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ABSTRACT

Aims. We study the influence of the choice of transport coefficients (viscosity and resistivity) on MHD turbulence driven by the mag-
netorotational instability (MRI) in accretion disks.
Methods. We follow the methodology described in Paper I: we adopt an unstratified shearing box model and focus on the case
where the net vertical magnetic flux threading the box vanishes. For the most part we use the operator split code ZEUS, including
explicit transport coefficients in the calculations. However, we also compare our results with those obtained using other algorithms
(NIRVANA, the PENCIL code and a spectral code) to demonstrate both the convergence of our results and their independence of the
numerical scheme.
Results. We find that small scale dissipation affects the saturated state of MHD turbulence. In agreement with recent similar numer-
ical simulations done in the presence of a net vertical magnetic flux, we find that turbulent activity (measured by the rate of angular
momentum transport) is an increasing function of the magnetic Prandtl number Pm for all values of the Reynolds number Re that we
investigated. We also found that turbulence disappears when the Prandtl number falls below a critical value Pmc that is apparently
a decreasing function of Re. For the limited region of parameter space that can be probed with current computational resources, we
always obtained Pmc > 1.
Conclusions. We conclude that the magnitudes of the transport coefficients are important in determining the properties of MHD tur-
bulence in numerical simulations in the shearing box with zero net flux, at least for Reynolds numbers and magnetic Prandtl numbers
that are such that transport is not dominated by numerical effects and thus can be probed using current computational resources.
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1. Introduction

To date, the magnetorotational instability (MRI) is believed to be
the most likely cause of anomalous angular momentum transport
in accretion disks (Balbus & Hawley 1998). The results of nu-
merous numerical simulations carried out over the last 15 years
indicate that the MRI results in MHD turbulence that transports
angular momentum outwards with rates that seem, depending on
the net magnetic flux present, to be compatible to order of mag-
nitude with those estimated from the observations. Most of these
studies were local MHD numerical simulations of a shearing
box performed using finite difference methods. Unfortunately
because of the limited computational resources available dur-
ing the 90’s, these early calculations were restricted to low and
moderate resolutions, having at most 64 grid cells per disk scale
height (Hawley et al. 1995, 1996; Fleming et al. 2000; Sano et al.
2004).

In Paper I (Fromang & Papaloizou 2007), we used one of
these numerical codes, ZEUS (Hawley & Stone 1995), to study
the convergence of the results as the grid resolution is increased.
We explored resolutions ranging from 64 to 256 grid cells per
scale height and concentrated on the special case for which the

net vertical flux threading the box vanishes. We found that the
angular momentum transport, measured using the standard α pa-
rameter, decreases linearly with the grid spacing as the reso-
lution increases. In the best resolved simulations, we obtained
α = 10−3, which amounts to a decrease of about one order of
magnitude when compared to the earlier estimates derived from
the first simulations of this problem (Hawley et al. 1995). This
situation comes about because significant flow energy and dissi-
pation occurring at the grid scale affects the numerical results, at
least for the resolutions that can currently be achieved.

Since the diffusive transport and dissipation that plays an
important role in determining the outcome is purely numerical
in ZEUS, we concluded that explicit physical dissipation, both
viscous and resistive, should be properly included in the simu-
lations for them to show numerical convergence and thus have
physical significance. The purpose of this paper is to investigate
the effect of specified transport coefficients on the saturated state
of MRI driven MHD turbulence.

We note that this issue has recently been considered by Lesur
& Longaretti (2007) for cases for which a nonzero net vertical
flux threads the disk. They found that both the viscosity ν and the
resistivity η affect the amount of angular momentum transported
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by MHD turbulence, in such a way that α increases with the
magnetic Prandtl number Pm = ν/η. One of the aims of this pa-
per is to investigate whether such a relation exists in the absence
of net flux and to quantify the precise rate of angular momentum
transport for that case as a function of the transport coefficients.

The plan of the paper is as follows. In Sect. 2, we describe
our numerical setup and the models we simulated. Section 3 fo-
cuses on the properties of one of these models. Specifically, we
demonstrate that for the simulations performed with ZEUS, nu-
merical dissipation does not strongly affect the results when ex-
plicit transport coefficients of sufficient magnitude are included.
This is done by using Fourier analysis as introduced in Paper I,
and by comparing the simulation results obtained using a vari-
ety of numerical schemes. Having validated our approach, we
turn in Sect. 4 to a more systematic exploration of the parameter
space. We recover the correlation between α and Pm mentioned
above and surprisingly identify a regime of parameters in which
MHD turbulence decays. Finally, we discuss our results, their
limits and their astrophysical implications in Sect. 5.

2. Model properties

As in Paper I, we work in the framework of the shearing box
model (Goldreich & Lynden-Bell 1965). The standard ideal
MHD equations are modified to account for small scale dissi-
pation resulting from finite and constant viscosity ν and resistiv-
ity η. For clarity they are recalled below.

∂ρ

∂t
+ ∇·(ρu) = 0, (1)

ρ
∂u

∂t
+ρ(u·∇)u+2ρΩ × u=

(∇×B)×B

4π
−∇P+∇·T+3ρΩ2i, (2)

∂B

∂t
= ∇×(u×B − η∇×B). (3)

As in Paper I, Ω is the Keplerian angular velocity at the cen-
tre of the box, ρ is the gas density, u is the velocity, B is the
magnetic field and P is the pressure. This is related to the gas
density and the constant speed of sound c0 through the isother-
mal equation of state P = ρc2

0
. We adopt a Cartesian coordinate

system (x, y, z) ≡ (x1, x2, x3) with associated unit vectors (i, j, k).
Viscosity enters the equations through the viscous stress

tensor T whose components are defined following Landau &
Lifshitz (1959)

Tik = ρν

(

∂vi

∂xk

+
∂vk

∂xi

−
2

3
δik∇·u

)

. (4)

As in Paper I, the simulations are performed within a box with
dimensions (Lx, Ly, Lz) = (H, πH,H), where H = c0/Ω is the
disk scale height. Throughout this paper, we used the resolutions
(Nx,Ny,Nz) = (128, 200, 128) or (256, 400, 256) depending on
the magnitude of the dissipation coefficients. All the simulations
are initialised with the same density and magnetic field as in
Paper I. The initial velocity is taken to be given by the Keplerian
shear with the addition of a random perturbation of small ampli-
tude to each component. As in Paper I, we measure time in units
of the orbital period 2π/Ω.

The parameters for the simulations we performed with ZEUS
are given in Table 1. In Sect. 3.2, we explore the sensitivity of
some of these results to the numerical algorithm by performing a
few additional runs using other codes. The details of these sim-
ulations as well as the properties of those codes are described
there. In Table 1, we give the label of each model in the first

column and the resolution (Nx,Ny,Nz) in the second column. As
mentioned above, the models include explicit viscosity and resis-
tivity, the values of these can be found from the Reynolds num-
ber Re (given in the third column) and the magnetic Prandtl num-
ber Pm (given in the fourth column). The former is defined by

Re =
c0H

ν
(5)

while the latter, already mentioned in the introduction, quantifies
the relative importance of ohmic and viscous diffusion:

Pm =
ν

η
=

ReM

Re
(6)

where the magnetic Reynolds number ReM = c0H/η.
The aim of this paper is to study the properties of MHD tur-

bulence in each of these models. Table 1 summarise the re-
sults by giving, for each of them, the rate of angular momentum
transport that MHD turbulence, when present, generates. This
is done through specifying the Reynolds stress parameter, αRey,
the Maxwell stress parameter αMax and the total stress parame-
ter α in columns five, six and seven respectively. These represent
actual stresses normalised by the initial thermal pressure. They
are defined precisely in Paper I through Eqs. (6)−(8). As will
be emphasised below, some models fail to show sustained tur-
bulence. This is why the last column of Table 1 describes the
nature, turbulent or not, of the flow for each model. For cases in
which MHD turbulence is found to decay, no stress parameters
are given.

3. Re = 3125, Pm = 4

3.1. Simulation set up

In this section, we concentrate on the particular
model 128Re3125Pm4 for which Re = 3125 and Pm = 4
in order to describe common features characterising simu-
lations of this type. Model 128Re3125Pm4 was computed
for a duration of 440 orbits using ZEUS with a resolution
(Nx,Ny,Nz) = (128, 200, 128). When using this code, it is
important to be sure that dissipation arising from the specified
diffusion coefficients ν and η dominates that due to numerical
effects. This is verified in Sect. 3.1.2 using the Fourier anal-
ysis described in Paper I. We also compare the results from
model 128Re3125Pm4 to results obtained from similar models
computed using other numerical methods (see Sect. 3.2). This
shows that the results obtained in the present paper are inde-
pendent of the numerical scheme used. But before considering
these points in detail, we first describe the overall properties of
model 128Re3125Pm4.

3.1.1. Simulation properties

Despite effects arising from the specification of nonzero dissipa-
tion coefficients, the overall evolution of model 128Re3125Pm4
is qualitatively very similar to that found in numerical sim-
ulations of MHD turbulence in the shearing box since the
early 1990’s. The MRI destabilises the flow, which causes the
Maxwell and Reynolds stresses to grow exponentially during
the first few orbits. When the disturbance reaches a large enough
amplitude, the instability enters the non linear regime, the flow
breaks down into MHD turbulence and eventually settles into
a quasi steady state during which angular momentum is trans-
ported outwards. The rate of angular momentum transport is il-
lustrated in Fig. 1 which shows the time history of αRey (dot-
ted line), αMax (dashed line) and α (solid line). Averaging α in
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Table 1. Properties of the simulations presented in this paper and performed with the finite difference code ZEUS.

Model Resolution Reynolds number Pm αRey αMax α Turbulence?

128Re800Pm4 (128, 200, 128) 800 4 – – – No

128Re800Pm8 (128, 200, 128) 800 8 5.8 × 10−3 2.6 × 10−2 3.1 × 10−2 Yes

128Re800Prm16 (128, 200, 128) 800 16 8.1 × 10−3 3.6 × 10−2 4.4 × 10−2 Yes

128Re1600Pm2 (128, 200, 128) 1600 2 – – – No

128Re1600Pm4 (128, 200, 128) 1600 4 1.6 × 10−3 8.1 × 10−3 9.7 × 10−3 Yes

128Re1600Pm8 (128, 200, 128) 1600 8 3.3 × 10−3 1.6 × 10−2 1.9 × 10−2 Yes

128Re3125Pm1 (128, 200, 128) 3125 1 – – – No
128Re3125Pm2 (128, 200, 128) 3125 2 – – – No

128Re3125Pm4 (128, 200, 128) 3125 4 1.6 × 10−3 7.4 × 10−3 9.1 × 10−3 Yes

128Re6250Pm1 (128, 200, 128) 6250 1 – – – No
128Re6250Pm2 (128, 200, 128) 6250 2 – – – No

128Re12500Pm1 (128, 200, 128) 12500 1 – – – No

256Re12500Pm2 (256, 400, 256) 12500 2 3.2 × 10−4 1.3 × 10−3 1.6 × 10−3 Yes

256Re25000Pm1 (256, 400, 256) 25000 1 – – – No

The first column gives the label of the model while the resolution (Nx, Ny,Nz) is specified in the second column. The third column gives the
Reynolds number associated with the viscosity, (c0H)/ν), and the fourth column gives the magnetic Prandtl number Pm. The following three
columns quantify the amount of turbulent activity, when nonzero, through the values of αRey, αMax and α. Finally, the last column describes the
outcome, turbulent or not, of each model.

Fig. 1. Time history of αRe (dotted line), αMax (dashed line) and α (solid
line) for model 128Re3125Pr4. From the rate of angular momentum
transport averaged between t = 40 and the end of the simulation we
obtain α = 9.1 × 10−3.

time between t = 40 and the end of the simulation, we find
α = 9.1 × 10−3. As with simulations done without including ex-
plicit dissipation coefficients, the transport is dominated by the
Maxwell stress, which is found to be roughly 5 times larger than
the Reynolds stress. As in Paper I, we checked that the shearing
box boundary conditions did not introduce any spurious net flux
in the y and z directions. To do so, we measured the maximum
value reached by the mean magnetic field components in the box
and translated their resulting strengths into effective β. This gave
βy = 5.0 × 106 and βz = 5.6 × 106 respectively for the azimuthal
and vertical mean components. These values are comparable to
the same quantities obtained in Paper I in the absence of dissipa-
tion coefficients and correspond to field strength far too small to
play a role in the model evolution.

In order to illustrate the properties of the flow in this model,
in Fig. 2 we show two snapshots which represent the density
(left panel) and azimuthal component of the magnetic field, By,
(right panel) in the (x, z) plane at time t = 115. As usual with
such simulations (whether or not explicit dissipation coefficients
are included), density waves develop and propagate radially in

the disk. They are superposed on smaller scale fluctuations cor-
related with the magnetic field fluctuations seen on the right side
of Fig. 2. Note, however, the larger characteristic scale of these
fluctuations compared to those found in a simulation having the
same resolution and no explicit dissipation coefficients (a typi-
cal snapshot from such a simulation is available in the middle
panel of Fig. 4 in Paper I). This is because resistivity and viscos-
ity sets a typical dissipation length scale that is larger than a grid
cell. This is a first indication that explicit dissipation dominates
over numerical dissipation in this simulation. A more quanti-
tative demonstration can be obtained from the Fourier analysis
approach of Paper I. This is considered in the next section.

3.1.2. Fourier analysis

In Paper I, we found that the dynamical properties of the turbu-
lence could be studied in Fourier space. The induction equation
leads to a balance between 5 terms, describing forcing by the
mean and turbulent flow, transport to smaller scales, compress-
ibility and numerical dissipation. This gives rise to Eq. (22) of
Paper I. A similar balance involving 6 terms can be obtained
when explicit resistivity is included. Using the same notation as
in Paper I, we find

S + Tbb + Tdivv + Tbv + Dphys + Dnum = 0. (7)

Here Dphys describes physical dissipation per unit volume in
k space and is defined by

Dphys = ηk
2|B(k)|2, (8)

in which k stands for the modulus of the wavenumber k ≡
(kx, ky, kz). As in Paper I, S describes how the background shear
creates the y component of the magnetic field, Tbb is a term
that accounts for magnetic energy transfer toward smaller scales,
Tdivv is due to compressibility, Tbv describes how magnetic field
is created due to field line stretching by the turbulent flow and
Dnum describes numerical dissipation.

The variation of the first five terms of Eq. (7) with k is plot-
ted in Fig. 3 (to compute these curves, the simulation data were
averaged in time using 100 snapshots spanning 400 orbits). S is
shown using the upper solid line, the dashed line corresponds to



1126 S. Fromang et al.: MHD turbulence in accretion disks. II.

Fig. 2. Snapshot of the density (left panel) and of the y component of the magnetic field (right panel) in the (x, z) plane for model 128Re3125Pm4.
In the former case, the local density is normalised by the mean density in the box. In the latter case, the magnetic field is normalised by the square
root of the mean thermal pressure in the box.

Fig. 3. Variation of S (upper solid line), Tbb (dashed line), Tdivv (dotted
line), Tbv (dotted-dashed line) and Dphys (lower solid line) as functions
of the modulus of the wavenumber k for model 128Re3125Pm4. Only
S is always positive. As explained in the text, this accounts for the rate
of toroidal magnetic field generation by the mean shear flow acting on
the poloidal field.

Tbb while Tdivv, Tbv and Dphys are respectively represented us-
ing the dotted line, dotted-dashed line and lower solid line re-
spectively. As in Paper I, the above quantities are Fourier trans-
forms evaluated with ky = 0 that are then averaged over the circle

k2
x + k2

z = constant.

In agreement with the results presented in Paper I for simu-
lations performed without explicit dissipation, Fig. 3 shows that
the only always positive term is S , which is simply due to the
fact that toroidal magnetic energy is created by the mean back-
ground shear. As in Paper I, we next turn to the poloidal part of
Eq. (7). This is done by considering only the components of the
induction equation for the poloidal part Bp = (Bx, 0, Bz) of the
magnetic field B. In that case S vanishes. The variation with k
of the four remaining terms (Tbb, Tbv, Tdiv and Dphys) is shown in
Fig. 4 using the same conventions as in Fig. 3. Again, the results
we obtained are qualitatively similar to the results of Paper I.
Poloidal magnetic energy is created on a large range of scales by
field line stretching, as indicated by the fact that Tbv is positive.

Fig. 4. As in Fig. 3 but for the analogue of Eq. (7) derived from the
poloidal components of the induction equation. This shows that poloidal
magnetic field energy is created at all scales through field line stretching
due to the turbulent velocity fluctuations.

The other terms are negative and describe transport to smaller
scales and dissipation. For the simulation to be converged, phys-
ical dissipation need to be larger than numerical dissipation. The
interest of this Fourier analysis is to provide a means to test this
condition. Indeed, numerical dissipation can be computed as mi-
nus the sum of the four terms plotted in Fig. 4. Its variation with
k is shown in Fig. 5 with the solid line and compared to Dphys,
represented using a dashed line. At small scales (k larger than
30), numerical dissipation is clearly smaller than physical dis-
sipation. For the smallest k, large amplitude fluctuations around
zero are observed. They are due to poorer statistics that prevent
the procedure from converging everywhere. Nevertheless, Fig. 5
provides confidence that the dissipation is largely physical in
model 128Re3125Pm4. This is also consistent with the results of
Paper I, which estimated a numerical magnetic Reynolds num-
ber of the order of 30 000 at that resolution, significantly larger
than the value ReM = 12 500 used in the present model (although
we add a note of caution that this estimated value depends on the
flow itself and could thus be slightly different here).



S. Fromang et al.: MHD turbulence in accretion disks. II. 1127

Fig. 5. The numerical dissipation rate is plotted vs. k using the solid
line. This can be compared with the physical dissipation rate per unit
volume indicated using the dashed line. The latter has a larger amplitude
than the former, indicating that the results are not strongly affected by
numerical dissipation.

3.2. Code comparison

In order to gain further confidence that the results for
model 128Re3125Pm4 are not strongly affected by numeri-
cal dissipation or numerical details such as, for example, the
boundary conditions, we reproduced that simulation using three
other codes: NIRVANA (Ziegler & Yorke 1997), a spectral code
(Lesur & Longaretti 2007) and the PENCIL code (Brandenburg
& Dobler 2002). All include the same diffusion coefficients
yielding Re = 3125 and Pm = 4.

NIRVANA is a finite difference code that uses the same al-
gorithm as ZEUS but was developed independently. It has been
used frequently in the past to study various problems involving
MHD turbulence in the shearing box (Papaloizou et al. 2004;
Fromang & Papaloizou 2006). The implementation of the shear-
ing box boundary conditions is identical to that of ZEUS. The net
magnetic fluxes introduced in the computational domain during
the simulation are therefore of the same order as for ZEUS.

The Pencil Code uses sixth order central finite differences
in space and a third order Runge-Kutta solver for time integra-
tion. In addition to the standard diffusion coefficients (resistivity
and viscosity), a sixth order hyper diffusion operator is used in
the continuity equation. Solenoidality is ensured by evolving the
magnetic vector potential. The boundary conditions are enforced
directly on that potential using a six order polynomial interpo-
lation. We monitored the accumulation of magnetic flux in the
three directions and found effective β of the order of 1019 in the
radial direction and 1016 in the azimutal and vertical direction.
The box size and resolution in this simulation are the same as
in model 128Re3125Pm4 computed with ZEUS and the model
was run for 150 orbits.

The spectral code is based on a 3D Fourier expansion of the
resistive-MHD equations in the incompressible limit. It uses a
pseudo-spectral method to compute non linear interactions and
is based on the “3/2” rule to avoid aliasing. The flow is com-
puted in the sheared frame and a remap procedure is used, as
described by Umurhan & Regev (2004). Since these routines
are the main source of numerical dissipation, the global en-
ergy budget is evaluated and we check that viscosity and re-
sistivity are responsible for more than 97% of the total dis-
sipation (see Lesur & Longaretti 2005, for a description of
the energy budget control). Therefore, the numerical dissipa-
tion is still present, but is kept at a very low level compared to
physical dissipation. Finally, the boundary conditions are purely

periodic in the sheared coordinates and the magnetic fluxes are
conserved to round-off error. During the simulation, the maxi-
mum effective β we measured are of the order of 1022. This code
has been successfully used for pure HD (Lesur & Longaretti
2005) and MHD-MRI (Lesur & Longaretti 2007) problems. In
this paper, it uses a box size (Lx, Ly, Lz) = (H, πH,H), a resolu-
tion (Nx,Ny,Nz) = (64, 128, 64) and was run for 150 orbits. Note
that we decreased the number of grid points in the radial direc-
tion by a factor of two for this model compared with the set up
used by the other codes. This is because the spectral code, being
equivalent spatially to a 64th−128th order finite difference code,
can use a coarser resolution than the other numerical schemes
and still resolve the same dissipation legnths.

The results we obtained using these three codes are sum-
marised with the help of Fig. 6, which shows the time history
of the various stresses as obtained with NIRVANA (left panel),
the spectral code (middle panel) and the PENCIL code (right
panel). In plotting the different curves, we used the same con-
ventions as in Fig. 1, with which the results should be compared.
In general, good agreement is found between the four models.
Time averaged values of the stresses, measured between t = 40
and the end of the simulation, are computed using these mod-
els. As indicated in Table 2, one finds α = 9.3 × 10−3, 1.1 ×
10−2 and 8.2 × 10−3, when respectively using NIRVANA, the
spectral code and the PENCIL code. Given the large diversity of
the numerical methods that are used in these codes and the dif-
ferent implementation of the boundary conditions they employ,
this small scatter is an indication that the effect of numerical is-
sues is very small in model 128Re3125Pm4. In particular, the
low level of numerical dissipation (of the order of 3%) obtained
in the spectral code combined with the suggestion of Fig. 5 that
physical resistive dissipation dominates over numerical resistive
dissipation in ZEUS both provide evidence that physical dissipa-
tion dominates over numerical dissipation in the simulations. At
the very least, the good agreement between the four codes sug-
gest that any residual numerical dissipation is not large enough
to influence the transport properties in any of these models.

4. The parameter space

Having shown that the results of model 128Re3125Pm4, com-
puted using ZEUS, are not strongly affected by numerical dis-
sipation, we now turn into a more systematic exploration of the
parameter space.

In doing so, we adopt a typical resolution (Nx,Ny,Nz) =
(128, 200, 128) for all cases in which ReM and Re are smaller
than 12 500. Given the above analysis, it is reasonable to as-
sume that the viscous and resistive lengths are sufficiently re-
solved in those models for the transport properties to be accu-
rately computed.

In the following, we will also present one model having
Re = 12 500 and Pm = 2 (and therefore ReM = 25 000).
Using the same resolution in that case would result in numer-
ical dissipation being of the same order as physical dissipa-
tion, since we demonstrated in Paper I that the numerical mag-
netic Reynolds number is around 30 000 when using 128 cells
per scale height. In addition, the resistive length scale will be
reduced by about 40% compared to model 128Re12500Pm1,
for which Re = 12 500 and Pm = 1. Indeed, as argued by
Schekochihin et al. (2004) for the kinematic regime, the visous
dissipation length and the resistive dissipation length are related
through lν ∼ Pm1/2lη (this relation, not taking rotation into ac-
count, is not strictly speaking applicable, but may be indicative).
For both of these reasons, we used the more computationally
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Fig. 6. Results obtained with NIRVANA (left panel), a spectral code (middle panel) and the PENCIL code (right panel) for the comparison case.
All panels display the time history of αRey, αMax and α using the same conventions as Fig. 1, with which they should be compared. Good agreement
is found for model 128Re3125Pm4 regardless of the numerical scheme used.

Table 2. Details of the runs performed using different codes as a way of checking the results for model 128Re3125Pm4. The first three columns
respectively describe the code used, the resolution (Nx, Ny,Nz) and the box size (Lx, Ly, Lz). The last three columns summarise the outcome by
giving the time averaged values of αRey, αMax and α (averaged between t = 40 and the end of each simulation). Note that the first line simply
recalls the results of model 128Re3125Pm4 which can also be found in Table 1. All models have Re = 3125 and Pm = 4.

Code Resolution Box size αRey αMax α

ZEUS (128, 200, 128) (H, πH,H) 1.6 × 10−3 7.4 × 10−3 9.1 × 10−3

NIRVANA (128, 200, 128) (H, πH,H) 1.7 × 10−3 7.8 × 10−3 9.5 × 10−3

SPECTRAL CODE (64, 128, 64) (H, πH,H) 1.4 × 10−3 9.4 × 10−3 1.1 × 10−2

PENCIL CODE (128, 200, 128) (H, πH,H) 1.4 × 10−3 6.8 × 10−3 8.2 × 10−3

Fig. 7. Time history of αMax in model 128Re800Pm16 (dotted-dashed
line), 128Re1600Pm8 (dashed line), 128Re3125Pm4 (solid line),
128Re6250Pm2 (dotted line) and 128Re12500Pm1 (dotted-dotted-
dashed line). In each cases, ReM = 12 500, while Pm is gradually de-
creased from 16 for the top curve to 1 for the bottom curve. The results
show an increase of activity when the Prandtl number increases. In ad-
dition, turbulent transport vanishes when Pm ≤ 2.

demanding resolution (Nx,Ny,Nz) = (256, 400, 256) in this case
which should be enough to ensure that numerical dissipation will
not strongly affect the results. Remember also that we showed
in Paper I that the numerical magnetic Reynolds number is of
the order of 105 for such a resolution, well above the magnetic
Reynolds number of that model, which also gives confidence
that numerical dissipation should not be dominant in this case.
Reasoning along the same lines, we also used the same high res-
olution for model 256Re25000Pm1, for which Re = 25 000 and
Pm = 1.

The time averaged transport coefficients we measured in all
the simulations we performed are summarised in Table 1 (for all
models, this average is done between t = 40 and the end of the
simulation). In the present section, we now focus on a detailed
examination of the results. Figure 7 shows the time history of

Fig. 8. Same as Fig. 7, but for models 128Re800Pm8 (solid line),
128Re1600Pm4 (dashed line) and 128Re3125Pm2 (dotted-dashed
line), in which turbulence dies after about 5 orbits. In each cases,
ReM = 6250, while Pm decreases from 8 to 2.

αMax for all the simulations having ReM = 12 500. They are char-
acterised by different values of the viscosity, in such a way that
Pm = 16 (dotted-dashed line), Pm = 8 (dashed line), Pm = 4
(solid line), Pm = 2 (dotted line) and Pm = 1 (dotted-dotted-
dashed line). It is obvious from these models that angular mo-
mentum transport increases with the Prandtl number, in agree-
ment with the results of Lesur & Longaretti (2007) obtained
in the presence of a net vertical flux. In addition, MHD turbu-
lence is observed to die down in the last two models. The crit-
ical Prandtl number below which turbulence is not sustained is
probably close to Pm = 2. Indeed, model 128Re12500Pm2, for
which Pm = 2, is seen to be marginal as it takes about 90 or-
bits for the turbulence to decay. In the “alive” cases that display
turbulent activity, time averaged values of the total stress give
α = 4.4 × 10−2, 1.9 × 10−2 and 9.1 × 10−3, respectively when
Pm = 16, 8 and 4. For fixed ReM, this shows an almost linear
scaling with viscosity. As demonstrated with Fig. 8, the situa-
tion is similar when using ReM = 6250. The three curves on this
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Fig. 9. Time history of αRe (dotted line), αMax (dashed line) and α
(solid line) for model 256Re12500Pm2. The rate of angular momen-
tum transport, averaged from t = 40 until the end of the simulation,
gives α = 1.6 × 10−3.

Fig. 10. Same as Fig. 9, but for model 256Re25000Pm1. Turbulence
decays after about 100 orbits.

plot correspond to Pm = 8 (solid line), Pm = 4 (dashed line)
and Pm = 2 (dotted-dashed line). Again, MHD turbulence dis-
appears when Pm ≤ 2 and increases with viscosity otherwise:
α = 9.7 × 10−3 when Pm = 4 and α = 3.1 × 10−2 when Pm = 8.

Increasing ReM by a factor of two, we show in Fig. 9 the
time history of αRe (dotted line), αMax (dashed line) and α (solid
line) for model 256Re12500Pm2, in which Re = 12 500 and
Pm = 2. As shown in Table 1, MHD turbulence is sustained
in this case. Averaging α between t = 40 and the end of the
simulation, we obtained α = 1.6 × 10−3. This is important as
MHD turbulence decays for all the other models we performed
that have Pm = 2 and lower Reynolds numbers. Therefore, the
results of model 256Re12500Pm2 demonstrate that it is possible
to obtain sustained angular momentum transport at fairly low
Prandtl number provided the Reynolds number is large enough.
However, model 256Re25000Pm1, in which Re = 25 000 and
Pm = 1, fails to show sustained turbulence for long times, as
demonstrated in Fig. 10 in which the time history of the trans-
port quantities is plotted. Although it takes about 100 orbits for
turbulence to decay, α eventually decreases down to zero at the
end of the simulation. Given how marginal this model seems
to be, it seems plausible that a further increase of the Reynolds
number will eventually lead to nonzero transport at Pm = 1. The
large resolution needed, however, precludes such a simulation
being run at the present time.

The overall results of our simulations are summarised in
Fig. 11 which gives the state of the flow for each models in
an (Re, Pm) plane (left panel) and in an (Re,ReM) plane (right
panel). The flags “YES” means the disk is turbulent, “NO” that
turbulence was found to decay. The two cases appearing in a
solid squared box have ReM = 25 000 and use a resolution
(Nx,Ny,Nz) = (256, 400, 256). The model appearing in a dashed
squared box is the marginal case having ReM = 12 500 and
Pm = 2 (see Fig. 7). In general, this plot shows that MHD turbu-
lence is easier to obtain at large Prandtl number. When the disk is
turbulent, the results also suggest that angular momentum trans-
port increases with Pm. None of the models having Pm = 1 show
any sign of activity, although turbulence takes longer and longer
to die as the Reynolds number is increased. Taken together, these
results demonstrate that for any Re, there exists a critical Prandtl
number Pmc below which turbulence decays, while it is sus-
tained when Pm > Pmc. The results presented in this paper sug-
gest that Pmc decreases with Re. However, there are not enough
data obtained from the current simulations to conclude that any
asymptotic limit has been reached or even to conclude to the ex-
istence of such a limit. It is therefore not possible to extrapolate
the behaviour of Pmc at large Re.

5. Discussion and conclusion

5.1. Comparison with the results of Paper I

In this paper, we studied the effect of finite dissipation coeffi-
cients on the saturated level of MRI-driven MHD turbulence.
One of the important aspect of our results is that MHD turbu-
lence can only be sustained if the magnetic Prandtl number Pm
is larger than some critical value Pmc. For the limited range of
Reynolds numbers that could be probed given current day limi-
tations in computing time, we found that Pmc > 1. We want to
stress here that these results are consistent with the results we
obtained in Paper I. Indeed, we argued in Sect. 5.1 of that paper
that it is possible to derive a “numerical” magnetic Prandtl num-
ber when using ZEUS without explicit diffusion coefficients and
estimated its value, although very uncertain, to be of order unity
and probably somewhat larger than one. The fact that MHD tur-
bulence was found to be sustained in these simulations is there-
fore consistent with the results of the present paper, for which
all of our “alive” case have Pm larger than unity. If ZEUS had
had a numerical magnetic Prandtl number smaller than unity,
we would predict from the present result that MHD turbulence
would decay when performing such simulations without explicit
dissipation coefficients.

It is in fact possible to push the comparison between
the results of Paper I and Paper II a bit further. Indeed,
we note that model STD128 (presented in Paper I) and
model 256Re12500Pm2 (presented in this paper) have simi-
lar time averaged value of α: 2.2 × 10−3 for the former and
1.6 × 10−3 for the later. This similar result is due to the fact
that both model lie in the same region of the (Re, Pm) plane:
for model 256Re12500Pm2, ReM = 25000 and Pm = 2. For
model STD128, we estimated in Paper I that ReM is of the or-
der of 30 000 while Pm is of the order or slightly larger than
one. This is why the results are similar. This is further illus-
trated in Fig. 12 which shows a snapshot of By at time t = 66
in model 256Re12500Pm2. Note how similar it is to the middle
panel of Fig. 4 in Paper I, which shows the same variable for
model STD128. Measuring the typical length scale Ly(By) of the
magnetic structures in model 256Re12500Pm2 using Eq. (9) of



1130 S. Fromang et al.: MHD turbulence in accretion disks. II.

YES

NO

YES

YES

YES

1

2

4

8

NO NO

NO

16

YES

YES

NO

Pm

Re2500012500625031251600800

NONONO

NO

NO

1600 3125 6250 12500800

800

1600

3125

6250

12500

25000

NO

NO

YES

YES

NO

YES

NO

YES

NOYES NO

Re

Rem

25000

YES

Fig. 11. Summary of the state (turbulent or not) of the flow in an (Re,Pm) plane (left panel) and in an (Re,ReM) plane (right panel) for the
models presented in this paper. In the later, the dashed line represents the Pm = 1 case. On both panels, “YES” means that a non vanishing
transport coefficient α was measure while “NO” means that MHD turbulence eventually decays: α = 0. All cases use a resolution (Nx,Ny, Nz) =
(128, 200, 128), except the models appearing in a solid squared box, for which the resolution was doubled. The model appearing in a dashed line
squared box corresponds to the marginal model described in Fig. 7.

Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally
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for the case when the magnetic field is presumed to have net
helicity. The magnetic helicity H , which may be regarded as a
topological quantity measuring the degree of entanglement or
knottedness of the field, is defined by

H =

∫

V

A · BdV, (9)

where A is the vector potential and the integral is over the whole
box. In our case the boundary conditions ensureH is gauge in-
variant. In ideal MHD H is conserved and so cannot grow by
dynamo action. When the resistivity is non zero, the induction
equation implies that (Moffatt & Proctor 1985)

dH

dt
= −2

∫

V

η(∇ × A) · (∇ × B)dV. (10)

Using the Schwartz inequality, this implies that

∣

∣

∣

∣

∣

1

H

dH

dt

∣

∣

∣

∣

∣

≤ 2ηmax|K|l
−2, (11)

where ηmax is the maximum value of η, K is the inverse of the
relative helicity given by

K =

√

∫

V

A2dV

∫

V

B2dV /H (12)

and the length scale l is defined through

l−4 =

∫

V
|∇ × A|2dV

∫

V
|∇ × B|2dV

∫

V
A2dV

∫

V
B2dV

· (13)

From Eq. (10) one can argue that for any field with non zero
relative helicity to grow in a finite time, the scale length l must
decrease to arbitrarily small scales as the transport coefficients
are decreased to small values.

Although the above problems are not directly dealing with
the MRI, and the discussion is by no means comprehensive, it is
suggestive in indicating that significant flow structures plausibly
occur at small scales as the transport coefficients are decreased
and also that some features may not vary monotonically as a
function of Reynolds number.

Another important feature apparent in the results presented
here is the increase of turbulent activity with Prandtl number at
fixed Reynolds number. This is difficult to quantify but may be
connected to the increasing inhibition of reconnection by mov-
ing field lines together when the viscosity increases.

In this context it is important to emphasize that the simula-
tions discussed here were carried out using an isothermal equa-
tion of state. However, there can be situations where a thermal
diffusivity needs to be considered in addition to viscosity and
resistivity. The isothermal approximation should be reasonable
as long as any length scale introduce by heat diffusion is sig-
nificantly longer than the resistive or viscous scales. When this
length scale becomes comparable to the others we would expect
the velocity and pressure fields to be affected on this scale. This
too may affect reconnection rates, the operation of a small scale
dynamo and a consequent inverse cascade. But the necessity of
small scales as argued above depends on a balance determined
by the induction equation and is not affected.

Pm

Re

Turbulence

No Turbulence
Asymptotic regime?

Fig. 13. Cartoon showing the variation of the critical Prandtl num-
ber Pmc, above which MHD turbulence is sustained as a function of
the Reynolds number. As simulations have not attained an asymptotic
regime, qualitative changes of behaviour cannot be ruled out if Re were
to be increased further.

5.3. Towards an asymptotic regime for the zero net flux
shearing box

As we mentioned above, we have demonstrated in the present
paper that for each value of the Reynolds number, there ex-
ists a critical Prandtl number Pmc below which turbulence de-
cays. The variation of Pmc with Re is sketched in Fig. 13. Given
this plot, one may want to extrapolate the behaviour of Pmc at
large Re. We want to stress that such an extrapolation cannot
be made based on our results: we did not reach an asymptotic
regime within the parameter regime we were able to study. This
will require further simulations, performed at larger Reynolds
number. Such calculations will have to be performed at resolu-
tions (512, 800, 512) and higher and will be extremely demand-
ing computationally. At the present time, any of the following
behaviour should be considered possible: Pmc could monotoni-
cally decrease to zero, tend to a finite value or reach a minimum
increasing again for larger Re.

However, it is interesting to note in this context that recent
work on fluctuating dynamos (driven by external forcing) indi-
cate that they can be maintained at small Pm but increasing val-
ues of Re are required as this decreases (Boldyrev & Cattaneo
2004; Ponty et al. 2005; Iskakov et al. 2007) exacly as one would
extrapolate using Fig. 13. We also point out that these results, as
do those based on kinematic dynamos, indicate the importance
of dynamo generated fields on small scales and also that these
may in turn act as a source for field on larger scales. Clearly
simulations at much higher resolution are required to investigate
the existence of such a regime in our case.

Another question that cannot be answered yet is whether α
attains a finite limit at large Reynolds number for a given Prandtl
number. The answer to this question would also require the res-
olution to be increased in order to extend the domain that can
be probed in the (Re, Pm) plane. Both issues are astrophysi-
cally important and need to be addressed in the future as soon
as the computing resources become more readily accessible to
the community.

5.4. Future work

It is also important to stress that the work in this paper applies to
an extremely simple set up of an unstratified shearing box with
zero net flux. The reason for focusing on this case was that it has
been considered that it could offer the possibility of a dynamo
in the local limit, this being independent of exterior boundary
conditions and imposed magnetic fields.
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The work here indicates the possibility of the importance of
small scales and only modest angular momentum transport in
this limit. It therefore also emphasises the need for studies of
more general configurations which take account of stratification,
global boundary conditions and imposed fields. There is no rea-
son to suppose that consideration of transport coefficients and
small scale phenomena are not important in these cases also so
this should be an important area for future investigations.
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