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Abstract. In this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical 

reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations 

equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass 

flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. 

The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.
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field. Magnetic nanofluids are useful in nanocryosurgery, aero-

dynamics sensors, blood flow analysis, nuclear plants, artificial 

kidneys, and smartfluids for vibration damping. A number of 

researchers have discussed different models of hydromagnetic 

nanofluid flow over stretching surfaces [9–16].

Many biological fluids, as well as the fluids that are used 

in industrial applications such as printer inks, animal blood, 

detergents, paint, food stuff, polymer liquids, etc. change their 

flow characteristics when subjected to applied shear stress, and 

thus differ from Newtonian fluids. These materials are called 

non-Newtonian fluids. Researchers have discussed several 

non-Newtonian fluid flow models such as Maxwell fluid, power 

law fluid, second or third grade fluid, etc. Eringen [17, 18] in-

troduced the theory of micropolar fluids for the first time. This 

theory deals with the intrinsic motion and local microstructure 

of the fluid particles and can be valuable when investigating the 

impact of polymer suspensions, colloidal solutions, biological 

and muddy fluids, etc. Furthermore, the impact of mass and heat 

transfer, combined with the impact of chemical reaction, has in 

the last few years been investigated with regard to possible ap-

plications in hydrometallurgical and chemical plants, including 

fruit-processing methods, freeze damage of crops, temperature 

distribution and growth of trees, and heat and mass transfer in 

cooling towers. Heat transfer due to surface convection and zero 

mass flux at a stretching/shrinking surface has gained signifi-

cance in material dying, hot wiring, nuclear plants, transpiration 

process, production of glass fiber, heat exchangers, prevention 

of energy, etc.

The numerical solution of the problem of MHD stagnation 

point flow of micropolar fluid towards a moving sheet was pre-

sented by Ashraf and Bashir [19]. The extension of the above 

problem was performed by Rashidi et al. [20]. They added the 

term of mixed convection to the problem, and solved it ana-

lytically. Rauf et al. [21] numerically analyzed the MHD flow 

of micropolar fluid over a stretchable disk. The effects of a po-

1. Introduction

The analysis of fluid flow over stretching/shrinking surfaces has 

been of immense interest for the researchers in the fields of en-

gineering and chemical process [1–4]. Especially the fluid flow 

generated by the surface is important in the extrusion and manu-

facturing process of material polymers, cooling systems, plastic 

industry, petrochemical industry, paper production, geophysical 

systems, power stations, chemical plants, air conditioning, re-

frigeration, etc. Out of all the above-mentioned systems, most 

attention was given to enhancing the energy generation and 

transfer of heat. Several methods have been proposed in this 

regard, but the techniques they employ are not suitable, due to 

lesser thermal conductivity of heat transfer fluid. Therefore, 

energy materials are introduced. These energy materials, known 

as nanomaterials, contain tiny particles of the same size as the 

de Broglie wave [5]. Therefore, nanoparticles have attracted 

researchers because of the abundance of applications thereof 

in technological and engineering processes. Nanoparticles in 

the base fluid, known as nanofluids, display thermophoresis 

and Brownian motion properties, which enhance the thermal 

performance and thermal conductivity of base fluids [6, 7]. 

Ultra-high heat transfer rates and extreme stability are the two 

main features of nanofluids [8] and do not cause problems such 

as erosion, sedimentation, and pressure drop.

Magnetohydrodynamics (MHD) is significant for chemistry, 

mathematics, physics, and engineering, and is applied in biolog-

ical transportation, pumps, mixing of samples, cooling of strips, 

drug delivery, MHD generators, etc. External applied magnetic 

field is very helpful when controlling heat transfer and flow. As 

nanoparticles increase the thermal and electrical conductivity 

of nanofluids, making them liable to influence the magnetic 
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rous medium along with heat and mass transfer were studied. 

Ashraf and Wehgal [22] solved the problem of MHD flow of 

micropolar fluid confined between two fixed porous disks with 

heat transfer characteristics. Shehzad et al. [23] applied an an-

alytical technique based on HAM to the problem of unsteady 

micropolar fluid and heat transfer influenced by a stretching 

sheet. Jalilpour et al. [24] applied HPM to the problem of MHD 

nanofluid flow over stretching sheet immersed in a porous me-

dium. Pal et al. [25] analyzed stagnation point radiative flow of 

nanofluid over a surface with porous medium. The above-men-

tioned problem was extended to mixed convective nanofluid 

flow with chemical reaction by Pal and Mandal [26]. Hayat et 

al. [27] considered the problem of mixed convective flow over 

a stretching surface with chemical reaction. They employed the 

convective-type boundary condition at the surface of a sheet. 

Kuznetsov and Nield [28] considered the problem of boundary 

layer flow of nanofluid past a vertical plate. They implemented 

boundary conditions which imply that the flux of nanoparticles 

is zero at the boundary. The problem of Maxwell nanofluid flow 

over a stretching surface was solved by Hayat et al. [29]. Here, 

the Kuznetsov and Nield condition [28] of zero mass flux at the 

surface of a sheet was employed. The different flow problems 

under convective surface conditions have been modeled and 

addressed by Hayat et al. [30‒32] and Imtiaz et al. [33].
Our main objective here is to find numerical solutions for 

MHD stagnation point flow of an incompressible, electrically 

conducting flow of micro nanofluid over a heated shrinking 

sheet. The sheet obeys the convective condition on tempera-

ture and the zero-mass condition. The variations of individual 

parameters of interest are examined.

2. Problem formulation

Here, two-dimensional laminar incompressible stagnation point 

flow of an electrically conducting micro nanofluid impinging 

in normal direction over a heated shrinking sheet is considered. 

We investigate the impact of magnetic field of strength B0. Mag-

netic field is utilized in transverse direction of the flow field. 

The governing equations are:
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where: u and v are the velocity components in the x and y di-

rections respectively, p is the pressure, υ is the microrotation, ρ 

is the density, μ is the viscosity, k is the vortex viscosity, j is the 

microinertia density, γ is the spin gradient viscosity, σe is the 

electrical conductivity of fluid, α is the thermal diffusivity of 

fluid, τ = (ρc)p
(ρc)f

 is the ratio of nanoparticle heat capacity and the 

base fluid heat capacity, DB is the Brownian diffusion coefficient, 

DT is the thermophoretic diffusion coefficient, and k1 is the re-

action coefficient. The boundary conditions are:
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coefficient. The boundary conditions are: 
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where b < 0 corresponds to the sheet shrinking rate and hf is 

the heat transfer coefficient. Considering the similarity trans-

formations:
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equations (1)-(5) become 
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equations (1–5) become
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Here, M =  σeB0
2

ρα  denotes the magnetic parameter, R1 =  k
μ   

the vortex viscosity parameter, C1 =  γ
μj  the spin gradient vis-

cosity, A1 =  μ
ρja  microinertia density parameter, Pr =  μcp

k0
  

the Prandtl number, Nb = (ρc)pDBC1

(ρc)fυ
 the Brownian motion param-

eter, Nt = (ρc)pDT(Tf ¡ T1)
(ρc)fυT1

 the thermophoresis parameter, Sc =  υ
DB

 

the Schmidt number, and γ1 = k1

a  the chemical reaction param-

eter.
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The dimensionless boundary conditions are:
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The dimensionless boundary condition

     
    

   
   
   





















,0,0

,0,1

,000

,010

,00,00,0






gf

NbNt

Bi

gfNf

υ




    

 (12)

where Bi = hf

k

υ
a

 is the heat transfer Biot number and N =  b
a  is 

the shrinking parameter.

3. Numerical solution

The Runge-Kutta-Fehlberg (RKF45) method is very helpful 

when solving 
dy

dx
 = f(x, y), y(xl) = yl. The procedure involves 

suitable step size which guarantees the accurateness in solu-

tion of the initial value problem. Every proper step contains 

two different types of approximations to the solution, which 

are computed and compared. When answers match closely, the 

approximation is valid. If answers are not accurate enough, then 

the step size is decreased. If the answers meet more than the 

significant digits, the step size is incremented. In each step the 

following six steps are required:
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The approximation of order 4 to solution is: 
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The approximation of order 4 to the solution is:
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A better approximation of order 5 to the solution is given by:
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Finally, dh stands for optimal step size and is obtained by 

multiplying h with a scalar d Here, d is determined by:
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where tol stands for the error tolerance.

A finite difference technique based on RKF45 method with 

a shooting technique [34–36] is implemented to obtain the nu-

merical solution of the systems (8–11) with the corresponding 

boundary conditions (12). The following are set:
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where prime stands for the derivative with respect to η. Using 

(17) into (8–11), we obtain the reduced first-order system of 

differential equations:
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Boundary conditions (12) become: 
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The boundary conditions (12) become
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Boundary conditions (12) become: 
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The Newton-Raphson algorithm and the shooting method 

are used to guess the conditions a1, a2, and a3 in (22). Finally, 

the problem is integrated to obtain the boundary conditions at 

η = 0. The convergence criteria are set to at least 10–7.

4. Results and discussion

This section is devoted to illustrating our findings in graph-

ical, as well as tabular forms. The dimensionless parameters 
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of our interests are the micropolar parameters R1, C1, and A1, 

magnetic parameter M, shrinking parameter N, Prandtl number 

Pr, heat transfer Biot number Bi, Schmidt number Sc, thermo-

phoretic parameter Nt, Brownian motion parameter Nb, and 

chemical reaction parameter γ1. To have the best knowledge 

of the physics of our model, we chose to describe shear and 

couple stresses and heat and mass transfer rates at the sheet, 

considering different values of the physical parameters. We 

fix R1 = 2, C1 = 0.2, A1 = 0.4, M = 0.5, N = –0.25, Pr = 0.3, 
Sc = 0.2, Nt = 0.3, Nb = 0.3, Bi = 0.4, and γ1 = 0.2 into our 
computation procedure, altering one parameter at a time, as dis-

cussed through graphs and tables. We adjusted η1 = 7, 10, 15 

in order to have asymptotic behavior of velocity, microrotation, 

temperature, and concentration profiles.

Figures 1–3 are drawn to explore the behavior of magnetic 

parameter M on velocity and microrotation. Here, M = 0 shows 
the hydrodynamic flow and M(>0) represents hydromagnetic 

flow. Increasing M results in an enhancement in normal ve-

locity profiles f(η) and streamwise velocity profiles f -A re .(η) ׳

verse flow region can be seen near the surface because of the 

shrinking of the sheet [19]. Fig. 1 shows that large M can be 

helpful to stop the reverse flow phenomenon. The imposed 

magnetic field produces a frictional force called the Lorentz 

force, which offers a resistance in a flow field, and due to its 

velocity, the boundary layer pushes towards the wall of the 

sheet, as shown in Fig. 2. An increase in the magnetic param-

eter causes a reduction in microrotation profiles, as described 

in Fig. 3.

Figures 4–6 are presented to investigate the impact of the 

shrinking parameter on f(η), f  and g(η). It is noted from ,(η) ׳

Figs. 4 and 5 that f(η) and f  decrease by enhancing N. The (η) ׳

reverse flow in the vicinity of surface of the sheet is also ob-

served for increased values in magnitude of N. Fig. 6 illustrates 

the influence of N on microrotation profiles g(η). The profiles 

are increased due to the enhanced values of magnitude of N. 

Fig. 7 explores the behavior of R1, C1, and A1 in microrotation. 

Influence of different values of micropolar parameters causes 

an enhancement in profiles g(η). Fig. 8 illustrates the effect of 

Prandtl number on temperature profiles. Physically, the Prandtl 

number is inversely proportional to the thermal diffusivity. 

Hence, larger values of Pr produce weaker thermal diffusivity. 

This corresponds to a reduction in both temperature and the 

Fig. 1. f(η) for different values of M

Fig. 4. f(η) for different values of N

f(
η)
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Fig. 2. f for different values of M (η) ׳
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Fig. 6. g(η) for different values of N
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associated boundary layer thickness. Fig. 9 is plotted to explore 

the impact of Bi on θ(η). Physically, the Biot number is the ratio 

of internal thermal resistance at the surface of the body to the 

boundary layer thermal resistance. Therefore, enhancing the 

values of Bi shows an increase in temperature profiles and its 

related boundary layer thickness. Fig. 10 is sketched for a better 

understanding of the impact of Sc on concentration profiles 

ϕ(η). Physically, Schmidt number is inversely proportional to 

the mass diffusion, therefore an increase in Sc causes a reduc-

tion in nanoparticle concentration profiles, as well as in related 

boundary layer thickness.

Figures 11–12 are designed to depict the effect of thermo-

phoretic and Brownian motion parameters on ϕ(η). In thermo-

phoresis, the small particles are pushed away from the hot sur-

face and are driven towards a cold surface, therefore increasing 

the values of Nt, which causes an increase in nanoparticle con-

centration profiles (Fig. 11). The Brownian motion comes into 

play due to the zig-zag movement of nanoparticles. Such motion 

then results in an increase of kinetic energy of particles, and 

hence the collision between the particles increases. Therefore, 

the Brownian motion is affected by the increasing values of Nb, 

which then reduces ϕ(η) with the relevant boundary layer thick-

ness, as shown in Fig. 12. Figure 13 shows that the profiles ϕ(η) 
and the appropriate boundary layer thickness decrease with de-

Fig. 7. g(η) for different four cases

Fig. 10. ϕ(η) for different values of Sc

g(
η)

ϕ(
η)

η

η

Fig. 13. ϕ(η) for different values of γ1

Fig. 8. θ(η) for different values of Pr

Fig. 11. ϕ(η) for different values of Nt
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η

η

Fig. 9. θ(η) for different values of Bi

Fig. 12. ϕ(η) for different values of Nb
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structive chemical reaction (γ1 > 0), whereas an opposite trend 

is seen for generative chemical reaction (γ1 < 0).
Table 1 is formed to describe the arbitrary values of micro-

polar parameters [19]. Table 2 is drawn to present the impact 

of the magnetic parameter, shrinking parameter and micropolar 

parameters on shear and couple stresses. It is noted that shear 

stresses intensify with an increase in M, while a reverse trend is 

observed for R1, C1, and A1. An increase in the shear stresses is 

seen for 0.25 < –N < 0.75, whereas the opposite behavior can 
be noted for 0.75 < –N < 1. The couple stresses are increasing 
for increasing values of micropolar parameters, magnetic pa-

rameter, and shrinking parameter, as shown in Table 2. Table 3 

displays the effects of heat transfer rate for various values of 

Pr and Bi. Rising values of the Prandtl number and heat transfer 

Biot number lead to an increase in heat transfer rate at the sheet. 

Table 4 presents the impact of the Schmidt number, thermopho-

retic parameter, Brownian motion parameter and destructive/

generative chemical reaction parameter on ϕ׳ (η). It is seen that 

the mass transfer rate is a decreasing function of Sc, Nb, and 

γ1. However, the opposite trend is noted for larger values of 

Nt. Table 5 was made to present the validity of the numerical 

results. It is apparent that the results are compared well with 

the previously published literature work.

Table 1 

Different values of R1, C1, and A1 for the four cases discussed

Case No. R1 C1 A1

1 1 0.1 0.2

2 1.5 0.15 0.3

3 2 0.2 0.4

4 3 0.3 0.6

Table 2 

Shear and couple stresses at sheet for different values  

of M, N, and four Cases of R1, C1, and A1

M –N Case No. (1 + R1) f″(0) g′(0)

0 0.25 3 0.72994 0.96967

1 0.99312 1.18024

2 1.54858 1.54426

3 2.19657 1.87129

0.5 0.25 3 0.80299 1.03122

0.5 0.85992 1.18253

0.75 0.86544 1.28875

1 0.80069 1.31458

0.5 0.25 1 1.04855 0.68654

2 0.90768 0.89683

3 0.80299 1.03122

4 0.66129 1.18097

Table 3 

Heat transfer rate at the sheet for different values of Pr and Bi

Pr Bi –θ′(0)

0.1 0.4 0.13516

0.2 0.15499

0.3 0.16835

0.5 0.18529

0.3 0.1 0.07444

0.2 0.11853

0.4 0.16835

1 0.22502

Table 4 

Mass transfer rate at the sheet for different values  

of Sc, Nt, Nb, and γ1

Sc Nt Nb γ1 ϕ′(0)

0.1 0.3 0.3 0.2 0.16848

0.2 0.16835

0.4 0.16817

0.8 0.16794

0.2 0.1 0.3 0.2 0.05619

0.2 0.11231

0.3 0.16835

0.4 0.22432

0.2 0.3 0.1 0.2 0.50505

0.2 0.25252

0.3 0.16835

0.4 0.12626

0.2 0.3 0.3 –0.1 0.16862

0.1 0.16842

0.5 0.16818

1 0.16798

Table 5 

Comparison of numerical values of shear and couple stresses at 

sheet for various values of M [19]

M

(1 + R1) f″(0) g′(0)

results from 

[19]

present 

study

results from 

[19]

present 

study

0 0.52887 0.52869 1.14119 1.14243

1 0.85965 0.85932 1.62744 1.62940

2 1.49003 1.48955 2.37378 2.37714

3 2.20069 2.20027 3.03622 3.04127
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5. Conclusion

The following conclusions can be drawn from the presented 

analysis:

1) Couple stresses are enhanced by increasing M, N, R1, 

C1, and D1.

2) Pr and Bi increase θ′(η).
3) Mass transfer rate enhances with the increase of Nt, 

whereas a reverse trend is noted in case of increasing 

Sc, Nb, and γ1.

4) Temperature profiles and thermal boundary layer 

thicknesses are decreasing functions of Pr, while the 

opposite behavior is seen in case of enhancing the 

values of Bi.

5) Concentration profile decreases for increasing values 

of the Schmidt number and Brownian motion param-

eter. On the other hand, the profiles increase for larger 

values of the thermophoretic parameter.
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