. Physically, since the thermal Grashof number
(Gr) is the ratio of buoyancy to viscous forces in the boundary
layer, increasing its value suggests an increase in the buoyancy
forces relative to the viscous forces and this is clearly re
ected
in the progressive increase in the velocity of the 
ow. Increase
in the mass transfer Grashof number (Gc) yields a similar
e�ect on the velocity of the 
ow. Moreover, the reverse trend
is seen for the temperature and concentration distributions.
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Figure 3: E�ects of the viscosity parameter 4 and the magnetic
parameter5 on the dimensionless temperature.
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Figure 4: E�ects of the viscosity parameter 4 and the magnetic
parameter5 on the dimensionless concentration.

Figures 8, 9, and 10 illustrate the in
uence of the ther-
mal conductivity parameter 6 and Prandtl number Pr on
the velocity, temperature, and concentration distributions,
respectively. It is observed that the velocity and temperature
distributions increase with increasing thermal conductivity
parameter and decrease with increasing Prandtl number.
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Figure 6: E�ects of the thermal Grashof number Gr and the mass
Grashof number Gc on the dimensionless temperature.

	is is in agreement physically since the thermal boundary-
layer thickness decreases with increasing Pr. 	e thermal
conductivity parameter 6 and the Prandtl number Pr have no
signi�cant e�ect on the concentration distribution and this
can be predicted from (21). 	e e�ects of the concentration
di�usivity parameter �
 and the Schmidt number Sc on
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Figure 7: E�ects of the thermal Grashof number Gr and the mass
Grashof number Gc on the dimensionless concentration.
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Figure 8: E�ects of the thermal conductivity parameter 6 and the
Prandtl number Pr on the dimensionless velocity.

the velocity, temperature, and concentration distributions are
shown in Figures 11–13. 	e velocity and concentration dis-
tributions increase with increasing concentration di�usivity
parameter whereas they decrease with increasing Schmidt
number. Since Schmidt number is the ratio of viscosity to
di�usivity, this behavior can be predicted. From Figure 12,
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Figure 10: E�ects of the thermal conductivity parameter 6 and the
Prandtl number Pr on the dimensionless concentration.

the concentration di�usivity parameter and the Schmidt
number have no signi�cant e�ect on the temperature distri-
bution. In Figures 14–16 e�ects of the velocity slip parameter
(3) and the thermal slip parameter (�) are depicted. In
Figure 14 it is observed that velocity distribution increases
with increasing velocity slip parameter and decreases with
increasing thermal slip parameter. FromFigure 15 we observe
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Figure 11: E�ects of the concentration di�usivity parameter�
 and
the Schmidt number Sc on the dimensionless velocity.
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Figure 12: E�ects of the concentration di�usivity parameter�
 and
the Schmidt number Sc on the dimensionless temperature.

that as the velocity slip parameter and the thermal slip
parameter increase the temperature distribution decreases.
Figure 16 shows that the concentration distribution decreases
with increasing velocity slip parameter and increases with
increasing thermal slip parameter. In some of the velocity
pro�les an overshoot of the velocity pro�le is observed. 	is
depends on the boundary conditions. In other words, since
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Figure 13: E�ects of the concentration di�usivity parameter�
 and
the Schmidt number Sc on the dimensionless concentration.
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Figure 14: E�ects of the velocity slip parameter 3 and the thermal
slip parameter � on the dimensionless velocity.

there is not a no-slip condition on the plate, a larger velocity

rather than free stream velocity can exist inside the boundary

layer.With attention to boundary conditions (5) an overshoot

of the velocity is likely.

In Table 1 choosing 4 = 1.0, 6 = 1.0, �
 = 1.0, Sc = 1.0;
3 = 1.0, and � = 1.0, numerical values of B��(0), *�(0), and
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S = 1.0, Pr = 0.72,
Dc = 1.0 Sc = 1.0

Figure 15: E�ects of the velocity slip parameter 3 and the thermal
slip parameter � on the dimensionless temperature.
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Figure 16: E�ects of the velocity slip parameter 3 and the thermal
slip parameter � on the dimensionless concentration.

C�(0) are shown for di�erent values of the parameters Gr, Gc,
5, and Pr. Results of Figures 2–16 are veri�ed.

6. Conclusions

A numerical study based on the Keller Box method for
MHD heat and mass transfer 
ow of a steady viscous
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Table 1: Numerical results of B��(0), *�(0), and C�(0) for di�erent
values of the parameters Gr, Gc, 5, and Pr when 4 = 1.0, 6 = 1.0,
�
 = 1.0, Sc = 1.0; 3 = 1.0, and � = 1.0.
Gr Gc 5 Pr B��(0) −*�(0) −C�(0)
1 1 1 0.72 0.835798 0.33 0.51803

0 1 1 0.72 0.751505 0.32094 0.49805

2 1 1 0.72 0.912888 0.33783 0.53563

1 0 1 0.72 0.713589 0.31708 0.48958

1 2 1 0.72 0.947207 0.34088 0.54264

1 1 0 0.72 0.842129 0.33159 0.52146

1 1 2 0.72 0.833216 0.32895 0.51581

1 1 1 0.3 0.87512 0.23957 0.52956

1 1 1 1 0.820823 0.36801 0.51389

incompressible 
uid over a 
at plate has been performed. We
have investigated the e�ects of various governing parameters,
namely, the viscosity parameter 4, the magnetic �eld 5,
thermal Grashof number Gr, mass transfer Grashof number
Gc, thermal conductivity parameter 6, Prandtl number Pr,
concentration di�usivity parameter �
, Schmidt number Sc,
velocity slip parameter 3, and thermal slip parameter � on

ow �eld and heat transfer characteristics. 	e following
conclusions can be made.

(1) 	e thickness of the velocity boundary layer decreases
with an increase in viscosity parameter 4, magnetic
�eld5, Schmidt number Sc, and thermal slip param-
eter �.

(2) 	e thickness of the velocity boundary layer increases
with an increase in thermal Grashof number Gr, mass
transfer Grashof number Gc, thermal conductivity
parameter 6, concentration di�usivity parameter �
,
and velocity slip parameter 3.

(3) 	e thickness of the thermal boundary layer decreas-
es with an increase in thermal Grashof number Gr,
mass transfer Grashof number Gc, Prandtl number
Pr, velocity slip parameter 3, and thermal slip param-
eter �.

(4) 	e thickness of the thermal boundary layer increases
with an increase in thermal conductivity parameter 6.

(5) 	e thickness of the concentration boundary layer
decreases with an increase in thermal Grashof num-
ber Gr, mass transfer Grashof number Gc, Schmidt
number Sc, and velocity slip parameter 3.

(6) 	e thickness of the concentration boundary layer
increases with an increase in concentration di�usivity
parameter�
 and thermal slip parameter �.

Nomenclature

4: Viscosity parameter
3: Velocity slip parameter
�0: Strength of magnetic �eld
�: 	ermal slip parameter
�1: Constant

�: Concentration
�: Constant
��: Friction factor

�: Molecular di�usivity
�
: Concentration di�usivity parameter
�	: Constant concentration di�usivity
B: Dimensionless velocity functions
�: Gravitation acceleration
Gc: Grashof number based on temperature
Gr: Grashof number based on

concentration
ℎ: Heat transfer coe�cient
&: Characteristic length
5: Magnetic parameter
Nu: Nusselt number
Pr: Prandtl number
Re: Reynolds number
6: 	ermal conductivity parameter
Sc: Schmidt number
Sh: Sherwood number
�: Temperature
	: Velocity in �-direction
	�: Velocity over the plate
V: Velocity in �-direction
�: Distance along the plate
�: Distance normal to the plate.

Greek Letters

�: 	ermal conductivity
��: Volumetric coe�cient of concentration expansion
��: Volumetric coe�cient of thermal expansion
%: Dimensionless concentration
A: Similarity variable

: Dynamic viscosity
*: Dimensionless temperature
�: 	ermal conductivity
�: Density of 
uid
-: Stream function.

Subscript and Superscript

B: Fluid
D: Plate
∞: Conditions far away from the plate
�: Di�erentiation with respect to A.
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