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Abstract

Background: Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of

many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition

devices, spatial and temporal image resolution increases, and data sets become very large.

Various image processing frameworks exists that make the development of new algorithms easy by using high level

programming languages or visual programming. These frameworks are also accessable to researchers that have no

background or little in software development because they take care of otherwise complex tasks. Specifically, the

management of working memory is taken care of automatically, usually at the price of requiring more it. As a result,

processing large data sets with these tools becomes increasingly difficult on work station class computers.

One alternative to using these high level processing tools is the development of new algorithms in a languages like

C++, that gives the developer full control over how memory is handled, but the resulting workflow for the

prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no

knowledge in software development.

Another alternative is in using command line tools that run image processing tasks, use the hard disk to store

intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual

programming, this approach is still accessable to researchers without a background in computer science. However,

only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide

an clear approach when one wants to shape a new command line tool from a prototype shell script.

Results: The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that

make it possible to run image processing tasks interactively in a command shell and to prototype by using the

according shell scripting language. Since the hard disk becomes the temporal storage memory management is

usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes,

the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design

based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the

requirement to touch or recompile existing code.

Conclusion: In this article, we describe the general design of MIA, a general purpouse framework for gray scale

image processing. We demonstrated the applicability of the software with example applications from three different

research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution

image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic

surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is

a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need

to be processed.
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Background
Imaging modalities like ultrasound, magnetic resonance

imaging (MRI), computed tomography (CT), positron

emission tomography (PET) make out the bulk of images

used in bio-medical imaging and image processing. Com-

mon to these imaging modalities is that they all provide

gray scale images, and although image fusion steadily

gains importance in image analysis, the focus is still on

processing these gray scale image, albeit only to properly

fuse modalities.

Challenges arise from the ever increasing improvement

of the imaging devices. On one hand, the spatial resolution

is increasing. For instance, in anthropological research

high resolution data sets of teeth that are obtained by

using micro CT (µCT) can easily reach 20GB. Likewise,

in medical research 7-Tesla MR scanners that offer imag-

ing at high resolution with a reasonable acquisition time

are more and more used and will most likely soon find

their way into the clinical routine. On the other hand, the

temporal resolution of data acquisition increases making

it possible to monitor dynamic processes, like the beating

heart, in real time, which also results in large data sets. As

a result, the software that is used to process this data must

handle working memory efficiently.

Image processing frameworks exist that focus on easy

prototyping, like SciLab [1], ImageJ [2], ICY [3], or the

image processing toolbox in Matlab. These frameworks

make it easy to develop new algorithms also for scientists

who have little or no experience in software development.

One of the reasons why these frameworks are easy to

use is that they hide the difficulties of memory manage-

ment, i.e. how and when working memory is allocated,

reused, and released. Without this kind of control the

developer can not specify when memory is to be released,

instead this is taken care of by, e.g., a garbage collector

(cf. e.g. [4]) that usually works asynchronously. In addition,

researchers inexperienced in structured and object ori-

ented programming tend to write code where temporary

variables are kept alive, even though they are no longer

used. Hence, when running algorithms that allocate mem-

ory temporarily, the amount of working memory that is

actually used may vastly exceed the amount of memory

that the algorithm theoretically requires. When working

with large data sets an image processing task may easily

require more memory that is installed in the work station,

resulting in the corresponding program being terminated

by the operating system before it can finish processing the

data. This makes it difficult to implement algorithms that

are supposed to work on large data sets with languages

that use this kind of automatic memory management.

To avoid these problems when developing new algo-

rithms, one can try to prototype by working with small

example data sets, and then translate the prototyped

algorithm to an implementation that gives the developer

full control over memory handling. However, switching

from one programming language used in prototyping to

another in the final implementation puts an additional

burden on the developers and introduces an additional

source for errors.

As a second alternative one can also prototype directly

in a language that gives full control over memory manage-

ment like C or C++, where the programmer can explicitly

decide when to allocate and free memory chunks. Here,

OpenCV [5] that focuses on computer vision tasks in 2D

images, and the insight toolkit (ITK) [6] could be used

as a basis. Especially the latter is very well suited for

bio-medical image processing. It is provided under a per-

missive license, comes with an in-depth documentation,

is backed by a commercial company, Kitware, and enjoys

a large user base. However, various reasons exist why an

alternative to prototyping in C++ by using, e.g., ITKmight

be sought for: Prototyping on a change code - compile -

run basis is very time consuming because compiling C++

code is notoriously slow [7], especially when dealing with

heavily templated code (like in ITK) that requires that the

implementation of most algorithms is provided by includ-

ing C++ header files that need to be processed in each

compilation run, even though they do not change when

the prototype algorithm implemented in the main com-

pilation unit changes. In addition, developing in C++ is

quite challenging for researchers inexperienced in soft-

ware development.

A third option for algorithmic prototyping is to use a

combination of command line tools and a scripting lan-

guage. Here, the hard disk becomes the temporary storage -

a figuratively limitless resource when compared to the

available random access memory (RAM) of a worksta-

tion. A command line tool based prototyping has also the

advantage that the researcher doesn’t need to know soft-

ware development, only a basic understanding of a shell

scripting language is required to facilitate some automa-

tion when developing new algorithms.

Toolkits that support this kind of command line based

programming are e.g. the FMRIB Software Library (FSL)

[8] and Lipsia [9] that are specifically designed for the

analysis of 3D FMRI, MRI and DTI brain imaging data.

Other software tools that may be of interest in this con-

text are elastix [10] and NiftyReg [11] that focus on image

registration only, and NiftySeg [12] that is tailored for

very specific segmentation tasks. Because of their specific

focus, these software packages are not very well suited

as a basis for a general purpose gray scale image pro-

cessing. With ITKTools [13] a set of image processing

command line tools exists that expose ITK functionality,

but their documentation is somewhat limited. In addition,

above toolkits don’t define a clear road for the transi-

tion from the script based prototype to a stand alone

program.
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Other software for image analysis exist that go beyond

image processing, even provide graphical user interfaces

and the means for visualization, e.g. 3D Slicer [14], the

Medical Imaging Toolkit (MITK) [15], andMeVisLab [16].

Out of these, only 3D Slicer is free software, i.e. its source

code is available and allows redistribution. 3D Slicer is

a platform that provides many means for image pro-

cessing and visualization, and acts as a front end to a

variety of image processing back-ends, to which it inter-

faces either by direct linking of libraries, through plug-ins,

or command line calls to external programs. However, 3D

Slicer also uses python scripting for algorithmic prototyp-

ing with the implications arising from automatic memory

management described above.

Apart from these problems regarding specifics of the

implementation and memory management, it is also of

interest to provide alternatives to widely used implemen-

tations of algorithms in order to assure the reproducibility

of research.

Contribution

With MIA we provide a free and open source software

package written in C++ that strives to solve some of these

challenges: It can be used for prototyping new algorithms

by working interactively on the command line and imple-

ment some automation by using a shell scripting language,

which makes it also accessible to researchers that are not

experienced in software development.

Because in this phase of algorithm development the

hard disk is the temporal storage, memory requirements

are generally a non-issue. For very large data setsMIA also

provides an interface to run certain image processing tasks

out-of-core, i.e. by only keeping a subset of the data in the

working memory.

MIA also provides libraries that can be used to shape

newly created algorithms into new command line tools.

Because a string based interface is used to describe fil-

ters, optimizers, etc., the algorithmic description on the

command line is often very similar to the implementation

in C++ code, making a transition from the former to the

latter easier.

Since the functionality of MIA is mostly provided by

plug-ins and one-purpose command line tools, it can eas-

ily be extended without the need to touch original code.

The reliability and trustworthiness of the library and plug-

in code is ensured by unit-tests [17]. Finally, using C++

as programming language leaves memory management

in the hands of the software developer, and hence, she

can tune the algorithms accordingly when the limit of the

available working memory becomes an issue.

In the following sections, the design and the develop-

ment methodology of MIA are described in more detail.

Examples are given how the software can be used interac-

tively, how the transition from shell script to C++ program

can be achieved, and options are discussed on how the

software can be extended for ones own needs. Finally,

examples of the successful application of the software in

image analysis tasks are discussed and remarks about the

current state and future directions conclude the article.

Implementation
MIA is a general purpose image processing toolbox writ-

ten in C++ that puts its focus on gray scale image process-

ing. It consists of the following main building blocks as

outlined in Figure 1:

1. data types for image processing,

2. specific, task oriented algorithms,

Figure 1 The logical structure of MIA. Library functions and plug-ins are under test to ensure the reliability of the implementation. Command line

tools are provided as logically independent entities that are either only wrappers around library functions or implement complex tasks that require

extra validation.
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3. plug-ins that provide specific functionality,

4. generic algorithms whose specific workings are

defined at run-time by indicating the appropriate

plug-ins,

5. tests to ensure the correct implementation of most of

above functionality,

6. logging facilities,

7. a command line parser that provide the means for

the automatic creation of the documentation for

command line tools, and

8. command line tools for interactively running image

processing tasks.

In addition to these components that directly form part

of the MIA software, we also provide some add-on tools

which can be used for the visualization of results and basic

manual segmentation tasks.

The functionality of MIA is split into a core library

for basic infrastructure, libraries dedicated to 2D and

3D image processing, and a library for very basic 3D

mesh handling. The generic image processing function-

ality provided includes image registration, image filter-

ing and combination, tools for the creation of synthetic

images and transformations, and image segmentation.

In order to reduce duplication of basic functionality

that is available elsewhere, MIA makes use of exter-

nal libraries for image in- and output, optimization,

Fourier and wavelet transforms, independent component

analysis, and unit testing (cf. Table 1). In a few cases,

freely available code was directly incorporated into the

library [18,19].

In the following, the building blocks of MIA are

discussed in more detail, we will give example code

fragments to illustrate some of the inner workings of the

software, and we briefly discuss the add-on tools.

Data types for image processing

MIA focuses on gray scale image processing, and there-

fore, it supports images with the following pixel/voxel

types: Boolean for binary images and masks, integer val-

ued types (signed and unsigned) of 8, 16, and 32 bits,

(on 64 bit platforms 64 bit integers are also supported),

as well as floating point valued pixels (single and double

precision).

Currently, MIA supports the processing of 2D and 3D

images, and of series of such images. In order to handle

the different pixel types in a way that is mostly transparent

to the application developer, a class hierarchy (Figure 2) is

used that employs an abstract base class C2DImage (the

3d implementation uses an equivalent notation by replac-

ing “2D” by “3D”), and its (shared) pointer type P2DImage.

This abstract base class holds only meta-data but no pixel

data and it provides the interface to query this meta-data

including image size and pixel type.

The actual images make used of the class T2DImage

which is a child class of C2DImage and templated over the

pixel type. Hence, within the code the image data is passed

around by means of the abstract base class and its respec-

tive (shared) pointer type, and only for image processing

the actual pixel type needs to be resolved.

The preferred approach to resolve the specific pixel type

of an image is a callback mechanism that implements the

processing of all possible pixel types by means of a tem-

plated functor (Program 1). This approach can also be

used to provide pixel type specific code paths by using

(partial) template specialization (cf. [20]).

Program 1. If the pixel type is neither known nor one specific pixel type required, the function mia::filter is used to

dispatch the image processing to a functor that implements the filter for all available data types, usually by means of a

template.
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Table 1 Required software packages

Package Additional information

CMake (≥ 2.8) http://www.cmake.org

C/C++ compiler ANSI compatibility and support for some features of the C++11 standard [35,36] are required. - GNU g++ (≥ 4.6) http://gcc.
gnu.org and clang (≥ 3.2) http://clang.llvm.org are known to work.

GIT (≥ 1.7) GIT - the fast version control system http://git-scm.com/ to download and manage the source code.

BOOST (≥ 1.46.1) The BOOST library http://www.boost.org

CBLAS e.g. ATLAS http://math-atlas.sourceforge.net

GSL (≥ 1.14) The GNU Scientific Library (GSL) http://www.gnu.org/software/gsl

Intel TBB (≥ 3.0) Intel threading building blocks for open source http://threadingbuildingblocks.org

libxml++ (≥ 2.34) The C++ wrapper for the libxml XML parser library libxml++ and all its dependencies, http://libxmlplusplus.sourceforge.net

fftw (≥ 3.0) Fast fourier transformation http://www.fftw.org

In cases where an algorithm only supports one pixel

type, or the actual pixel type is known because of the pre-

ceding processing, dynamic casting can also be used to

resolve the pixel type.

The templated image types (as well as other data con-

tainers) that are implemented in MIA are compatible with

the C++ standard template library (STL) [21] containers,

i.e. they provide the required iterators, access functions,

and type traits to make the application of algorithms pro-

vided by the STL and compatible libraries (e.g. BOOST

[22]) possible.

Filters and pipelines

Most image processing algorithms require the execution

of series of filters that are usually chained, to form a

pipeline, and of course, MIA supports this kind of pro-

cessing from the command line and within the C++ code.

In MIA, filters act as functions, i.e. after initialization

parameters can not be changed. Filters are only implicitly

chained together to form a filtering pipeline based on their

ordering in the appropriate command or function specifi-

cation. Within the application each filter is called in turn,

the obtained result overwrites the original data and is then

passed to the next filter to simulate a pipeline.

To filter images MIA provides two modes of processing:

The basic 2D and 3D filter that process complete images

one at a time, and the first-in first-out filter (FIFOF)

described in more detail in the next section that makes it

possible to interpret a series of n-D images as one (n+1)

image.

Given the comparable small memory footprint of the

filter objects themselves, the memory requirement for a

given filter chain composed of basic filters is effectively

independent of the filter chain length.

To create filter chains that are not linear, i.e. chains

where results of early filtering stages are used as input

in later filter stages, a virtual storage system is imple-

mented (Figure 3) that holds the data in working memory.

By adding, e.g. the tee filter at the appropriate pipeline

position an intermediate result can be stored in the virtual

storage from where it can be retrieved later.

Out-of-core processing

In order to process data sets that would require such

a large amount of memory that they do not fit in the

available working memory, in addition to the basic filter

infrastructure given above, an alternative filter infrastruc-

ture is provided that interprets a series of n-dimensional

images as one (n+1) dimensional image and, hence, makes

it possible to process series of n-D images as if it were one

(n+1)-D image.

Two types of processing may be considered: accumu-

lation and filtering. Accumulation can be implemented

straightforward, since it only requires to load each image

slice of a set, and accumulate the requested quantity, e.g.

a histogram. Filtering, on the other hand is implemented

similar to a first-in first-out buffer that we call a first-in

first-out filter (FIFOF). This approach is - on a very basic

level - comparable to the ITK streaming API; one notable

difference is that with ITK the input image may actually

be one large file and the number of data chunks is defined

by the program, whereas with MIA, the input is always

given as a series of files and the number of data chunks

corresponds to the number of input files.

Like with basic filters these filters can be chained

together, so that different filters can be run one after

another, without writing intermediate results to the hard

disk. The last FIFOF in the chain usually implements the

disk write operation. Apart from the chaining operation,

of the two operations a FIFOF makes visible to the user

one provides the means to push an image slice into the

FIFOF chain and the other to finalize the filtering. Each

FIFOF itself contains a buffer to accumulate and pro-

cess slice data according to the implemented filter. In the

simplest case, this buffer is used to store the number of

n-D slices required to provide the (n+1)-D neighborhood

information needed by the filter. In more advanced cases,

the buffer may also store additional intermediate results.

http://www.cmake.org
http://gcc.gnu.org
http://gcc.gnu.org
http://clang.llvm.org
http://git-scm.com/
http://www.boost.org
http://math-atlas.sourceforge.net
http://www.gnu.org/software/gsl
http://threadingbuildingblocks.org
http://libxmlplusplus.sourceforge.net
http://www.fftw.org
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Figure 2 The images are passed around in the code either as references to the abstract base class C2DImage or the corresponding shared

pointer. The actual image data is held within the derived templated class and the resolution of the actual pixel type is only done when the pixel

data needs to be processed.

During the course of the operation of a FIFOF. three

stages can be distinguished:

• First slices are pushed into the FIFOF, until the buffer

contains the minimum number of n-D slices required

to start (n+1)-D filtering. This push operation might

already prepare the input data in some way. For

example, in the (separable) Gaussian filter, a buffer

stores slices that are already filtered in two

dimensions.

Figure 3 Construction of non-linear pipelines by using the tee filter and virtual storage. Note, the virtual storage is located in main memory.
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• The buffer is then processed to obtain an output slice

that is then pushed further down the chain. In

addition, if the buffer has reached its maximum fill,

the first slice is removed from the buffer, making

room for the next input.
• When no more input is available, the finalize

operation of the FIFOF is executed. It takes care to

run the filtering of the remaining buffer content and

to push its result down the filter chain.

With this filter structure, the requirement on working

memory for a filter chain depends on the filters provided,

and the size of an image slice of the image stack to be

processed. Given an image slice size of w × h, and since

the (n+1)-D filter width is usually small compared to the

image size, the memory requirement of a filter chain can

be expressed as O(wh) and, therefore, independent from

the number of slices to be processed. However, this fil-

ter structure only provides the means to run filters that

process the 3D data in one single pass. This rules out fre-

quency domain filters as well as filters that need to be

solved iteratively, like e.g., anisotropic diffusion.

Note, however, although the basic infrastructure for this

type of processing is independent of the dimension, cur-

rently only filters for the processing of a series of 2D image

as a single 3D image are implemented.

Plug-ins and algorithms

In MIA, dynamically loadable plug-ins provide file in- and

output for most supported data and image types, and the

means to specialize generic algorithms. Plug-ins are mod-

ules that implement the specialization of a certain gener-

alized interface and are loaded during the run-time of a

program. Thereby, they provide an elegant way to extend

the functionality of such a software without touching its

original code base.

An example how to invoke various different plug-ins to

specialize a registration algorithm by invoking the respec-

tive plug-ins (i.e. transformation model, the image simi-

larity measure to be optimized, and which optimization

method should be used) is given in Program 2.

Currently, the following functionality is provided by

plug-ins: data file in- and output, image filters and com-

biners, image similarity measures, transformationmodels,

function minimizers, neighborhood shapes, interpolation

kernels, and interpolation boundary conditions (see also

below, section Overview over available algorithms and fil-

ters). Each type of plug-in is managed by its own plug-in

handler. To avoid superfluous hard disk access that would

result from initializing the same plug-in handler multiple

times, plug-in handlers are implemented using the single-

ton design pattern [24], i.e. only one plug-in handler exists

for a plug-in type during the run-time of the program.

When the plug-in handler is first invoked, the available

plug-ins are loaded and the plug-in list can not be changed

afterward, i.e. no additional plug-ins can be added during

the run-time of the program. However, for command-line

based programs this is usually not a problem.

Command line parser with auto-documentation

Although various implementations of command line

parsing libraries exist (e.g. popt [25], BOOST program

options [26]), they lack the option of generating a cross

referenced documentation of command line tools and

available plug-ins. Therefore, the command line parsing

was implemented from scratch to provide the means of

directly generating objects (filters, cost functions, ...) from

their string based plug-in descriptions, and to generate

an exhaustive description of the according command

line tool in XML format that describes its command line

options and the plug-ins that may be used by the tool.

This output can then be used in two ways: The creation

of documentation and introspection. Incorporated into

the MIA build process is the creation of man pages and a

cross referenced documentation in Docbook format [27]

of the command line tools and plug-ins. The latter is also

used to create a HTML based user reference, i.e. [28].

Since the XML descriptions of the command line tools

and plug-ins provide the introspection that is needed to

automatically form proper calls to MIA programs, they

could also be used to automatically create interfaces to

MIA functionality.

Program 2. Invocation of a non-linear registration of two images moving.png and fixed.png by using (1) a spline based

transformation model with a grid spacing of 5 pixels and penalizing the magnitude of the separate norms of the second

derivative of each of the deformation components [23], (2) minimizing the sum of squared differences, (3) by using L-

BFGS for minimization with a maximum of 200 iterations, and stopping if the absolute change of all transformation

parameters is below 0.001, and (4) writing the result to registered.png.
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Tests

In order to ensure reliability of the software, all plug-

ins and most algorithms are implemented following the

test driven development (TDD) paradigm [17]. BOOST

test [29] is used as the testing framework. Since plug-

ins provide a very specific functionality that can usually

be tested easily, the build system strongly encourages

the developer to provide the program that implements

the according unit tests. For many algorithms the same

assumption about testing can be made, and hence, unit

tests are provided. However, for some complex algo-

rithms, like e.g. non-linear image registration, or certain

segmentation algorithms the expected result can not eas-

ily be defined, because they depend on many factors,

like which optimization algorithm is used, which param-

eters are defined, and sometimes, algorithms even use

a random component for initialization. In these cases,

sensible unit-testing is impossible and the proof of cor-

rectness of the implementation requires a task specific

validation. Currently, we estimate that approximately 65%

of the library and the plug-in code is covered by unit

tests.

Command line tools

The command line tools that are implemented in MIA

provide the means to run image processing tasks without

the need for software development. This makes MIA also

usable for researchers with no or only a limited experience

in software development.

These tools follow the Unix-philosophy one tool, one

task, i.e. each command line program is designed to run

exactly one type of image processing task. This task may

be as simple as running a series of filters on an image, or

combine two images. In these cases the tools are simple

drivers to the library functionality that is already devel-

oped by using TDD, and it only needs to be ensured that

the parameters are properly passed to the library func-

tions. A command line tool may also comprise a complex

task like running a motion compensation algorithm on

a series of images. Here a full, task specific validation

is required, for example, like it was done in [30-32] for

various motion compensation algorithms.

Below, in section Overview over available algorithms

and filters an overview of the available tools is given.

Add-on tools

The add-on tools that aremaintained in conjunction at the

MIAweb page http://mia.sourceforge.net consist of a soft-

waremiaviewit that is used for basic visualization tasks, a

library mialm, and a volume surface renderer mialmpick

that can also be used to pick landmarks in 3D volume data

sets, and pymia bindings that makes some of the function-

ality available to python and also provide a simple pro-

gram for the manual segmentation of myocardial images.

Using and extendingMIA
The software can be utilized in various ways: The command

line programs can be called to run certain image process-

ing tasks ad-hoc, and one can make use of the library

to create new programs that combine the available image

processing operators. To tackle a certain image processing

task,MIA is designed to accommodate a work-flow for the

development of new algorithms as illustrated in Figure 4.

The command line programs provide a flexible means

for algorithmic prototyping based on interactive exe-

cution of atomic image processing tasks and their

combination in shell scripts. If functionality is missing,

like e.g, a filter, image combiner, or some specific algo-

rithm, the design that is based on the combination of

plug-in and task specific command line tools makes it

easy to add this functionality without touching existing

code. Hence, only little development overhead is required

in the process of prototyping, and no additional testing is

required to ensure that new code does not break existing

functionality.

Once a working prototype algorithm is implemented as

a shell script, moving to a tool written in C++ is made

easy, because the driving feature of most processing done

by using MIA, that is, specifying how the functionality of

certain plug-ins should be invoked, is very similar in both

cases. For example when comparing how the image fil-

ters are specified in a shell script (Program 3) versus in

C++ source code (Program 4), one can see that the filter

descriptions are essentially the same, only the (language

specific) glue code changes.

Program 3. Bash script for the segmentation of the brain from a T1MRI. The values ${...} are user provided parameters.

It would also be possible to run each filter separately, and store the result for algorithmic fine-tuning without the need

to re-do the whole pipeline.

http://mia.sourceforge.net
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Program 4. Sketch of a C++ program for the segmentation of the brain from a T1 MRI (The full code can be found

in the file src/3dbrainextractT1.cc of the MIA source code distribtion.) The parameters infile, outfile, wmprob,

thresh, and growshape, may be defined from the command line.

Image processing on the command line

As an example on how the command line tools can be

used to achieve a certain image processing task, a simple

algorithm to peel the skull and skin from a T1 magnetic

resonance image (MRI) will hold forth.

The tools are applied as given in Program 3 with the fol-

lowing objective: First, a 3-class adaptive fuzzy c-means

segmentation is run to correct the B0 gain field [33], and

to obtain a segmentation of the image into background,

white matter, and gray matter (line 1). Then, the proba-

bility image related to the white matter is selected (line

2). Finally, the following filter chain is run to obtain the

masked brain (lines 3–6): An initial white matter mask is

extracted by binarizing the probability image, the mask

is shrunk and small connections are eliminated by run-

ning a morphological erosion. Then connected compo-

nents are labeled and the largest connected component

is selected as the one representing an approximation of

the white brain matter. This approximation of the white

matter is used to initialize a region growing algorithm

on the B0 field corrected image using a given neigh-

borhood shape and intensity threshold to stop region

growing. Alternatively, region growing is stopped, if all

neighboring pixels that are not yet labeled have a higher
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Figure 4 Suggested work-flow for tackling new image processing tasks.

intensity value than the according seed pixel. Then, mor-

phological closing and opening are run to eliminate small

holes and smooth the mask boundary, and finally, the

obtained mask is used to extract the brain from the

B0 field corrected image. The parameters infile, outfile,

wmprob, erode_shape, thresh, growshape, close_shape, and

open_shape must be defined by the user in the shell

environment.

For initial prototyping it may be better to run each fil-

ter separately, and store the result on the hard disk, in

order to be able to tune the algorithm without re-applying

the full filter chain. Note, that storing intermediate results

to disk in itself imposes only a limited run-time penalty

if the software is executed on a computer that has suf-

ficient memory to hold all the data in working memory.

Here, at least with Linux, the operating systemwill use this

memory as disk cache and writes to the disk in the back-

ground without the program having to wait until the write

operation is finished [34]. Hence, no run-time penalty is

imposed on the software by the disk in- and output that

goes beyond the operations that are needed to convert the

data to and from the used in- and output file formats.

Translating the shell script into a C++ command line tool

Given successful prototyping, one may then shape the

obtained algorithm into a new command line tool. In the

case of the example given above this is straight-forward

and illustrated in Program 4. Here, lines 1–7 define the

parameters that need to be set from the command line.

Then, the command line options must be created and

parsed (line 9–19).

After loading the image (line 31), the fuzzy c-means seg-

mentation [33] with B0 gain field correction is run (line

22–24). In line 25–26, the gain field corrected image is

used in the internal data pool to make it accessible for

the plug-ins. Then, the white matter probability image is

selected from the fuzzy segmentation class images (line

27). In the next step, the descriptions of the binarize (line

28–29) and region grow filters (line 30–32) are created.

Finally, the filters are applied in the order given in the

run_filters function call, to obtain the masked brain image

from the white matter probability image and the gain field

corrected image (lines 33–37) and the result is saved (line

38). Also note, the function run_filters is implemented as a

variadic template [35,36] that can take an arbitrary num-

ber of parameters, and these parameters may be strings

that described the filters as well as previously created

filters.

In this example, the parameters erode_shape, close_

shape, and open_shape from the shell script example

above have been replaced by fixed values. Also note, that

the specification of filters is very similar in shell scripts

and C++ programs: In both cases, the filters are specified

by string literals or constructed strings. All functionality
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in MIA that is provided by plug-ins is invoked by similar

string based descriptions.

Extending the library

The library may be extended in various ways: Firstly, one

may add a plug-in to provide an additional specializa-

tion to an already implemented generic concept, such as

adding a new cost function, filter, or optimizer. Consid-

ering the MIA code base, adding a new plug-in has the

advantage of not being intrusive, i.e. the original code base

will not be touched by doing so. An example on how a

new plug-in is implemented can be found in the on-line

documentation [37].

If new algorithms are to be added that do not fit into

the abstract category provided by an existing plug-in type,

the proposed approach is first to create a new command

line tool that provides the intended functionality, and test

it on appropriate data. Then, after proper testing, the

algorithm may be moved to the core libraries as new

functions and classes, leaving the command line tool as

a skeleton program that handles the command line pars-

ing and just calls the functions that were moved to the

library.

Finally, specialized algorithms may be replaced by

generic versions, moving functionality to plug-ins, and

thereby making it interchangeable. In such a refactoring

step, new generic concepts will be added that provide new

plug-in types with their corresponding handlers and inter-

faces. This task is more intrusive since not only interfaces

may be added to the library but also already available

interfaces may be changed.

Use cases
In this section the usability of MIA for image process-

ing and analysis tasks will be illustrated by presenting

three use cases: Motion compensation in myocardial per-

fusion imaging, out-of-core processing of high resolution

data, and the evaluation of medical treatment. For the

first two use cases the according data sets and scripts to

run the analysis are available for download on the project

web page. Since the data used in the third use case can

not be completely anonymized (i.e. a 3D reconstruction

makes an identification of the patient possible) it will

only be made available on request. As an alternative for

hands on experience with the software we provide the

3D data of a pig head that was surgically altered in two

steps.

All experiments were run on a Gentoo Linux AMD64

workstation, facilitating an AMD Phenom II X6 1035T

Processor, 16 GB of DDR3 RAM (1333 MHz); the soft-

ware was compiled using GNU g++ 4.6.3 and the compiler

flags were set to “-O2 -g -funroll-loops -ftree-vectorize

-march=native -mtune=native -std=c++0x”.

Motion compensation in myocardial perfusion imaging

Perfusion quantification by using first-pass gadolinium-

enhancedmyocardial perfusionmagnetic resonance imag-

ing (MRI) has proved to be a reliable tool for the diag-

nosis of coronary artery disease that leads to reduced

blood flow to the myocardium. A typical imaging pro-

tocol usually acquires images for 60 seconds to cover

the complete first pass and to include some pre-

contrast baseline images. To quantify the blood flow, the

image intensity in the myocardium is tracked over time

(cf. [38,39]).

In order to perform an automatic assessment of the

intensity change over time, no movement should occur

between images taken at different times. Electrocardio-

gram (ECG) triggering is used to ensure that the heart is

always imaged at the same cardiac phase. However, since

the 60 seconds acquisition time span is too long for aver-

age people to hold their breath, breathing movement is

usually present in the image series.

Various methods for automatic motion compensa-

tion based on linear and non-linear registration have

been implemented in MIA [30-32,40,41]. By implement-

ing these methods all in the same general software

framework, a fair comparison has been made possi-

ble, since differentiating factors like the use of differ-

ent programming languages, different implementations

of optimizations algorithms, etc. could be eliminated

(cf. [32]).

As an example consider the motion compensation

applied to a perfusion data set of a patient considered clin-

ically to have a stress perfusion defect that was acquired

free breathing. First-pass contrast-enhanced myocardial

perfusion imaging data sets were acquired and pro-

cessed for one subjects under clinical research proto-

cols approved by the Institutional Review Boards of the

National Heart, Lung, and Blood Institute and Suburban

Hospital. The patients provided written informed con-

sent, and the analysis was approved by the NIH Office

of Human Subject Research. Images were taken in 60

time steps for three slices (at the base, mid, and apical

level). The first two time steps comprise proton density

weighted images that may be used for intensity inhomo-

geneity correction (see, e.g., [42]); however, this intensity

correction is not considered here. The remaining slices

were acquired by using the SR-FLASH protocol. An exam-

ple of the different time steps at the base level is given in

Figure 5.

Motion compensation was achieved by using the ICA

based method described in [32], running motion com-

pensation like given in Program 5. The run-time of the

motion compensation for one slice consisting of 60 frames

took approximately 85s when the registrations were run

serially, and 25s when run parallelized utilizing the six

available processor cores.
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Program 5. Run the slice wise motion compensation for a perfusion set within the directory where the original files are

stored as dcm (DICOM) files. First, the slices are sorted into time series sets based on the recorded z-location. Then for

each set ICA based motion compensation is run.

In order to qualitatively assess the success of the motion

compensation, horizontal and vertical cuts (Figure 6 (a))

through the temporal stack of the slices can be visu-

alized (Figure 6(b-e)), and a quantitative validation can

be obtained by comparing automatically obtained time-

intensity curves of the myocardium to manually obtained

ones (Figure 7). It is clearly visible how the motion was

eliminated from the image series, making an automatic

analysis feasible. For a detailed discussion of this analysis

and the validation of the according methods implemented

in MIA by using a larger set of patients the reader is

referred to [30-32]. Revised pre-prints of these articles

are also available as downloads on the MIA project home

page [37].

Segmentation of high resolutionµCT data by out-of-core

processing

Paleoanthropological research increasingly employs the

use of non-destructive imaging technologies, such as

microtomography. These technologies introduce several

advantages into the research process, most importantly

the preservation of valuable fossil and extant biologi-

cal tissues (in lieu of physical and chemical alteration

of these specimens to examine their internal properties).

One research area where many samples are available is

the analysis of teeth. Teeth dominate the fossil record,

because of their resistance to diagenetic alteration and

other degenerative taphonomic processes, and the ability

to extract new information from their internal structures

allows us to address important aspects of human evolu-

tionary history such as processes of tooth development

[43-45], species identification and diversity [46,47], and

the evolution of human/primate diet [48].

Amongst others, the comparative analysis of tooth

shape has applications for understanding the function

of teeth as well as reconstructing the taxonomy and

phylogeny of living and extinct mammalian species. High-

resolution computed tomography hasmade possible accu-

rate 3D digital reconstruction of both external tooth shape

and internal tooth structure. However, since the image

data is acquired at a high resolution (50 pixels per mm and

more) the resulting data sets are very large (possibly up

to 20 GB per tooth). Processing this data on workstation

class computers can hardly be done using software imple-

mentations that require loading all data into the working

memory, and do not provide the user with a tight control

over the memory management, i.e. out-of-core processing

is a requirement. Furthermore, the segmentation of teeth

is particularly difficult to automate given the large num-

ber of interfaces between tissues (e.g., air-enamel, enamel-

(a) Right ventricle (RV) peak (b) Left ventricle (LV) peak (c) myocardial perfusion

Figure 5 Images from a first-pass gadolinium-enhancedmyocardial perfusion MRI study, here taken at the moment when the contrast

agent first enters the right ventricle (RV) (a), then the left ventricle (LV) (b), and finally, perfuses the LVmyocardium (c). Note, the

hypointense region in the perfused myocardium (c) indicates a reduction in blood flow.
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(a) legend

(b) H before (c) V before

(d) H after (e) V after

Figure 6 Profiles obtained by cutting through the time stack at the locations indicated (a) before and after registration. (a) Location of the

horizontal (H) and vertical (V) cuts used to obtain the intensity profiles shown in (b-e), as well as the location of the myocardial section (S) whose

time-intensity profiles are shown in Figure 7. In the profiles cut through the time stack of the original series (b,c), the breathing movement is clearly

visible. In the registered series (d,e), this movement has been considerably reduced.

dentine, dentine-pulp, dentine-air, and dentine-bone).

In particular, voxels at the air-enamel interface tend to

overlap in gray scale value with dentine. This may result

in a segmentation that falsely indicates the presence of

dentine on the surface of the enamel cap (Figure 8 (left)).

The FIFO filtering implementation in MIA was specif-

ically designed for this kind of data and as example of

its applicability we illustrate here how the pre-filtering

and segmentation of a high resolution microtomographic

scan of a chimpanzee lower molar (isotropic voxel reso-

lution of 0.028mm) can be achieved (Figure 9). The input

data consisted of 769 slices at a resolution of 1824×1392

pixels (approximately 2 Giga-pixel). In order to obtain a

segmentation of the enamel and dentine, first the images

were smoothed with a median filter followed by the edge

preserving mean-least-variance filter, both applied with a

filter width parameter of two. These filters were applied

as FIFO-filter to process the image series as a 3D volume.

After filtering, an accurate automatic segmentation of

dentine and enamel tissue can be easily achieved (Figure 8

(right)). Importantly, a proper segmentation reduces the

necessity to edit by hand hundreds, or even thousands, of

individual slices.

A segmentation then can either be achieved by using

interactive tools, like e.g. Avizo, or by using additional fil-

ters available inMIA. In the case presented here, based on

the all-over histogram of the images, a three-class fuzzy c-

means classification of the intensity values was obtained,

and enamel and background where segmented by using

the classification to seed a region growing algorithm.

Finally, the dentine was segmented as the remainder. For

further analysis onemay then evaluate the enamel-dentine
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Figure 7 Automatically obtained time-intensity curves before (green), and after (blue) motion compensation of the section S of the

myocardium as indicated in Figure 6(a), compared to the manually (red) obtained one. Note, before motion compensation the oscillation of

the automatically obtained curve (green) hinders an automatic analysis of the contrast agent uptake of the myocardium which is used to quantify

blood flow. After motion compensation, the automatically obtained time-intensity curve (blue) follows closely the manual obtained one (red),

making a proper quantification possible.
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Figure 8 Visualization of of a cut through the original (left) and filtered tooth data (right) by usingmialmpick. The left image was

post-processed to colorize the offending pixels. All pixels with intensities outside the range [46,90] were discarded, the resulting surface is expected

to correspond to the dentine. Before filtering the level of noise results in overlapping intensities for dentine and enamel at the air-enamel boundary

that is not eliminated by this segmentation approach and results in the appearance of a dentine-like surface (colored red) mimicking the enamel

cap (left). Running the out-of-core filters significantly reduces this overlap providing a better representation of the dentine surface (right).

boundary using morphological filters. By running a dis-

tance transform [49] on this boundary one can then, e.g.

measure the enamel thickness that can give a variety of

insights to human and primate evolution (cf. [48]). A

visualization of the automatic evaluation of the enamel

thickness of the example tooth is given in Figure 10.

The run-time to extract the enamel-dentine and the

enamel air boundaries for the given data set was 90 min-

utes. Extracting the enamel surface, optimizing it by using

a mesh-decimation algorithm implemented in the GNU

Triangulated Surface library [50], and colorizing it accord-

ing to the enamel thickness took another 60 minutes.

Evaluating medical treatment

In many surgical specialties a certain need exists to eval-

uate treatment outcome. If pre- and post-therapeutic 3D

datasets exist, MIA can be used to evaluate, quantify, and

thus help to understand, therapy induced changes. This

way MIA aids to improve treatment strategies and may

improve future surgical outcome.

(a) example slice of tooth µ CT scan

(b) original

(c) filtered

Figure 9 Example slice of a primate molar scanned at a resolution of 0.028 × 0.028 × 0.028 mm3 (a). The original image (b) is very noisy

making it difficult to properly segment the boundaries. After applying the out-of-core filtering, the tissue boundaries are more prominent (c) and

segmentation can be achieved e.g. by thresholding.
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Figure 10 Visualization the enamel thickness obtained by running the MIA tool chain on the provided example tooth data by using

viewitgui. The scale is given in pixel units, i.e. the maximum value of 97.2 corresponds to a thickness of approximately 2.7mm.

As an example, we given the analysis of a treatment by

means of orthognathic surgery (i.e. changing the position

of the jaws). In this case, midfacial distraction osteogen-

esis using a rigid external distraction (RED) system was

utilized to correct a midfacial hypoplasia and retrognathia

associated with isolated cleft palate (Figure 11).

Using a RED system for midfacial distraction osteoge-

nesis is a method to correct the underdevelopment of

the midface, surpassing traditional orthognathic surgi-

cal approaches for these patients (e.g. [51]). In complex

malformations, surgery planning is based on CT images

followed by a modified midfacial osteotomy. Finally, the

midface is slowly advanced by a halo-borne distraction

device until a correction of the midfacial deficiency is

achieved. Striking aesthetic improvements are obvious

(Figure 11(a), left vs. right), but the analysis of the three-

dimensional bony changes of the skull is necessary to get

a better understanding of the effects of the distractor onto

the whole skull, and thus, to improve therapy planning.

Based on the routinely acquired pre- and postopera-

tive CT scans, and by using the fluid dynamics based

image registration [52] implemented in MIA, the defor-

mation field that described the underlying transforma-

tion could be estimated, and an analysis of the changes

could be achieved (Figure 11(b,c)). Here the distrac-

tion osteogenesis resulted in a forward-downward dis-

placement of the maxilla accompanied by a clockwise

maxillary-mandibular rotation achieving the intended

aesthetic improvements. The processing of these images

of approximately 2503 voxels, including the rescaling to

an isotropic voxel representation, rigid registration, non-

linear fluid-dynamics based registration, and the extrac-

tion and optimization of the iso-surface that corresponds

to the skull took approximately 15 min.

Based on this kind of analysis the outcome of the treat-

ment by means of the RED system became more pre-

dictable resulting in better treatment outcome and higher

patient satisfaction (cf. [53-55]).

For a landmark based validation of the method executed

on 20 patient data sets the reader is referred to [53] (A

pre-print of the article is also available on theMIA project

home page [37]).

Conclusion and future work
In this paper, we have presented a software package frame-

work for general purpose gray scale image processing

that is implemented in C++. Various image processing

algorithms are implemented in MIA, amongst these spe-

cific segmentation algorithms, a variety of image filters

and combiners, and generic image registration algorithms.

One can make use of this functionality for ad-hoc image

processing by running the various command line tools

that are provided by the software. By offering an applica-

tion programming interface (API) that exposes the special-

ized functionality provided by the plug-ins by the same

string based interface that is used with the command
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(a) Patient before (left) and after (right) mid-facial distraction

(b) Changes in soft tissue (c) Shape change of the mid-facial bones

Figure 11 A 17-year-old girl suffering frommidfacial hypoplasia and retrognathia associated with isolated cleft palate (a, left).

Postoperative situation shows a harmonic maxillo-mandibular relationship and markedly improved esthetic appearance (a, right). Visualizing the

changes by fluid-dynamical non-linear registration displays the complex changes caused by the forward-downward displacement and clockwise

maxillary-mandibular rotation (b, c). Red indicates displacements in the direction of the surface normal, and blue indicates displacements in the

opposite direction of the surface normal. The visualization was obtained by usingmiaviewit.

line tools, the transition from script based prototyp-

ing to fully fledged programs is made easy. Because of

its modular design that is based on dynamically load-

able plug-ins and single task command line tools, adding

new functionality to MIA is made easy and normally

doesn’t require existing code to be changes, let alone

recompiled.

We have illustrated the applicability of the software

by providing examples from different research areas

where the tool kit has and is being used. We showed how



Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 17 of 20

http://www.scfbm.org/content/8/1/20

the software can be used for motion compensation of

image series in the specific case of myocardial perfusion

imaging, we presented an example of out-of-core image

processing that is useful for the (pre-)processing of high

resolution image data that is used in virtual anthropo-

logical research, and we provided an example for the

retrospective analysis of mid-facial surgery by means of

an external distraction device (RED) that has been and

is used to improve the understanding of the underlying

mechanics of the treatment.

The focus for the further development of MIA follows

two main directions: On one hand, the code base is con-

stantly improved by increasing test coverage, new algo-

rithms are added as new application areas are explored.

Here, of specific interest it is to improve existing and add

new methods that are required for the processing and

analysis of 3D+t data, and to introduce multi-threading

to exploit the now commonly available multi-core hard-

ware architectures, especially for the application of the

software to high resolution and 3D data sets. On the

other hand, given that the known user base of MIA users

(i.e. of those who give feedback) is limited to the work

groups of the contributing authors, it is in our inter-

est to grow a lager community, and therefore, in order

to encourage third party contributions, focus is also laid

on providing tutorials for the use of and development

with MIA.

Availability and requirements
Software

Project name: Medical Image Analysis

Project home page: http://mia.sourceforge.net/

Operating system(s): POSIX compatible, Linux is tested.

Programming language(s): C/C++

Other requirements: In order to compile the software the

packages given in Table 1) are required. Additional func-

tionality can be enabled if the packages given in Table 2

are also available.

License: GNU GPL v3 or later

Any restrictions to use by non-academics: None

Additional notes about availability and quality assurance

The source code is manged in a public GIT repository

[56], and the master branch of the version control system

is normally kept in a stable state, i.e. before upload-

ing changes it is tested whether all unit tests pass on

the main developers platform (Linux x86_64). Bugs are

tracked publicly [57], and for discussions public forums

are available [58].

In addition, tagged releases of the source code are made

available on the project home page. For these releases

Debian GNU/Linux packages (mia-tools for end users,

and libmia-2.0-dev for developers) are sponsored by the

Debian-med project [59]. Back-ports to the current sta-

ble long time release version of Ubuntu Linux (12.04) are

provided in a personal package archive [60].

Note, that while the GIT repository is not under an

automatic test regime, the Debian GNU/Linux packag-

ing process adds this additional layer of quality assur-

ance because packaging only succeeds when all unit tests

pass. Hence, when using the packages provided by the

Debian/Ubuntu repositories it is ensured that all unit tests

pass on the respective architecture.

Licensing considerations

MIA has been licensed under the terms of the GNU GPL

version 3 for two reasons: Firstly, it is the software license

that in our opinion best protects the interests of the soft-

ware user, i.e. with its most prominent requirement that

the distribution object code of a work covered by the GPL

must be accompanied by the source code, or an offer to

obtain the source code [61], the GPL license ensures that

a user will always have access to the source code, the

right to learn from it, tinker with it, improve it, contract

someone to improve it, and redistribute it and derivative

versions of it under the same GPL license. Secondly, MIA

makes use of the GNU scientific library and IT++, which

are both exclusively distributed under the terms of the

GNU GPL, thereby imposing these terms also on the dis-

tribution of MIA. Note however, that software provided

under the GPL can still be sold (cf. [62]), and it can also be

Table 2 Supported external packages

Package Additional information

DCMTK DICOM image IO (partial support) http://dicom.offis.de/dcmtk

GTS GNU triangulated surfaces library to support mesh processing and iso-surface extraction from volume data http://gts.sourceforge.net

IT++ Signal processing library http://itpp.sourceforge.net

NLopt Nonlinear optimizers library http://ab-initio.mit.edu/wiki/index.php/NLopt

OpenEXR A HDR image library that supports 32 bit integer and floating point valued images http://www.openexr.org

PNG Portable network graphics http://www.libpng.org

TIFF The tagged image file sormat http://www.remotesensing.org/libtiff/libtiff.html

VTK Visualization toolkit data IO (partial support) http://www.vtk.org

http://mia.sourceforge.net/
http://dicom.offis.de/dcmtk
http://gts.sourceforge.net
http://itpp.sourceforge.net
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.openexr.org
http://www.libpng.org
http://www.remotesensing.org/libtiff/libtiff.html
http://www.vtk.org
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distributed as part of medical devices where special certi-

fication may restrict the ability of the user to run changed

code.

Overview over available algorithms and filters

At the time of this writing MIA version 2.0.10 is tagged as

stable and it provides tools to run the following tasks on

2D and 3D images:

• image conversion : combining series of 2D images to

3D images and extracting 2D slices from 3D images,

selecting images from multi-frame data sets, and

converting raw data to annotated 2D or 3D images,

image file type conversion (implicitly based on filter

output file type).
• image filtering : standard morphological filters (e. g.

erode, dilate, thinning, open, close), pixel type

conversion, various neighborhood filters in 2D and

3D (median, mean, Gaussian smoothing), point filters

(binarize, invert, intensity-bandpass), segmentation

filters (kmeans, seeded and basic watershed), and

pipeline helper filters; in total 40 2D filters, 31 3D

filters, and 9 FIFO filters are available. In addition,

one FIFO byslice provides the means to make use of

the available 2D filters in a FIFO pipeline.
• image combination : Combining pairs of images

pixel-wise either arithmetically (subtract, add,

multiply pixel values), or logically (and, or, xor, ...).
• image registration : linear and non-linear registration

in 2D and 3D optimizing various cost functions, and

working on pairs or series of images. Non-linear

registration includes transformations defined by

B-splines [63] regularized by a vector-spline model

[23], and dense vector fields regularized by a

linear-elastic or a fluid-dynamical model [52,64], and

possible optimizers are provided by the GNU

Scientific library [65] and NLopt [66].
• image segmentation : 2D and 3D implementations for

fuzzy c-means based segmentation [33,67] are

provided.
• Myocardial perfusion analysis : A large set of tools is

available that centers around motion compensation

in perfusion imaging and its validation.

All filters, image similarity measures, optimizers, and

most image combiners are implemented as plug-ins and

are, hence, are also available through API calls. In addition

to these image centric tools and filters, some facilities are

available to create triangular meshes from 3D volume data

and process these meshes.

An exhaustive, cross-referenced list of tools and plug-

ins that are implemented within the current stable release

is available on-line [28]. This documentation can also be

created in the build process.

Consent
Written informed consent was obtained from the patients

whose data was used in use case one and three for the

publication of this report and any accompanying images.
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