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ABSTRACT

Context. Accretion disks and astrophysical jets are used to model many active astrophysical objects, such as young stars, relativistic
stars, and active galactic nuclei. However, existing proposals for how these structures may transfer angular momentum and energy
from disks to jets through viscous or magnetic torques do not yet provide a full understanding of the physical mechanisms involved.
Thus, global stationary solutions have not explained the stability of these structures; and global numerical simulations that include
both the disk and jet physics have so far been limited to relatively short time scales and narrow (and possibly astrophysically unlikely)
ranges of viscosity and resistivity parameters that may be crucial to defining the coupling of the inflow-outflow dynamics.
Aims. We present self-consistent, time-dependent simulations of supersonic jets launched from magnetized accretion disks, using
high-resolution numerical techniques. In particular we study the effects of the disk’s magnetic resistivity, parametrized through
an α-prescription, in determining the properties of the inflow-outflow system. Moreover we analyze under which conditions steady
state solutions of the type proposed in the self-similar models of Blandford & Payne can be reached and maintained in a self-consistent
nonlinear stage.
Methods. We used the resistive MHD FLASH code with adaptive mesh refinement (AMR), allowing us to follow the evolution of the
structure on a long enough time scale to reach steady state. A detailed analysis of the initial configuration state is given.
Results. We obtain the expected solutions within the axisymmetric (2.5 D) limit. Assuming a magnetic field around equipartition
with the thermal pressure of the disk, we show how the characteristics of the disk-jet system, such as the ejection efficiency and the
energetics, are affected by the anomalous resistivity acting inside the disk.

Key words. accretion, accretion disks – ISM: jets and outflows – galaxies: jets – magnetohydrodynamics (MHD) –
methods: numerical

1. Introduction

Astrophysical jets are an important component in many active
astrophysical objects from young stellar objects (YSO) to rela-
tivistic stars and galactic nuclei. In particular, Herbig-Haro (HH)
outflows are detected in stellar forming regions around T Tauri
stars, characterized mainly by optical emission line spectra (e.g.
Reipurth & Bally 1996). On a much larger scale, relativistic ra-
dio jets are accelerated in the innermost cores of active galactic
nuclei (AGN) (e.g. Giovannini 2004): their emitting component
is synchrotron relativistic electrons, with a cold proton compo-
nent or, most likely, a Poynting flux electromagnetic component
(De Young 2006).

Despite being characterized by extremely different space,
time, and energy scales, it is commonly accepted that all these
systems derive their energy from accretion onto a central ob-
ject (Livio 1999), and the physical origin of these supersonic
outflows has been related to the dynamical evolution of magne-
tized accretion disks around a deep gravitational well. Even if
the acceleration and collimation mechanisms of jets are still not
clear, some basic models have been proposed and shown to be

successful (for fairly recent reviews see Pudritz et al. 2006a for
YSO and Ferrari 1998, 2004 for AGN). The overall idea is to
extract energy and angular momentum from the accreting matter
and to feed it into a plasma that is accelerated in two opposite
directions along the rotation axis of the disk. Lovelace (1976)
and Blandford (1976) independently proposed that this can be
done by electromagnetic forces. In particular Blandford & Payne
(1982) derived a steady state MHD solution for an axisymmet-
ric, magnetocentrifugally driven outflow from a Keplerian disk;
for the outflow to be launched, the poloidal magnetic field lines
must be inclined less than 60◦ with respect to the plane of the
accretion disk. On the other hand, Sauty & Tsinganos (1994),
Sauty et al. (2002, 2004) have derived meridionally self-similar
models to study the launching mechanism from the hot corona
of the central object.

The magnetocentrifugal mechanism has been the subject of
a series of numerical studies (Ustyugova et al. 1999; Ouyed &
Pudritz 1997; Krasnopolsky et al. 1999; Anderson et al. 2004;
Fendt 2006; Pudritz 2006b) based on ideal MHD simulations in
which the disk is treated as a boundary condition. On one hand,
they show how a steady solution can be obtained on a few
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dynamical time scales and how the acceleration, collimation, and
stationarity of the outflow depend on the mass loading from the
disk and on the magnetic field structure. On the other hand, the
back reaction of the outflow on the disk cannot be taken into
account.

When the structure of the magnetized accretion disk is in-
cluded self-consistently in the models, a diffusive mechanism
must be introduced inside the disk to balance the shearing due
to differential rotation and the inward advection of field lines.
Moreover, viscous torques, which can transport angular momen-
tum radially inside the disk itself, also should be taken into ac-
count. For instance, Königl (1989), Wardle & Königl (1993), and
Li (1996) have studied the structure of an ambipolar diffusion-
dominated disk, connecting it with a Blandford & Payne solution
on the disk surface. Ogilvie & Livio (2001) solved the vertical
structure of a thin (optically thick) magnetized disk, taking into
account an effective α turbulent viscosity and resistivity.

In a series of papers including turbulent α resistivity
(Ferreira & Pelletier 1995; Ferreira 1997), viscosity (Casse
& Ferreira 2000a), and entropy generation (Casse & Ferreira
2000b), the authors calculate radially self-similar stationary so-
lutions of accretion-ejection structures. Two important features
emerge clearly from these models. First of all it was shown that,
in order to balance the magnetic and gravitational compression
on the disk itself, the thermal energy must be around equiparti-
tion with the magnetic energy inside the disk. With these condi-
tions, the vertical thermal pressure gradient is the only force that
can push the mass on the surface of the disk to be accelerated
in the outflow. Second, the magnetic torque must change sign
at the disk surface, in order to extract angular momentum from
the disk and transfer it to the outflow. This condition determines
a strong constraint on the resistive configuration: the magnetic
diffusivity must be rather high (α ∼ 1) and anisotropic, the diffu-
sion of the poloidal field being smaller than the diffusion of the
toroidal component.

The first time-dependent numerical simulations in which the
structure of the magnetized accretion disks is included (Uchida
& Shibata 1985, or more recently Kato et al. 2002) showed that
the interaction between a geometrically-thin rotating disk and
a large-scale magnetic field that was initially uniform and ver-
tical creates a transient state in which a strong toroidal field is
generated that expels matter in the direction perpendicular to the
disk plane (“sweeping magnetic twist mechanism”). One of the
limits of these models is that the short simulated time scales and
the ideal MHD approximation lead to the formation of a tran-
sient and highly unstable outflow. Moreover, the low density
contrast between the disk and the surrounding corona assumed
in Uchida & Shibata (1985) enables the disk to lose its angular
momentum on a very short time scale. These works have been
recently updated in Kuwabara et al. (2005) who studied the evo-
lution of a thick magnetized torus assuming a constant resistivity
throughout the computational domain. Even if the presence of
such a high and uniform resistivity must be justified, the authors
show a quasi-stationary outflow launched from the inner radii of
the torus.

Up to the present, the best effort to produce an accretion-
ejection structure recurring in time-dependent simulations has
been performed by Casse & Keppens (2002, 2004), who showed
how a quasi-stationary jet can be launched from the equipar-
tition regions of a resistive accretion disk. On the other hand,
their resistive configuration, isotropic with α = 0.1, is rather dif-
ferent from the one predicted by the self-similar steady models
(Casse & Ferreira 2000a). Despite the use of a stretched grid, the

resolution of these simulations is rather low, and it is likely that
numerical dissipative effects are very important.

In the present paper we present a numerical study of re-
sistive MHD axisymmetric accretion-ejection structures, per-
formed with the high resolution code FLASH using adaptive
mesh refinement. The aim of the paper is to simulate the disk-jet
configuration over long time scales to determine the effects of
different configurations of an α resistivity, by varying its value
and its degree of anisotropy, in determining the properties of the
system. Moreover, we want to test whether a stationary state cor-
responding to the Blandford & Payne self-similar solution can
be reached and maintained. A critical point in the simulation
is of course the choice of the initial configuration, in particular
the magnetic configuration and the equilibrium of the disk. We
solved an analytic self-similar equilibrium configuration of the
disk including gravitational, centrifugal, thermal pressure, and
Lorentz forces, a solution that also defines the initial magnetic
field. We do not include physical viscosity: as has been shown
both in stationary (Casse & Ferreira 2000a) and time-dependent
contexts (Meliani et al. 2006) the viscous torque is less effi-
cient, for conventional values of the disk turbulence (α ∼ 0.1−1,
Prandtl number ∼1), than the magnetic in extracting angular mo-
mentum from the disk.

This paper is organized as follows. Section 2 is dedicated to
illustrating the equations and the numerical code used, and the
initial configuration and the boundary conditions are discussed
in detail. In Sect. 3 the numerical simulations are presented for
different magnetic diffusivities and anisotropies. These parame-
ters are linked to the mass accretion rate, required torque, and
liberated accretion energy. The acceleration mechanisms at the
disk boundary and far above the disk are discussed, also re-
ferring to the established current circuits. The jet ejection effi-
ciency is discussed in Sect. 4 in relation to the accretion rates.
In Sect. 5 we discuss the angular momentum transport, and in
Sect. 6 the energy budget of the inflow/outflow system is eval-
uated. In Sect. 7 we test whether one of our cases can be char-
acterized as a stationary solution. Comments about the effect of
Ohmic dissipation in the disk are given in Sect. 8. Finally, Sect. 9
summarizes our results and puts them in the context of other
analytical and numerical models.

2. The numerical model

2.1. MHD equations

We model the interaction between an accretion disk and the mag-
netic field that threads it within a resistive MHD framework. The
system of equations that we solve numerically therefore conveys
the conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

where ρ is the mass density and u the flow speed. The momen-
tum equation is

∂ρu

∂t
+ ∇ ·

[

ρuu +

(

P +
B · B

2

)

I − BB

]

+ ρ∇Φg = 0, (2)

where P is the thermal pressure and B is the magnetic field. This
equation takes into account the action of thermal pressure gradi-
ents, Lorentz forces, and gravity as determined by the potential

Φg = −GM/
√

r2 + z2 representative of the gravitational field of
a central object of mass M. The evolution of the magnetic field
is determined by the induction equation (Faraday’s law):

∂B

∂t
+ ∇ × E = 0, (3)
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where the electric field E is determined by the Ohm’s law
E = −u × B + ¯̄ηJ . Notice that the equations are written in
a non-dimensional form, hence without 4π and µ0 coefficients.
The electric current J appearing in the Ohm’s relation is deter-
mined by Ampere’s law J = ∇ × B. The magnetic resistivity ¯̄η
is indicated as a two-tensor to take anisotropic diffusive effects
into account. In our simulations we will consider a diagonal re-
sistivity tensor ηi j whose non-zero components are ηφφ = ηm and
ηrr = ηzz = η

′
m.

Finally the conservation of energy is expressed by

∂e

∂t
+∇ ·

[(

e + P +
B · B

2

)

u−(u · B) B + ¯̄ηJ × B

]

= −Λcool, (4)

where the total energy density

e =
P

γ − 1
+
ρu · u

2
+

B · B
2
+ ρΦg

is given by the sum of thermal, kinetic, magnetic and gravita-
tional energy. Here, γ = 5/3 is the polytropic index of the gas,
and Λcool is a cooling term defined by the parameter 0 < f < 1:

f =
Λcool

Λdiss

(5)

given by the ratio between the specific radiated energy and the
Ohmic heating term Λdiss = ¯̄ηJ · J . The parameter f therefore
determines the fraction of magnetic energy that is radiated away
instead of being dissipated locally inside the disk, thereby in-
creasing its entropy. Finally the system of equations is closed by
the equation of state of ideal gases P = nKT where n = ρ/mp

(mp being the proton mass) is the number density of the gas, T its
temperature, and K the Boltzmann constant.

To solve the resistive MHD system of Eqs. (1)–(4), we em-
ploy a modified version of the MHD module provided with
the public code FLASH1 (Fryxell et al. 2000) developed at the
ASC FLASH Center at the University of Chicago, adopting its
AMR capabilities. The simulations were carried out in 2.5 di-
mensions, that is, in cylindrical geometry in the coordinates r,
z assuming axisymmetry around the rotation axis of the disk-
jet system. The algorithm implemented belongs to the class of
high-resolution Godunov schemes that are those best-suited to
studying supersonic flows. We therefore used a linear recon-
struction of primitive variables with a minmod limiter on pres-
sure and flow speed and a Van Leer limiter on density and on
the magnetic field components. Second order accuracy in time
is obtained thanks to an Hancock predictor step on the prim-
itive variables, while to compute the fluxes needed to update
the conservative variables, we implemented an HLLE solver,
which is an approximate linearized Riemann solver that assumes
a priori a two-wave configuration for the solution. To control the
solenoidality of the magnetic field (∇·B = 0), the eight-wave ap-
proach (Powell et al. 1999) was used, which is known for simply
advecting the monopoles, while a parabolic diffusion operator
(Marder 1987; see also Dedner et al. 2002) was added to the in-
duction equation to diffuse them. We finally ensured an angular
momentum conserving form of the φ component of the momen-
tum equation Eq. (2) and we used a form of the φ component of
the induction equation Eq. (3) that conserves the poloidal current
flux.

1 FLASH is freely available at http://flash.uchicago.edu

2.2. Initial conditions

In the initial setup of our simulations, we model a disk rotat-
ing with a slightly sub-Keplerian speed threaded by an initially
purely poloidal magnetic field. The initial disk model is derived
by imposing equilibrium between the forces initially intervening
inside the disk, namely, gravity, centrifugal force, thermal pres-
sure gradients, and Lorentz force. The disk setup is therefore
a solution of the following system of equations:

∂P

∂z
= −ρ

∂Φg

∂z
− JφBr (6)

∂P

∂r
= −ρ

∂Φg

∂r
+ JφBz +

ρu2
φ

r
· (7)

The system of Eqs. (6)–(7) can be easily solved in separable vari-
ables assuming radial self-similarity. With this assumption, all
the physical quantities U are given by the product of a power law
for r with a function of the variable x = z/r

U = U0

(

r

r0

)βU

fU

(

z

r

)

, (8)

where z = 0 corresponds to the midplane of the disk. In this
expression, fU is an even function, such that fU (0) = 1, or an odd
function, such that fU (0) = 0, depending on the symmetry of the
variable with respect to the midplane of the disk. For the physical
quantities that have an even symmetry (P, ρ, ur, uφ, Bz), U0

therefore represents their value at r = r0, z = 0.
Self-similarity requires that all the characteristic speeds,

namely sound and Alfvén speed, and flow speeds should scale
as the Keplerian velocity (∝r−1/2) on the midplane of the disk.
Also imposing a polytropic relation between the disk density and
pressure, that is, P = P0 (ρ/ρ0)γ, the power law coefficients βU

are determined as follows:

βuφ = βur
= βuz

= −1/2 βP = −5/2
βBr
= βBz

= −5/4 βρ = −3/2.

The initial poloidal magnetic field has been set through the flux
function Ψ to ensure the solenoidality of the field:

Ψ =
4

3
Bz0r2

0

(

r

r0

)3/4
m5/4

(

m2 + z2/r2
)5/8
· (9)

The components of the field, obtained thanks to the simple
relations

Bz =
1

r

∂Ψ

∂r
Br = −

1

r

∂Ψ

∂z

obviously fulfill the self-similarity requirements. The parame-
ter m determines the height scale on which the initial magnetic
field bends, where a value m → ∞ gives a perfectly vertical
(Br = 0) field.

Given the poloidal magnetic field, the vertical equilibrium
Eq. (6) can be numerically solved to give the vertical profiles
of disk density ( fρ) and pressure ( fP = f

γ
ρ ). On the other hand,

the radial equilibrium Eq. (7) can be solved to determine the
disk rotation speed uφ. The solution will therefore depend on the
following non-dimensional parameters:

ǫ =
cs

VK

∣

∣

∣

∣

∣

z=0

=

√

p

ρ

r

GM

∣

∣

∣

∣

∣

∣

z=0

, (10)

which is the ratio between the sound speed cs =
√

P/ρ and the

Keplerian rotation speed VK =
√

GM/r evaluated on the disk
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midplane. This quantity determines the disk thermal height
scale H through the relation H = ǫr (see Frank et al. 2002;
Ferreira & Pelletier 1995). The magnetization parameter is de-
fined as

µ =
B2

2P

∣

∣

∣

∣

∣

∣

z=0

, (11)

which gives the ratio between the magnetic and thermal pressure
evaluated on the disk midplane. The disk rotation velocity at the
midplane is slightly sub-Keplerian, with the deviation depending
on the parameters (ǫ, µ, and m):

uφ
∣

∣

∣

z=0
=

[

1 − 5

2
ǫ2 − 2ǫ2µ

(

5

4
+

5

3m2

)]

√

GM

r
· (12)

The toroidal velocity decreases towards the disk surface, and it
falls to zero where the radial Lorentz force balances the gravita-
tional pull and the thermal pressure gradient.

For the components of the magnetic diffusivity tensor ¯̄η act-
ing in the disk, we adopt an α prescription (Shakura & Sunyaev
1973) in the same vein as Ferreira (1997 and related works) and
Casse & Keppens (2002, 2004). Despite being a common way
to parametrize the transport coefficients inside an accretion disk,
the origin of this anomalous diffusivity is still being debated.
One of the most promising hypotheses states that the anomalous
transport has a turbulent origin, triggered by some disk instabil-
ity, the magneto-rotational instability (MRI, Balbus & Hawley
1998) the most accredited one. The ηφφ = ηm component is
parametrized as follows:

ηm = αm VA|z=0 H exp

(

−2
z2

H2

)

, (13)

where αm is a constant parameter, VA|z=0 =
(

Bz/
√
ρ
)

∣

∣

∣

∣

z=0
is

the Alfven speed calculated on the disk midplane, and H =

(cs/ΩK)|z=0 is the thermal height scale of the disk. In the simula-
tions, both the Alfven speed and H are allowed to evolve in time.
The other components of the diffusivity tensor ηrr = ηzz = η

′
m are

assumed to be proportional to ηm through an anisotropy param-
eter χm, which is the inverse of the analogous parameter intro-
duced by Ferreira & Pelletier (1995):

χm =
η′m
ηm

· (14)

A ratio χm = 1 indicates an isotropic resistive configuration.
We recall that the presence of an effective resistivity inside the
disk allows the magnetic field to break the “frozen-in” condition
and the matter to slip through the field lines. The component ηm,
therefore indicated as poloidal resistivity, allows the flow to slip
through the field in the poloidal plane while η′m, indicated as
toroidal resistivity, controls the diffusion of the toroidal compo-
nent of the field.

In a steady situation the accretion motion should be consis-
tent with the poloidal magnetic field configuration, as stated by
the poloidal induction equation in its stationary form

uzBr − urBz = ηmJφ, (15)

which expresses the balance between the advection and the dif-
fusion of the poloidal magnetic field. Therefore we initially im-
pose an accretion flow inside the disk solving Eq. (15) with the
condition uz =

z
r
ur. Due to the self-similarity requirements, the

radial accretion speed scales initially as the Keplerian speed on
the midplane of the disk:

ur |z=0 = −αm (2µ)1/2 ǫ2
(

5

4
+

5

3m2

)

√

GM

r
· (16)

As the poloidal resistivity ηm exponentially decreases towards
the disk surface, the initial accretion flow cancels out outside
the disk.

It must be pointed out that in the initial conditions, since
there is no toroidal magnetic field, there is no mechanism of
angular momentum transport that can support the initial accre-
tion flow: the angular momentum transport associated with the
toroidal field will be triggered by torsional Alfvén waves due to
the differential rotation between the midplane and the surface of
the disk. Moreover, since we will assume a magnetic field around
equipartition with the thermal energy on the midplane of the disk
(see Sect. 2.5), the time scale on which the transport of angular
momentum will become effective, given by the Alfvén crossing
time of the disk thickness, is comparable to the local period of
rotation of the Keplerian disk and to its epicyclic frequency.

On top of the disk we prescribe a hydrostatic, spherically
symmetric atmosphere for which we impose, as for the disk,
a polytropic relation between pressure Pa and density ρa: Pa =

Pa0 (ρa/ρa0)γ. The density and pressure distribution are therefore
given by

ρa = ρa0

(

r0

R

)
1
γ−1

Pa = ρa0

γ − 1

γ

GM

r0

(

r0

R

)
γ

γ−1

, (17)

where ρa0 is the value of the atmosphere density at the spherical
radius R = r0. The initial position of the disk surface is located
where the disk and atmosphere pressures are equal. The initial
position of the disk surface is therefore determined by its tem-
perature, defined by ǫ, by the field intensity µ, its inclination,
given by the parameter m, and by the density contrast between
the disk and the corona ρa0/ρ0.

2.3. Units and normalization

Since in the formulation of the problem we did not introduce any
specific physical scale, the system of Eqs. (1)–(4) and the initial
conditions presented in Sect. 2.2 can be normalized in arbitrary
units. The results will be therefore presented in non-dimensional
units.

Lengths will be given in units of r0, corresponding approx-
imatively to the inner truncation radius of the disk. Speeds will
be expressed in units of the Keplerian speed VK0 =

√
GM/r0 at

r = r0, and the densities in units of ρ0, which is the disk initial
density at r = r0, z = 0. Assuming for r0 the following units,
appropriated for YSO or AGN systems,

r0 = 0.1 AU (YSO)

= 10 RSchw = 10−4

(

M

108 M⊙

)

pc (AGN) (18)

where RSchw = 2GM/c2 is the Schwarzschild radius, the
Keplerian speed VK0 is given by

VK0 = 94

(

M

M⊙

)1/2 (
r0

0.1 AU

)−1/2

km s−1 (YSO)

= 6.7 × 104

(

r0

10RSchw

)−1/2

km s−1 (AGN). (19)
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Correspondingly, time is expressed in units of t0 = r0/VK0:

t0 = 1.7

(

M

M⊙

)−1/2 (
r0

0.1 AU

)3/2

days (YSO)

= 0.5

(

M

108 M⊙

) (

r0

10 RSchw

)3/2

days (AGN). (20)

Expressed in units of t0, the Keplerian period of rotation at the
inner radius of the disk r0 is equal to 2π.

Finally the normalization density ρ0 can be chosen by deter-
mining a suitable mass accretion rate unit Ṁ0 = r2

0
ρ0VK0:

Ṁ0 = 3 × 10−7

(

ρ0

10−12 g cm−3

) (

M

M⊙

)1/2 (
r0

0.1 AU

)3/2

M⊙ yr−1

= 9

(

ρ0

10−12 g cm−3

) (

M

108 M⊙

)2 (
r0

10 RSchw

)3/2

M⊙ yr−1 (21)

where, as customary, the first expression corresponds to YSO
and the second to AGN objects. The values of accretion and
outflow mass rates will be presented in non-dimensional units,
and they must be multiplied by the Ṁ0 factor of Eq. (21) to ob-
tain their physical value. Similarly torques and powers that are
shown subsequently will be given in units of J̇0 = r3

0
ρ0V2

K0
and

Ė0 = r2
0
ρ0V3

K0
, respectively:

J̇0 = 3 × 1038

(

ρ0

10−12 g cm−3

) (

M

M⊙

)

(

r0

0.1 AU

)2

dyne cm

=1.2×1051

(

ρ0

10−12 g cm−3

)(

M

108 M⊙

)3(
r0

10 RSchw

)2

dyne cm (22)

Ė0 = 1.9 × 1033

(

ρ0

10−12 g cm−3

) (

M

M⊙

)3/2 (
r0

0.1 AU

)1/2

erg s−1

=2.6×1046

(

ρ0

10−12 g cm−3

)(

M

108 M⊙

)2(
r0

10 RSchw

)1/2

erg s−1. (23)

Again, the first equations must be used for YSO while the second
for AGN systems.

2.4. Boundary conditions

Besides restricting our study to axisymmetric structures, we also
assume that the system is symmetric with respect to the midplane
of the disk. The computational domain therefore covers a rect-
angular region with a radial extent [0, 40r0] and a size along
the z direction equal to [0, 120r0]: axisymmetry is imposed on
the rotation axis r = 0, while planar symmetry is imposed on
the disk midplane z = 0. Besides choosing suitable boundary
conditions on the outer sides of the domain, an inner boundary
must be placed inside the computational box in order to avoid the
singularity of the potential well and of the initial setup at the ori-
gin of the axis. We therefore define a rectangular box with a size
r × z = [0, r0] × [0, 0.5r0] that is excluded from the computation
and on whose sides boundary conditions must be set.

On the outer right boundary (r = 40r0), “outflow” condi-
tions, that is zero-gradient, are imposed on thermal pressure,
density, and poloidal velocity components. On one disk’s ther-
mal height scale (z < Hr), the value of the radial velocity in
the ghost zones is set to the extrapolated value only if nega-
tive and zero otherwise. In this way we avoid any outflow of
matter without imposing the mass accretion rate, which will be

determined by the dynamical evolution of the system. The con-
tinuity of the first derivative is required for uφ, Bz, Bφ too. The
condition on Br is determined by imposing the solenoidality of
the field, ∇ · B = 0, on the last cell of the domain with a first-
order approximation. On the outer upper boundary (z = 120r0),
“outflow” conditions are imposed on all the variables except
for Bz whose boundary values are determined to satisfy the
∇ · B = 0 requirement.

We decided to prescribe the continuity of the first derivative
of some variables in the radial direction since the power-law be-
havior of the initial conditions along r (see Eq. (8)) determines
strong gradients of the physical quantities on the rightmost
boundary. This boundary condition above all affects the radial
component of the Lorentz force Fr

Fr = −
1

2

∂B2
φ

∂r
−

B2
φ

r
−

1

2

∂B2
z

∂r
+ Bz

∂Br

∂z
(24)

and therefore the collimation of the outflow. First of all, it is
easy to see that a zero-gradient condition on the toroidal mag-
netic field component Bφ cancels the pressure gradient of the
magnetic pressure (first term on the right hand side of Eq. (24))
while the pinching force −B2

φ/r (second one) is still present.

An outflow condition on Bφ on the right outer boundary thus
enforces the collimation due to the toroidal field. This issue has
been widely discussed by Ustyugova et al. (1999) who proposed
to use a “force-free” condition, where the poloidal electrical cur-
rent is parallel to the magnetic field, in order to remove artifi-
cial forces originating at the boundaries. Seen from the point of
view of electrical currents, a zero-gradient condition on Bφ cor-
responds to having a negative collimating current component Jz

flowing along the right boundary, while stationary models of
accretion-ejection structures show that, in the outer part of the
disk, the current flows out from it and pushes the flow along
the field lines without collimating it (see Fig. 13 in Ferreira
1997). The continuity of the first derivative of Bφ at the right-
most boundary allows a gradient of magnetic pressure associated
with Bφ to develop, which can counteract the toroidal pinch and
generate an outflowing positive current Jz.

Even if the effects are less pronounced, the continuity of the
first derivative of Bz on the rightmost boundary also affects the
collimation of the structure. A pressure gradient directed out-
wards associated with Bz (third term on the right hand side of
Eq. (24)) counteracts the poloidal field tension (fourth term),
thus producing slightly less collimated structures.

On the other hand, we noticed that the choice of an “out-
flow” condition for the toroidal field on the upper boundary did
not affect the behavior of the outflow as much as the condition
on the right boundary. We did not notice a huge difference be-
tween the “outflow” condition, where the poloidal current has
only a z component, and the “force-free” condition proposed by
Ustyugova et al. (1999), where the poloidal current is parallel to
the poloidal field.

At the inner boundaries located on the edges of the rectangu-
lar region r × z = [0, r0] × [0, 0.5r0], we adopted a similar strat-
egy. On the r = r0 side we extrapolated all the physical quan-
tities imposing the continuity of the first derivative except for
the poloidal components of the velocity field, for which a zero-
gradient condition was used, and for the radial component of the
magnetic field, which is required to fulfill the∇·B = 0 condition.
On the z = 0.5r0 side we imposed an “outflow” condition on all
the variables except for the z component of the field, determined
by imposing the solenoidality of the field. All the details on the
simulation performed are given in the next section.
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Table 1. Initial parameters of the simulations.

Simulation αm χm f Ṁ/Ṁ0 J̇/J̇0 Ė/Ė0 Resolution

1 0.1 1 1 7.3 × 10−3 1.4 × 10−2 3.3 × 10−3 512 × 1536

2 0.1 1 1 7.3 × 10−3 1.4 × 10−2 3.3 × 10−3 128 × 384

3 0.1 1 0 7.3 × 10−3 1.4 × 10−2 3.3 × 10−3 512 × 1536

4 1 1 1 7.3 × 10−2 1.4 × 10−1 3.3 × 10−2 512 × 1536

5 1 3 1 7.3 × 10−2 1.4 × 10−1 3.3 × 10−2 512 × 1536

6 1 3 0 7.3 × 10−2 1.4 × 10−1 3.3 × 10−2 512 × 1536

2.5. The simulations

Once they are normalized with the units given in Sect. 2.3,
the initial conditions presented in Sect. 2.2 depend on 6 non-
dimensional parameters: the ratio between the sound speed and
the Keplerian speed at the disk midplane ǫ, the disk magnetiza-
tion parameter µ, the magnetic height scale of the initial field m,
the strength of magnetic diffusivity αm and its anisotropy co-
efficient χm, the ratio between the initial atmosphere and disk
densities ρa0/ρ0. All the free parameters except those describing
the diffusive properties of the disk will be the same for all the
simulations. We therefore assume a parameter ǫ = 0.1, which
fixes the initial thermal height scale and temperature T on the
midplane of the disk, that is,

T |z=0 = ǫ
2

mpGM

Kr
= 104

(

ǫ

0.1

)2
(

M

M⊙

)

(

r
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)−1

K

= 5 × 109
(

ǫ

0.1

)2
(

r

10 RSchw

)−1

K. (25)

The initial structure of the magnetic field is determined by fix-
ing the magnetization parameters µ = 0.3 and m = 0.35, which
therefore gives a magnetic height scale 3.5 times higher than the
initial thermal height scale of the disk. We recall that a value of
magnetization around equipartition or slightly below it is gener-
ally required both in numerical (see Zanni et al. 2004; Casse &
Keppens 2002) and analytical (Ferreira 1997; Casse & Ferreira
2000a) modeling of accretion disks launching jets. This condi-
tion is determined by the equilibrium between thermal pressure
gradients, which vertically support the disk and are responsible
for the initial mass loading the field lines, and Lorentz forces,
which tend to pinch the disk. The magnetization parameter µ
fixes the initial value of the poloidal magnetic field on the disk
midplane:

B|z=0 =
√

µ 8π P
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)1/2( ǫ
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)1/2(
r
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)−5/4

G. (26)

Finally we assumed a density ratio between the corona and the
disk ρa0/ρ0 = 10−4.

In order to investigate the effects of magnetic resistivity,
we performed a series of simulations varying the value of the
αm parameter and the anisotropy factor χm. The summary of
all the simulations performed is given in Table 1. From the
second to the eighth column, we show the poloidal resistiv-
ity parameter αm, the anisotropy of magnetic resistivity χm,
the cooling parameter f , the initial accretion rate Ṁ/Ṁ0, the
torque J̇/J̇0 needed to support the accretion rate between ri = r0

and re = 10r0, the accretion energy Ė/Ė0 liberated between the
same radii, and the equivalent resolution of the adaptive grid.

Isotropic resistive configurations (χm = 1) have been studied
for two different values of the αm parameter: αm = 0.1 (simu-
lation 1), which corresponds to the magnetic resistivity adopted
by Casse & Keppens (2002, 2004), and αm = 1 (simulation 4).
To determine the effects of an anisotropic resistivity, required
by the steady models of Ferreira & Pelletier (1995), we per-
formed a simulation characterized by αm = 1 and χm = 3 (sim-
ulation 5): the parameters αm, χm, µ, and ǫ of this simulation
are typical of the cold self-similar solutions found by Casse &
Ferreira (2000a).

For these standard simulations, the adaptive mesh provided
with FLASH is set up with 7 levels of refinement based on blocks
of 8 × 8 square cells, giving an equivalent resolution of 512 ×
1536 points, which is kept fixed in the disk region (z < 3ǫr) and
around the inner boundary rectangle, while the grid is free to
change and adjust the resolution in the outflow region. In order
to determine the importance of numerical diffusive effects in our
simulations, we repeated the case characterized by an isotropic
αm = 0.1 with a resolution four times lower than the usual one,
thus increasing the numerical dissipative effects (simulation 2).
For this simulation the adaptive grid is allowed to reach a maxi-
mum equivalent resolution of 128 × 384 points, while maintain-
ing the higher one (512 × 1536 points) around the central inner
boundary. The resolution of this test case is similar to the one
adopted by Casse & Keppens (2002, 2004).

This first set of four simulations is characterized by a cool-
ing factor f = 1 (Eq. (5)), which implies that all the magnetic
energy Ohmically dissipated is radiated away. We therefore re-
peated simulations 1 and 5 assuming a cooling factor f = 0 to
study the effects of the Ohmic heating in the case of a lower
(simulation 3) and higher resistivity (simulation 6). The results
presented in Sects. 3–7 will refer to the “cold” cases character-
ized by f = 1, while a few comments on the “heated” f = 0
simulations will be done in Sect. 8.

In the fifth column of Table 1 we also show the mass accre-
tion rate that we imposed at the beginning of our simulations, re-
calling that this initial rate is determined by balancing diffusion
and advection of the poloidal field inside the disk. Obviously,
energy and angular momentum must be extracted from the ac-
cretion flow to support this accretion rate: in the sixth and sev-
enth columns of the same table we also show the torque J̇ and the
power Ė liberated in the accretion between ri = r0 and re = 10r0.
The values of J̇ and Ė are given with a good approximation by:

J̇ = Ṁ
(√

GMre −
√

GMri

)

(27)

Ė = Ṁ

(

GM

2ri

− GM

2re

)

. (28)
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Fig. 1. Time evolution of density maps (in logarithmic scale) of the simulation characterized by (αm = 1, χm = 3, f = 1). Time is given in units
of t0 (see text). In these units the Keplerian period at the inner radius of the disk r = r0 is equal to 2π. Superimposed are sample magnetic field
lines: the distance between the field lines is proportional to the intensity of the field. In the last panel (t = 400) the critical Alfvén (dashed line)
and fast-magnetosonic (dotted line) surfaces are also plotted.

Fig. 2. Same as Fig. 1 but for the case characterized by (αm = 0.1, χm = 1, f = 1).

3. Production of jets from magnetized accretion

disks

All the simulations were carried on up to a time t = 400 that
corresponds to ∼63 periods of rotation of the disk at its inner
radius. On the other hand, the final time t = 400 corresponds
to only 0.25 rotations at the outer boundary r = 40r0. It is very
unlikely that the outer part of the disk has reached an equilib-
rium stage at the end of the simulation. Therefore the study of
the accretion-ejection system will be restricted mainly to the in-
ner part of the disk (r < 10r0, see Sect. 4) and to the outflow
coming from it. In all the cases studied we observed a robust
outflow emerging from the underlying accretion disk, and the
solutions show a hollow jet, where the central hole corresponds
to the “sink” region r < r0. The outflows are not completely
collimated at the end of the runs; that is, some matter is flow-
ing out from the computational box from the outer cylinder at
r = 40r0. Nevertheless in all the solutions, the part of the outflow

coming from the inner part of the disk crosses the Alfvénic
and fast-magnetosonic critical surfaces inside the domain (see
Figs. 1 and 2). Since no disturbance produced in the super-fast
region of the outflow can propagate upstream towards the accre-
tion disk, this condition obviously ensures that the outer bound-
ary conditions do not affect the launching region of this part of
the outflow. On the other hand, perturbations can still propagate
in a transversal direction to the magnetic field lines: if the fast-
Mach cones at the boundaries intersect the computational box,
the boundary conditions can still affect the radial structure and
therefore the collimation of the outflow (see Ustyugova et al.
1999), as already discussed in Sect. 2.4. To overcome the prob-
lem of the influence of boundary conditions on the launching
phase, Krasnopolsky et al. (2003) and Anderson et al. (2004) re-
strict the launching of the wind to a narrow region of the inner
accretion disk and choose an initial magnetic configuration so as
to contain the entire fast-magnetosonic critical surface inside the
computational domain. The closed shape of the critical surfaces
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observed in the cited papers characterizes those solutions more
as “X-winds” (Shu et al. 1994), which are wide-angle outflows
from the corotation radius of a stellar magnetosphere, while the
almost conical shape of the critical surfaces of our solutions is
typical of extended disk-winds. Moreover, on one hand it can-
not be taken for granted that an underlying accretion disk can
support the magnetic structure and provide the mass load im-
posed as a boundary condition by the authors; on the other hand,
it has been shown (Ferreira et al. 2006) that “X-winds” have
kinematic properties that are inconsistent with observations of
T Tauri microjets.

The structure of the magnetic field allows two classes of so-
lutions to be distinguished. The cases characterized by αm = 1
show an “ordered” magnetic configuration at the end of the
computation (Fig. 1), while the poloidal field lines are strongly
warped and distorted if αm = 0.1 (Fig. 2). An exception is rep-
resented by the case performed with a lower resolution, since it
does not present the characteristic field inversions despite having
a small resistivity parameter αm = 0.1 (Fig. 3). This anomalous
behavior can be reasonably ascribed to the higher numerical dis-
sipation determined by the lower resolution.

Other differences can be noticed in Figs. 1 and 2: in the more
diffusive case the jet is asymptotically less dense than in the less
diffusive one. Both outflows become super-Alfvenic and super-
fast-magnetosonic, but in the αm = 0.1 simulation both charac-
teristic surfaces lie closer to the disk.

Despite these morphological differences between the more
and less dissipative cases, the mechanism that drives the out-
flows from the disk is qualitatively the same. In the following
section we make a few general considerations about the forces
that determine both the accretion and the ejection flow.

3.1. Acceleration mechanism

Since the accretion-ejection mechanism is mainly magnetically
driven, it is worth explicitly writing the Lorentz forces acting on
the disk-jet system. Following Ferreira (1997), we decompose
the Lorentz force F = J × B in the directions parallel and per-
pendicular to the poloidal field:

Fφ =
Bp

r
∇‖
(

rBφ
)

F‖ = −
Bφ

r
∇‖
(

rBφ
)

F⊥ = −
Bφ

r
∇⊥
(

rBφ
)

+ JφBp, (29)

where Bp is the poloidal magnetic field, while∇‖ and∇⊥ indicate
the derivatives parallel and perpendicular to the poloidal field,
respectively. These expressions show clearly that the poloidal
component of the Lorentz force associated with the toroidal
field is perpendicular to the isosurfaces rBφ = const., which
are the surfaces along which the poloidal electric current flows.
Moreover, they show that the component parallel to the poloidal
field F‖ and the toroidal one Fφ are linked by the simple relation
(see also Casse & Keppens 2002, 2004):

F‖ = −
Bφ

Bp

Fφ (30)

(notice that the toroidal field Bφ assumes negative values in our
simulations). This clearly shows that a poloidal current-field
configuration that accelerates the outflow along the field lines
(F‖ > 0) is also accelerating the plasma in the toroidal direction
(Fφ > 0) thus providing an additional centrifugal force. This

Fig. 3. Density map (logarithmic scale) at t = 400 of the same simula-
tion shown in Fig. 2 performed with four times smaller resolution.

represents the core of the so-called magneto-centrifugal mecha-
nism, where the magnetic energy stored in the toroidal field at
the base of the outflow both accelerates the plasma along the
field lines and increases its angular momentum, thus providing
a centrifugal acceleration. As stated by the above relation, the
relative importance of the two mechanisms, poloidal and cen-

trifugal acceleration, is given by the ratio
∣

∣

∣Bφ
∣

∣

∣ /Bp. When the
toroidal field is stronger than the poloidal one, the gradient of Bφ
along the field lines is the main accelerating mechanism; instead,

if
∣

∣

∣Bφ
∣

∣

∣ /Bp < 1 the plasma tends to corotate with the mainly
poloidal magnetic field and the centrifugal force is dominant.

The conditions are reversed inside the accretion disk. As
in a unipolar inductor, a radial electric current develops inside
the conducting plasma, thus providing a toroidal force −JrBz

that slows the rotation down. According to Eq. (30), since
the Lorentz force brakes the matter in the toroidal direction,
a poloidal pinching also occurs. Therefore, since the disk is ver-
tically pinched by the gravity, as well as by the magnetic pres-
sure, only the thermal pressure gradient can ensure a quasi-static
vertical equilibrium, gently lifting the accreting matter towards
the surface of the disk where it can be accelerated to form the
outflow. As pointed out in Ferreira (1997), the transition from
accretion to ejection can therefore be achieved if the sign of the
magnetic torque Fφ changes sign at the disk surface in order to
provide a magnetic acceleration.

This scenario is confirmed by our simulations. In Fig. 4 we
plot, at the end of our simulations, the total force, given by the
sum of gravity, Lorentz force, and thermal pressure gradient, act-
ing along the z direction on the disk height scale. These curves
are obtained by averaging inside the region r0 < r < 10r0 for
the cases (αm = 1, χm = 3, f = 1), (αm = 1, χm = 1, f = 1)
and (αm = 0.1, χm = 1, f = 1). Along each line we also indicate
the location of the points where the magnetic torque and the to-
tal z-component of the Lorentz force change sign. It is possible
to notice that in all the solutions shown, the total force changes
sign when the disk is still pinched and braked by the magnetic
field so it is the vertical thermal pressure gradient that provides
the first vertical acceleration turning the accretion motion into
an outflow. The magnetocentrifugal mechanism becomes effec-
tive only in correspondence of the triangles, where the plasma is
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Fig. 4. Total force acting on the disk height scale along the z direction
for the cases (αm = 1, χm = 3, f = 1, solid line), (αm = 1, χm = 1,
f = 1, dotted line) and (αm = 0.1, χm = 1, f = 1, dashed line). Along
the curves the points are also indicated where the magnetic torque (tri-
angles) and the z component of the Lorentz force(squares) change sign.
The curves are calculated at t = 400.

accelerated both in the toroidal direction and along the poloidal
field lines.

Significant differences can be noticed between the three
cases shown: decreasing the value of the poloidal or the toroidal
magnetic diffusivity the location of the points where the total
force and the magnetic torque change their sign are located at
lower height scales. A possible explanation for this behavior can
be found in Ferreira (1997) who shows that to change the sign
of the magnetic torque it is in fact necessary that the radial cur-
rent Jr responsible for the braking of the disk decreases verti-
cally on a disk scale height. It has been shown that in a stationary
situation the radial current falls off on a height scale proportional

to
√

α2
mχm (see Eq. (B1) in Ferreira 1997). Consistent with our

simulations, the change of sign of the torque therefore occurs at
a higher z/H when the value of αm or the anisotropy factor χm

are increased. A second noticeable difference is that, while in
the two higher diffusivity cases (αm = 1) the torque changes
sign when the disk is still pinched by the poloidal magnetic pres-
sure, it changes above this point in the αm = 0.1 simulation. In
this case the z-component of the Lorentz force provides an ad-
ditional source of mass loading before the magnetocentrifugal
effect becomes effective.

Another important difference between these three simula-
tions is shown in Fig. 5, where we plot a radial average of
the ratio between the toroidal and poloidal fields |Bφ|/Bp along
the outflows of the three cases. According to Eq. (30), these
curves show that the centrifugal effects are stronger when the
magnetic diffusivity is anisotropic, while for a low diffusivity
the toroidal field pressure gradient is the dominant accelerat-
ing force. Moreover, the increase in this ratio with z shows that,
while near the disk surface the centrifugal force is effectively
contributing to the acceleration of the outflow, it becomes negli-
gible far from it.

3.2. Current circuits

A suitable way to understand how the accretion-ejection mech-
anism works is to analyze the circulation of the poloidal current
in the disk-outflow system. In Fig. 6 we show the poloidal cur-
rent circuits superimposed on density maps in logarithmic scale
at t = 400. Sample field lines and the poloidal speed vectors
are also plotted; the left panel refers to the (αm = 0.1, χm = 1,

Fig. 5. Average ratio between the toroidal and poloidal magnetic fields
along the outflows of the simulations characterized by (αm = 1, χm = 3,
f = 1, solid line), (αm = 1, χm = 1, f = 1, dotted line), and (αm = 0.1,
χm = 1, f = 1, dashed line). The curves are calculated at t = 400.

Fig. 6. Poloidal current circuits (solid thin red lines) at t = 400 of the
cases (αm = 0.1, χm = 1, f = 1, left panel) and (αm = 1, χm = 3,
f = 1, right line). Plotted are also sample poloidal field lines (solid
thick yellow lines) and the poloidal speed vectors. In the background
density maps in logarithmic grayscale are shown.

f = 1) case and the right one to the (αm = 1, χm = 3, f = 1) sim-
ulation. The current circuits are given by the rBφ = const. iso-
surfaces: the poloidal currents circulate counter-clockwise and
the Lorentz forces are directed outwards perpendicular to the
closed circuits. As discussed before, a strong radial positive cur-
rent flows along the disk midplane, thus providing a braking and
vertically pinching force. At the disk surface the current changes
direction until a force component accelerating the plasma along
the poloidal field appears.

Some differences can be noticed between the two panels.
Due to a strong advection determined by the accretion flow, the
poloidal field lines are much more inclined inside the disk in
the less diffusive case (left panel), thus providing a vertically di-
rected magnetic tension which mass loads the outflow as it was
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Fig. 7. Three-dimensional rendering of density at t = 130 for the cases (αm = 0.1, χm = 1, f = 1, left panel) and (αm = 1, χm = 3, f = 1, right
panel). We also plotted four sample magnetic field lines wrapped around the same magnetic surface.

shown in Fig. 4 (see the position of the square symbol along
the dashed line). Moreover, it is possible to see that the different
shape of the current circuits, together with the higher inclination
of the poloidal field lines, develops in the αm = 0.1 a strong
vertical Lorentz force which strongly bends the field lines, as
already shown in Fig. 2.

This effect is even more evident if we look at a three-
dimensional rendering of the two simulations discussed here. In
Fig. 7 we show a 3D rendering of density maps in logarithmic
scale for the two cases (αm = 0.1, χm = 1, f = 1, left panel)
and (αm = 1, χm = 3, f = 1, right panel) at a time t = 130.
It is possible to see that, in the more diffusive case, the field
lines are gently wrapped around the magnetic surfaces. On the
other hand, in the αm = 0.1 simulation the footpoints of the field
lines are advected towards the central object, not balanced by
a strong enough diffusion. A strong differential rotation along
the field line therefore appears, the footpoint of the line rotat-
ing much faster than its opposite end and a strong toroidal field
develops at the footpoint, which gives the strong force directed
vertically shown in Fig. 6 that completely distorts the field lines.
The mainly toroidal feature visible in the left panel of Fig. 7
propagates vertically along the outflow axis similar to a “mag-
netic tower” (Li et al. 2001; Lynden-Bell 2003). Moreover this
mechanism is not transient, repeating itself on every field line
when its footpoint is advected towards the faster rotating central
part of the disk. Since the αm = 0.1 simulation at a low resolu-
tion shows a magnetic configuration similar to the right panel of
Fig. 7, it is possible to speculate that the higher numerical diffu-
sion can actually balance the advection of the footpoints so that
no strong differential rotation along the field lines is present.

Thanks to the current circuits shown in Fig. 6, we can also
better understand how the toroidal field can act to collimate the
outflow against the push of the centrifugal force of the rotating
jet. It is in fact usually assumed that the self-generated toroidal
field can automatically ensure the collimation of the outflow
through the so-called “hoop stress” due to the magnetic tension

of the field and equal to −B2
φ/r. What emerges clearly from both

the panels of Fig. 6 is that in the outer part of the outflow, where
the currents flow out from the disk with a positive Jz compo-
nent, the Lorentz force associated with the toroidal field pushes
the plasma outwards, thus uncollimating the jet. In fact, in this
situation the outward directed pressure gradient of the toroidal
field is stronger than the collimating tension. It must be pointed
out that the shape of the electric current circuits opposing the
collimation of the outer layers of the outflow strongly depends
on the outer boundary conditions on Bφ, as already discussed in
Sect. 2.4. On the other hand, this behavior is not just a numerical
artifact, because the current circuits of our simulations have the
typical butterfly-like shape of analytical models of disk-winds
(see Fig. 13 in Ferreira 1997). The outflow starts to be colli-
mated where the circuit closes back with a negative Jz compo-
nent so that the “hoop stress” exceeds the pressure gradient. As
the poloidal velocity vectors in Fig. 6 show, only the inner part
of the outflow in our solutions is almost cylindrically collimated
inside the computational domain.

4. Accretion rates and ejection efficiency

After having analyzed the acceleration and collimation mech-
anisms, we now take into account the accretion and outflow
rates that characterize our solutions. In Fig. 8 we plot for all the
four simulations in which we suppressed the Ohmic heating, the
accretion rates Ṁa at t = 400, defined as

Ṁa = −2πr

∫ 1.6H

−1.6H

ρur dz

as a function of the cylindrical radius r, where H(r) is the ther-
mal height scale of the disk defined as H = (cs/ΩK)|z=0. This
integral is calculated up to 1.6H, where the magnetic diffusivity
defined by Eq. (13) becomes negligible and the plasma, now in
an ideal MHD regime, should flow out from the disk almost par-
allel to the poloidal magnetic field. It is possible to see that, for
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Fig. 8. Radial dependence of the accretion rates at t = 400. The plots
refer to the cases with the Ohmic heating suppressed ( f = 1): (αm = 1,
χm = 3 solid line), (αm = 1, χm = 1 dotted line), (αm = 0.1, χm = 1
dashed line), and (αm = 0.1, χm = 1, low resolution dot-dashed line
line). For the two high-diffusivity cases a power-law approximation (see
text) is also plotted (long-dashed line).

all the curves shown, the accretion rate has a sudden decrease for
r >∼ 10, due to the fact that the outflow is efficiently extracting
mass and angular momentum only for r < 10, which is therefore
identified as the “launching region”. As already pointed out in
Sect. 3 the outer part of the disk has still not reached a dynami-
cally relevant time scale at the end of our simulations and there-
fore had no possibility of fully developing an outflow. Moreover,
the flow from the inner radii of the accretion disk becomes super-
fast-magnetosonic inside the computational domain, and there-
fore the “launching region” will not be affected by the outer
boundary conditions. We can therefore define a control volume
delimiting this part of the disk by an inner cylinder of radius
ri = 1 and height −1.6H(ri) < z < 1.6H(ri) and by an outer
cylinder of radius re = 10 and height −1.6H(re) < z < 1.6H(re).
These surfaces are indicated as Si and Se respectively. Above
the disk the control volume is closed at the surface determined
by the height scale 1.6H(r) between ri = 1 and re = 10. This
surface is indicated as Ss.

The four cases shown in Fig. 8 are characterized by a differ-
ent outer accretion rate (calculated through Se, i.e. at re = 10).
When the poloidal resistivity parameter αm or the anisotropy co-
efficient χm are increased, the outer accretion rate, indicated as
Ṁae, becomes smaller. It is evident also that in the cases char-
acterized by αm = 0.1 the accretion rate is at least one order of
magnitude higher than the initial one (see Table 1), which was
determined to balance the advection and the diffusion of poloidal
field lines inside the disk. It is therefore clear that the advection
of the field should dominate in these cases, thus explaining the
peculiar dynamical effects of the αm = 0.1 simulations shown
in the previous section. Despite this high accretion rate, we re-
call that the low resistivity case at low resolution does not show
these features, thus supporting the idea that the strong advection
is balanced by a high numerical diffusion.

Besides being characterized by a different Ṁae, the solu-
tions also show a different slope of the accretion rate inside the
“launching region”. This slope is clearly linked to the amount of
mass that is extracted from the disk and goes into the outflow. By
defining a simplified power-law radial behavior for the accretion
rate (Ferreira & Pelletier 1995)

Ṁa(r) = Ṁae

(

r

re

)ξ

Fig. 9. Temporal evolution of the ejection efficiency. The plots refer to
the cases (αm = 1, χm = 3 solid line), (αm = 1, χm = 1 dotted line),
(αm = 0.1, χm = 1 dashed line), and (αm = 0.1, χm = 1, low resolution
dot-dashed line line).

we can find, when imposing mass conservation inside the accre-
tion disk, a simple relation between the ejection efficiency and
the ejection parameter ξ:

2Ṁj

Ṁae

= 1 −
(

ri

re

)ξ

· (31)

Here the ejection efficiency 2Ṁj/Ṁae is defined as the ratio of
the mass outflow from the disk surface Ss and the outer accre-
tion rate calculated at re = 10. The factor 2 takes the two bipolar
jets into account. It is easy to see that the higher the ejection ef-
ficiency, the higher the ejection parameter ξ and the steeper the
slope of the accretion rate. In Fig. 9 we plot the ejection effi-
ciency 2Ṁj/Ṁae as a function of time for the four simulations
taken into account in this section; and it is possible to see that
after an initial transient, this efficiency reaches an almost con-
stant value, suggesting the attainment of a stationary final state.
On the other hand, the solutions reach different efficiency values,
increasing from 20% for the (αm = 1, χm = 3) case to 55% for
the (αm = 0.1, χm = 1) simulation. This result is consistent with
the plot in Fig. 4, where we show that the forces acting vertically
inside the disk change sign at lower height scales in less diffu-
sive cases. Since the disks become denser towards the midplane,
this also determines a higher outflow rate. As usual the low resis-
tivity case at low resolution shows an anomalous behavior with
an ejection efficiency typical of the αm = 1 cases. Moreover,
the direct correlation is clear between the ejection rate and the
ratio |Bφ|/Bp as plotted in Fig. 5. This means that the main mech-
anism accelerating the outflow depends strongly on the outflow
rate. The less mass-loaded jets are efficiently centrifugally accel-
erated, while in the more loaded jets the higher inertia strongly
bends the magnetic field in the azimuthal direction right above
the disk surface. As stated by Eq. (30), the outflow is therefore
accelerated mainly by the pressure gradients of the toroidal field
(see also Anderson et al. 2004).

Consistently the solutions characterized by a higher ejection
efficiency show a steeper slope for the accretion rate as shown
by Eq. (31). As an example, in Fig. 8 we plotted the power-laws
calculated solving Eq. (31) for ξ for the cases (αm = 1, χm = 3)
and (αm = 1, χm = 1). The ejection parameters ξ calculated for
these two cases are ξ = 0.09 and ξ = 0.17, respectively.
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Fig. 10. Temporal evolution of the jet torque 2J̇jet (left panel), of the ratio between the jet and accretion torque 2J̇jet/J̇acc (central panel), and of the

ratio between the jet magnetic and mechanical torque J̇jet,mag/J̇jet,kin (right panel). The plots refer to the cases (αm = 1, χm = 3 solid line), (αm = 1,
χm = 1 dotted line), αm = 0.1, χm = 1 dashed line), and (αm = 0.1, χm = 1, low resolution dot-dashed line line).

5. Angular momentum transport

It is commonly accepted that disk winds are a viable mechanism
for extracting angular momentum from accretion disks without
resorting to viscous torques to allow accretion. In this section we
show how the bipolar jets can extract angular momentum from
the underlying disk and through which channel.

The angular momentum transport is regulated by the angu-
lar momentum flux through the surface delimiting the control
volume defined in Sect. 4. We can therefore define an accretion
torque J̇acc = J̇acc,kin+J̇acc,mag defined by the sum of the two terms

J̇acc,kin =

∫

Si

riρuφu · dS −
∫

Se

reρuφu · dS (32)

and

J̇acc,mag =

∫

Si

riBφB · dS −
∫

Se

reBφB · dS. (33)

For the accretion torque we use a positive sign if it increases
the angular momentum contained inside the control volume and
a negative sign if it extracts it. The term J̇acc,kin defines the flux
of angular momentum inside the control volume due to the ac-
cretion motion, while J̇acc,mag is the magnetic torque that can
transport angular momentum along the radial direction inside
the disk. This magnetic torque represents a small contribution
to J̇acc: in all of our simulations the ratio J̇acc,mag/J̇acc,kin is always
negligible, around −10%. A small fraction of the disk angular
momentum is also extracted by the magnetic torque radially,
thus helping accretion. On the other hand, the main contribution
to J̇acc,kin is given by the integral on the outer radius, where both
the accretion rate and the specific angular momentum of the disk
are higher. Assuming a Keplerian rotation, a reasonable approx-
imation for J̇acc is therefore given by (see also Eq. (28)):

J̇acc ∼ Ṁae

√

GMre. (34)

In the same way, we can define the torque exerted by the outflow
on the disk J̇jet = J̇jet,kin+ J̇jet,mag as the sum of the flux of angular

momentum J̇jet,kin and of the magnetic torque J̇jet,mag at the disk
surface:

J̇jet,kin =

∫

Ss

rρuφu · dS (35)

and

J̇jet,mag =

∫

Ss

rBφB · dS. (36)

For the jet torque we use a positive sign if it extracts angular
momentum from the disk.

The accretion and the jet torque should be equal in a steady
situation: 2J̇jet = J̇acc. Using the approximation made in Eq. (34),
the relation

Ṁae

√

GMre ∼ 2J̇jet (37)

shows clearly that the accretion rate at the outer radius of the
launching region re is mainly controlled by the torque exerted
by the outflow on the accretion disk. In the left panel of Fig. 10,
we plot the temporal evolution of the total torque 2J̇jet exerted
by the bipolar jets of the four simulations performed without
Joule heating: the correlation is clear between the outer accre-
tion rate shown in Fig. 8 and the jet torque plotted here, as stated
by Eq. (37). The high accretion rate of the αm = 0.1 cases,
which determines the peculiar behavior of these solutions, is
determined by the high torque exerted by the jet, at least ten
times higher than the torque needed to maintain the initial rate
(see Table 1). The curves plotted in the left panel of Fig. 10
show a slow decrease in time, thus suggesting that our solu-
tions did not reach a final steady state. On the other hand, the
ratio 2J̇jet/J̇acc, plotted in the central panel of Fig. 10, stays ap-
proximatively constant in time and equal to one, after an ini-
tial transient, which shows that the accretion rate of the disk re-
acts quickly to the slowly varying jet torque, thus suggesting that
our simulations are evolving through a series of quasi-stationary
states.

Even if the outflows of the different simulations are exert-
ing almost the same torque (left panel, Fig. 10), being a fac-
tor two smaller just in the case characterized by a high and
anisotropic magnetic diffusivity, the ratio between the mag-
netic J̇jet,mag and the mechanical torque J̇jet,kin shows notice-
able differences (right panel in Fig. 10). The ratio goes from
a value around unity for the less dissipative case (αm = 0.1,
χm = 1) up to a value >∼4 for the (αm = 1, χm = 3) simula-
tion. Once again, we point out that the low resistivity simulation
at low resolution behaves like a higher resistivity case, show-
ing J̇jet,mag/J̇jet,kin ∼ 4. This quantity has an easy interpretation:
the angular momentum extracted from the disk is in fact stored
initially in the toroidal magnetic field and is then transferred
starting from the disk surface to the outflowing plasma, which
is therefore centrifugally accelerated. The ratio J̇jet,mag/J̇jet,kin is
therefore a measure of the efficiency of the magneto-centrifugal
mechanism. The higher this ratio, the more specific angular mo-
mentum is available at the disk surface, centrifugally accelerat-
ing the plasma to higher poloidal terminal speeds (see Sect. 6).

6. Energy budget of the disk-jet system

In this section we finally study the energetics of the disk-jet sys-
tem. To study the energy balance of our simulations we consider
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Fig. 11. Temporal evolution of the accretion power Ėacc (left panel); the ratio between the jet and accretion power 2Ėjet/Ėacc and the ratio between

the radiated and accretion power 2Ėjet/Ėacc (central panel); the ratio between the jet magnetic and kinetic power Ėjet,mag/Ėjet,kin (right panel). The
plots refer to the cases (αm = 1, χm = 3 solid line), (αm = 1, χm = 1 dotted line), (αm = 0.1, χm = 1 dashed line), and (αm = 0.1, χm = 1, low
resolution dot-dashed line line).

Table 2. Values of the different contributions to the total accretion
power Ėacc calculated at t = 400.

Simulation
Ėacc,mec/Ėacc Ėacc,mag/Ėacc Ėacc,thm/Ėacc(αm, χm)

(0.1, 1) 0.97 0.14 –0.11
(0.1, 1) low r. 1.29 0.09 –0.38
(1, 1) 0.97 0.10 –0.07
(1, 3) 0.99 0.05 –0.04

the energy fluxes through the surfaces of the control volume
defined in Sect. 4. We then define an accretion power Ėacc =

Ėacc,mec + Ėacc,mag + Ėacc,thm given by the sum of the terms:

Ėacc,mec =

∫

Si

(

u2

2
+ Φg

)

ρu · dS −
∫

Se

(

u2

2
+ Φg

)

ρu · dS (38)

Ėacc,mag =

∫

Si

E × B · dS −
∫

Se

E × B · dS (39)

Ėacc,thm =

∫

Si

γ

γ − 1
Pu · dS −

∫

Se

γ

γ − 1
Pu · dS (40)

where Ėacc,mec, Ėacc,mag and Ėacc,thm represent the mechanical (ki-
netic + gravitational), Poynting, and enthalpy flux through the
cylindrical surfaces at the external and internal radius of the
launching region. For the accretion power we use a positive sign
if it increases the energy contained inside the control volume.
In the left panel of Fig. 11 we plot the temporal evolution of
the total accretion power, while in Table 2 we show the different
contribution to Ėacc at t = 400 for the cases considered in this
section. In the table the simulations are characterized by their
diffusivity parameters αm and χm). We can see that the dominant
term is always the mechanical power liberated in the accretion.
The Poynting flux slightly increases the total energy contained
in the control volume, while the enthalpy flux always acts to de-
crease the accretion power, advecting the thermal energy at the
inner radius. It is important to notice that the simulation with
a low magnetic diffusivity performed at a lower resolution (sec-
ond line) shows a higher enthalpy flux due to the higher numer-
ical dissipation. Neglecting the enthalpy and the magnetic con-
tribution and assuming a Keplerian rotation, the energy liberated
by accretion can be safely approximated by (see also Eq. (28)):

Ėacc ∼ Ṁai

GM

2ri

− Ṁae

GM

2re

· (41)

This approximation shows that the liberated power is mainly de-
termined by the inner accretion rate, and the values of Ėacc of

Table 3. Values of the different contributions to the total jet power Ėjet

calculated at t = 400.

Simulation
Ėjet,kin/Ėjet Ėjet,grv/Ėjet Ėjet,mag/Ėjet Ėjet,thm/Ėjet(αm, χm)

(0.1, 1) 0.42 –0.73 1.28 0.03
(0.1, 1) low r. 0.13 –0.24 1.05 0.06
(1, 1) 0.25 –0.49 1.22 0.02
(1, 3) 0.13 –0.26 1.12 0.01

our simulations at t = 400 (left panel of Fig. 11) are clearly cor-
related with the inner accretion rates visible in Fig. 8.

To characterize the energy extracted by the outflow, we de-
fine a jet power Ėjet = Ėjet,kin + Ėjet,grv + Ėjet,mag + Ėjet,thm given
by the sum of the fluxes of kinetic, gravitational, magnetic, and
thermal energy at the disk surface Ss:

Ėjet,kin =

∫

Ss

u2

2
ρu · dS (42)

Ėjet,grv =

∫

Ss

Φgρu · dS (43)

Ėjet,mag =

∫

Ss

E × B · dS (44)

Ėjet,thm =

∫

Ss

γ

γ − 1
Pu · dS. (45)

For the jet power we use a positive sign if it extracts energy from
the control volume.

Since in this section we are considering cases characterized
by f = 1, we can also define the radiated power Ėcool as

Ėcool =

∫

Vc

ΛcooldV =

∫

Vc

¯̄ηJ · JdV (46)

where Vc is the control volume. In a steady situation the en-
ergy fluxes should balance to give 2Ėjet = Ėacc − Ėcool. In the
central panel of Fig. 11 we plot the time evolution of the ratios
2Ėjet/Ėacc and Ėcool/Ėacc. We can see that most of the accretion
power is liberated in the jet, increasing from ∼90% for the more
dissipative case (αm = 1, χm = 3) up to ∼98% for the less dis-
sipative one (αm = 0.1, χm = 1). Correspondingly the radiated
power decreases from ∼10% down to ∼2%. The two contibu-
tions sum up to approximately one, suggesting a quasi-stationary
situation.

As noticed for the jet torques, the jet powers also do not show
a huge difference between the simulations. On the other hand,
the different contributions to the total jet power more clearly de-
pend on the simulation parameters. In Table 3 we see that the
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Fig. 12. Average poloidal speed upol along the jets calculated at t = 400,
normalized to the value of the toroidal (Keplerian) speed uφ0 at the base
of each streamline. These curves were obtained by averaging the ra-
tio upol/uφ0 on all the streamlines flowing out from the upper boundary
of the computational box. The line style used refers to the same cases
as in Fig. 11.

greater contribution to the jet power at the surface of the disk
comes from the Poynting flux, since most of the energy is stored
in the toroidal magnetic field. The enthalpy flux is always neg-
ligible, because our jets are cold, undergoing a continuous adi-
abatic expansion starting from the disk surface. The kinetic and
the gravitational fluxes are strongly correlated with the outflow
rates of the different cases, but the gravitational contribution is
negative since the outflow at the disk surface is still inside the po-
tential well of the central object. In the right panel of Fig. 11 we
plot the temporal evolution of the ratio between the jet Poynting
and kinetic flux Ėjet,mag/Ėjet,kin. A higher Ėjet,mag/Ėjet,kin ratio in-
dicates that more magnetic energy per particle is available at the
disk surface to accelerate the outflow. The Poynting flux avail-
able at the disk surface is then converted into kinetic energy
along the outflow, and at the upper end of the computational
box, the kinetic flux is dominant, as confirmed by the fact that
the flow is super-fast-magnetosonic. The asymptotic speed of the
outflow is therefore higher for cases characterized by a higher
Ėjet,mag/Ėjet,kin, as confirmed by Fig. 12 where we plot an av-
erage value of the poloidal speed normalized to the toroidal
(Keplerian) speed at the base of each streamline. The poloidal
velocity measured at the upper end of the computational domain
is a few times the Keplerian speed at the base of the streamlines,
which is consistent with the fact that different classes of astro-
physical jets show velocities on the same order as the escape
velocity from the central object (Livio 1999).

7. A quasi-steady solution

Here we try to characterize one of the simulations performed
as a steady solution. We have already pointed out that none of
our solutions are perfectly steady, because the low diffusivity
case shows a continuously evolving magnetic structure, while
all the simulations show a slowly evolving jet torque (left panel
in Fig. 10) and accretion power (left panel in Fig. 11). On the
other hand, the constant values assumed by the accretion effi-
ciency (Fig. 9), by the ratio between the jet and the accretion
torque (central panel in Fig. 10), and by the ratio between the
jet and the accretion power (central panel in Fig. 11) indicate
that our solutions, at least those with αm = 1, are slowly evolv-
ing through a series of quasi-stationary states. In this section we
analyze the simulation characterized by αm = 1, χm = 3, and

Fig. 13. Angle between poloidal speed and poloidal magnetic field for
the case characterized by αm = 1, χm = 3 and with the Ohmic heating
suppressed. This quantity is calculated at t = 400 along three sample
field lines whose footpoints are located at rF = 2 (solid line), 4 (dashed
line), and 8 (dot-dashed line).

f = 1. Besides showing some features of a stationary solution,
its parametersαm, χm, µ, and ǫ are typical of the cold self-similar
steady solutions found by Casse & Ferreira (2000a), allowing a
direct comparison between steady and time-dependent solutions.

We recall a few relations that are valid for a steady ax-
isymmetric solution of the ideal MHD equations. The poloidal
speed up is related to the poloidal magnetic field Bp

up =
K (Ψ)

ρ
Bp, (47)

where K (Ψ) is a constant along every field line marked by the
flux function Ψ, and it represents the ratio between the mass
flux and the magnetic flux. This relation clearly states that the
poloidal speed and magnetic field are parallel in a steady situa-
tion. The toroidal speed uφ is related to the rotation rate of the
magnetic surface Ω(Ψ) by

uφ = Ω(Ψ)r +
K (Ψ)

ρ
Bφ. (48)

The total specific angular momentum l(Ψ), which is constant
along each field line, is given by

l(Ψ) = ruφ −
rBφ

K(Ψ)
= Ωr2

A (49)

where rA is the Alfvén radius. Each field line is therefore char-
acterized by the non-dimensional constants k, or mass loading
parameter, and λ, which gives a measure of the magnetic lever
arm rA/rF:

k = K(Ψ)
rFΩ

B0

(50)

λ =
l(Ψ)

ΩrF

=

(

rA

rF

)2

, (51)

where rF is the cylindrical radius of the footpoint of the field line
and B0 is the value of the magnetic field at rF.

We therefore tried to characterize our simulation computing
these steady invariants along three sample field lines whose foot-
points are located at rF = 2, 4, and 8. In Fig. 13 the angle is
plotted between the poloidal field and the poloidal speed. While
inside the disk, where the magnetic resistivity is effective, the ac-
creting plasma flows perpendicular to the field lines, in the out-
flow, where the ideal MHD holds, the matter flows along the
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Fig. 14. Rotation rate of the magnetic field calculated along the field-
lines, whose footpoints are located at rF = 2 (solid line), 4 (dashed line),
and 8 (dot-dashed line).

Fig. 15. Mass-loading parameter calculated along the fieldlines whose
footpoints are located at rF = 2 (solid line), 4 (dashed line), and 8 (dot-
dashed line).

lines. In Fig. 14 the Ω invariant is plotted: the rotation rate of
the field lines, defined by a reference frame in which the elec-
tric field is zero, is close to the Keplerian rate, since the field
lines are anchored in the accretion disk and corotate with it.
Moreover, it is possible to see that Ω is slightly higher at the
base of the outflow. As in the low resistivity case but without no-
ticeable consequences, the footpoint of the field line is advected
towards the central part of the disk, rotating a little bit faster than
its outer end.

The mass loading parameter k is plotted in Fig. 15, and the
λ invariant is shown in Fig. 16. The two quantities show a much
more constant behavior along the inner field line, indicating that
the central part of the outflow has reached a more stationary
state, while the outer part of it is still slowly evolving. A clear
trend emerges in these plots. The mass-loading decreases go-
ing from the inner to the outer parts of the outflow while the
magnetic lever arm increases. The relation between the k and
λ parameters is shown in Fig. 17, where we plotted the values of
these quantities calculated at the Alfvén point on different field-
lines anchored in the disk. The higher values of k are found on
the inner (r ∼ 1) fieldlines, whereas the lower ones are in the
outer part (r ∼ 10) of the launching region. The following rela-
tion is also plotted for comparison:

λ =
3

2

(

1 + k−2/3
)

(52)

Fig. 16. Magnetic lever arm parameter calculated along the fieldlines
whose footpoints are located at rF = 2 (solid line), 4 (dashed line),
and 8 (dot-dashed line).

Fig. 17. k–λ relation (squares). The values are calculated at the
Alfven point along different fieldlines anchored in the launching region
of the disk (1 < r < 10). For comparison the relation Eq. (52) found
by Weber & Davis (1967) for a radial wind geometry is also plotted
(dot-dashed line).

found by Weber & Davis (1967) for a radial wind geometry. The
rough behavior λ ∝ k−2/3 is also found by Ouyed & Pudritz
(1997) and Anderson et al. (2004).

We point out that the following relation is valid in cold (adia-
batic) steady solutions (see e.g. Blandford & Payne 1982) along
each field line:

Ėjet,mag

Ėjet,kin

= 2
J̇jet,mag

J̇acc,kin

= 2(λ − 1). (53)

We plotted an averaged value over the disk surface of these
two ratios in Figs. 10 and 11. The magnetic lever arm is therefore
a measure of the efficiency of the magneto-centrifugal mecha-
nism. Assuming that all the Poynting flux available at the disk
surface is completely converted into poloidal kinetic energy, the
following relation for the poloidal asymptotic speed of the out-
flow up,∞ holds:

up,∞ = ΩrF

√
2λ − 3. (54)

Therefore the poloidal speed, expressed in units of the rotation
speed at the footpoint, asymptotically assumes higher values on
the outer field lines.

Finally, it is interesting to compare our solution with the cold
self-similar steady solutions found by Casse & Ferreira (2000a)
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characterized by the same parameters αm, χm, ǫ, and µ. The sim-
ulation presented in this section shows higher values of the mass
loading k and of the ejection parameter ξ ∼ 0.1 (calculated in
Sect. 4) and lower magnetic lever arms. The steady solution,
characterized approximately by k ∼ 2 × 10−2, ξ ∼ 10−2, and
λ ∼ 35, therefore has a much lower outflow rate and higher
terminal speed. A possible physical explanation is given by the
shape of the current circuits shown in Sect. 3.2. Ferreira (1997)
has shown that high ejection efficiencies (ξ > 0.5) are obtained
if the poloidal current enters the disk at its surface and that no
steady solution crossing all the critical points is possible. Its so-
lutions are always characterized by a lower ejection parameter
ξ < 0.5 and by a current outflowing from the disk surface. In
our solutions the current returns and enters the disk in the small
region 1 < r < 2 near the central sink region. Due to the inter-
nal boundary itself the rotation of the outflow suddenly goes to
zero at the inner edge of the jet, creating a current sheet that is
forced to flow back inside the disk. This is therefore a numer-
ical effect, and a proper treatment of the region of interaction
between the disk and the central object is required to understand
how the currents close in the inner region of the system. It is
at least possible to speculate that the returning current increases
the ejection efficiency as proposed by Ferreira (1997), which can
also be confirmed by the fact that in our solution the mass load-
ing parameter k increases towards the center, where the current
flows back into the disk. Another possible explanation is deter-
mined by the numerical dissipation that can increase the thermal
energy and the pressure in the launching region, increasing the
outflow rate as shown in Sect. 3.1 (see also Casse & Ferreira
2000b). If, on one hand, we have shown that a low resolution
yields the effects of a high disk diffusivity, on the other hand, we
cannot be confident that the standard resolution used in the simu-
lations is sufficient to accurately resolve the vertical structure of
the accretion disk. It is well known how difficult it is for the type
of algorithms used in this paper to handle low densities, such
as in the launching region, where the disk expands a lot. This is
also suggested by the behavior of the invariants k and λ, e.g. on
the inner field line considered, which show a slow transition to
their more or less constant values, indicating that the transition
between the resistive and the ideal MHD regimes happens on
a larger scale than the one determined by the vertical profile of
the diffusivity (Eq. (13)).

8. Effects of Ohmic heating

We finally make a few considerations about the two simula-
tions performed in which all the dissipated magnetic energy is
released locally inside the disk ( f = 0), and we compare the cor-
responding cases in which the dissipated energy is radiated away
( f = 1). We recall that these two simulations are characterized
by (αm = 0.1, χm = 1) and (αm = 1, χm = 3).

The dissipative Ohmic term Λ = ¯̄ηJ · J now acts to increase
the thermal energy and the entropy of the plasma inside the disk.
This has two important consequences: the energy dissipation at
the midplane changes the disk thickness and modifies its struc-
ture, while an increase in the pressure gradient at the disk surface
allows more matter to be loaded in the outflow.

In Fig. 18 we plot the time evolution of the ejection effi-
ciency of the two “hot” solutions and of the two corresponding
“cold” simulations. Both the “hot” simulations are characterized
by a higher efficiency; moreover, the case with αm = 1 shows
a steep increase at the end of the simulation. This is due both to
a decrease in the outer accretion rate and to an increase in the
outflow rate. The energy dissipation steepens the radial gradient

Fig. 18. Temporal evolution of the ejection efficiency for the simula-
tions in which the magnetic energy is dissipated locally as Joule heat-
ing: (αm = 1, χm = 3, solid thick line), and αm = 0.1, χm = 1, dashed
thick line). With a thinner line we also plot the curves that refer to the
corresponding cases in which the dissipated energy is radiated.

of the thermal pressure inside the disk, thus slowing the outer
accretion down. At the inner radius the gradient is so steep that
the disk does not accrete anymore and all the matter is pushed
by the pressure gradient into a highly unsteady outflow.

The disk’s thermal energy of the “cold” cases is almost con-
stant in time. The “hot” case with αm = 0.1 shows a similar
behavior, with a disk thermal energy just slightly higher than
the corresponding “cold” simulation. It is likely that the higher
outflow rate can balance the small increase in the disk thermal
energy, which is equivalent to the 2% of the accretion power
that was “radiated” in the corresponding “cold” simulation (see
Sect. 6). On the other hand, the disk’s thermal energy of the
“hot” counterpart of the αm = 1 simulation continuously in-
creases, not balanced by the energy extracted by the outflow,
in turn leading to the unsteady behavior shown in Fig. 18. It is
important to notice that the behavior of this simulation depends
a lot on the expression that we used for the magnetic diffusiv-
ity (Eq. (13)), which is proportional to the disk thermal height
scale. The Ohmic heating in fact determines an increase in the
disk thickness that then implies a higher magnetic diffusivity.

9. Summary and conclusions

Our calculations have followed the long-term evolution of an ax-
isymmetric quasi-Keplerian magnetized disk up to the establish-
ment of an inflow/outflow configuration. The accretion flow is
driven by extraction of angular momentum of the disk by the
jet, which is shown by reaching a balance between the accre-
tion and jet torques. The magnetic torque of the jet is most ef-
ficient close to the surface of the disk extracting angular mo-
mentum from the accretion flow; it stores angular momentum in
the toroidal magnetic field that then accelerates the outflowing
plasma. Therefore the simulations have succeeded in demon-
strating that the magnetocentrifugal mechanism originally pro-
posed by Blandford & Payne can launch jets, provided certain
physical conditions on the magnetic resistivity and initial field
configuration are satisfied.

In particular we have shown that an isotropic (χm = 1) resis-
tive configuration with αm = 0.1, due to the stronger advection
of the field compared to its diffusion, produces highly unsteady
magnetic structures, as displayed in Fig. 2 and in the left panel
of Fig. 7. This agrees with the stationary models of Casse &
Ferreira (2000a) according to which it is not possible to obtain
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a steady outflow with such a low αm parameter except for highly
anisotropic configurations (χm > 102). This would agree with
the results shown in Sect. 5, because a much stronger toroidal
resistivity should reduce the torque exerted by the jet on the disk
and thereby its accretion rate (Eq. (37)). On the other hand, we
also showed how this unsteady behavior depends on the reso-
lution assumed and therefore on the numerical dissipation: the
same case αm = 0.1 performed with a four times lower res-
olution presents many of the characteristics of a solution with
αm = 1. It can be presumed that the quasi-stationary behav-
ior found by Casse & Keppens (2002, 2004) with an isotropic
αm = 0.1 parameter can be affected by the resolution used.

On the other hand, the cases characterized by αm = 1 are
also not perfectly stationary, despite showing an ordered mag-
netic configuration favorable to a steady launching. In all the
simulations performed some integrated quantities, like the jet
torque (Fig. 10) or the accretion energy (Fig. 11), are still slowly
evolving. Even the case characterized by an anisotropic (χm = 3)
diffusivity, needed by the stationary models, does not show a per-
fectly stationary behavior. Moreover, it can be characterized by
adimensional quantities like ξ, k or λ which differ a lot from the
analogous ones found in the cold solutions of Casse & Ferreira
(2000a). In Sect. 7 we proposed some physical and numerical
reasons for this behavior.

Nevertheless the constant value assumed in time by some
quantities, like the ejection efficiency (see Fig. 9) or the ratio
between the accretion power and the jet energy flux (central
panel of Fig. 11) suggests that our solutions are slowly evolving
through a series of quasi-stationary states. A clear trend emerges.
When increasing the poloidal and/or the toroidal resistivity, the
ejection efficiency decreases, from 55% in the (αm = 0.1, χm =

1) case to 20% for the (αm = 1, χm = 3) simulation. From the en-
ergetic point of view, our simulations show that more than 90%
of the energy liberated in the accretion inflow is released in the
jet and that less dissipative cases produce slightly more powerful
jets. Correspondingly, the radiated power that must take care of
the Joule heating dissipation is less than 10%. In Sect. 8 we also
showed that, in the more dissipative case with αm = 1, the accre-
tion flow is disrupted and a highly unsteady outflow is formed if
this energy is released inside the disk instead of being radiated.

We also demonstrated how the efficiency of the magneto-
centrifugal mechanism, as measured by the ratio of the Poynting
flux to the kinetic flux at the disk surface, is affected by the resis-
tive configuration. A higher value of the poloidal and/or toroidal
resistivity determines a greater magnetic lever arm, linked to the
energy flux ratio as stated by Eq. (53). Our simulations also show
that the λ parameter, as measured by Eq. (53), is related with
a good approximation to the ejection parameter ξ (in the cases
where this parameter has been measured):

λ ∼ 1 +
1

2ξ
(55)

as stated by the self-similar models by Ferreira (1997).
We finally try to test if observations of outflows from classi-

cal T Tauri stars can give some constraint on the parameters of
our simulations. The size of the launching region measured in
our simulations (from 0.1 to 1 AU) is consistent with the es-
timates derived from observations (Bacciotti et al. 2000). On
the other hand, the one-sided ejection efficiency inferred from
the observations gives values, even with high uncertainty, in the
range 0.01–1 (Cabrit 2002), and this result seems to favor our so-
lution characterized by (αm = 1, χm = 3). Even if, in agreement
with observations, all our solutions are characterized by a speed
at the upper boundary of the computational domain which is

a few times the escape speed from the potential well of the cen-
tral object (Fig. 12), a quantitative comparison with the poloidal
speed (Bacciotti et al. 2000) and rotation signatures (Bacciotti
et al. 2002; Coffey et al. 2004; Woitas et al. 2005) of the observed
outflows is much more difficult, because the size of our compu-
tational domain, which reaches a physical scale along z equal
to 12 AU, is around three times smaller than the distance from
the source investigated by current HST observations (>30 AU).
As pointed out by Ferreira et al. (2006), a solution character-
ized by a magnetic lever arm λ ∼ 10 successfully reproduces the
values of both the poloidal and toroidal speeds at the currently
observed spatial scale: the highest lever arm value found in our
simulations (λ ∼ 9) is observed in the outer part of the launching
region of the case (αm = 1, χm = 3) (Fig. 17).

Two specific conclusions and difficulties of our calculations
must be mentioned. First, the magnetocentrifugal process ap-
pears to operate only with relatively strong magnetic fields in
the disk; a strong field tends to inhibit the development of turbu-
lence that could be the origin of magnetic resistivity. Instabilities
(shear, Kelvin-Helmholtz) other than magneto-rotational might
produce the required turbulence. On the other hand, the resistiv-
ity inside a protostellar disk can be extremely high between 0.1
and 10 AU, where the grains become the dominant charge car-
riers (Wardle 1997). The coupling between the accreting plasma
and the magnetic field is therefore strongly reduced, perhaps too
much so. The second point is that outflow rates measured in our
simulations turn out to be rather high, which applies well to jets
in star formation regions, where extended bipolar structures are
observed. For AGN nuclei one must go to the relativistic limit
(which we have not done here), and also discuss how the (pos-
sibly subsonic) wind from the disk outer part interacts with the
surrounding galaxy.
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