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Understanding the computations performed in the brain 
will require a comprehensive characterization of behav-
ior1–3. This realization has fueled a recent surge in methods 

devoted to the measurement, quantification and modeling of natu-
ral behaviors4–8. Historically, studies of perceptual decision-making 
behavior have tended to rely on models derived from signal 
detection theory9,10 or evidence accumulation11–13. More recently, 
approaches based on reinforcement learning have also been used 
to model the effects of context, reward and trial history on per-
ceptual decision-making behavior14–18. In all cases, however, these 
approaches describe decision-making in terms of a single strategy 
that does not change abruptly across trials or sessions.

One puzzling aspect of sensory decision-making behavior is the 
presence of so-called ‘lapses’, in which an observer makes an error 
despite the availability of strong sensory evidence. The term itself 
suggests an error that arises from a momentary lapse in attention or 
memory, as opposed to an inability to perceive the sensory stimu-
lus. Lapses arise in all species but are surprisingly frequent in rodent 
experiments, where lapses can comprise up to 10−20% of all trials19–21.

The standard approach for modeling lapses involves augmenting 
the classic psychometric curve with a ‘lapse parameter’, which char-
acterizes the probability that the observer simply ignores the stimu-
lus on any given trial22–24. This model can be conceived as a mixture 
model25 in which, on every trial, the animal flips a biased coin to 
determine whether or not to pay attention to the stimulus when 
making its choice. Previous literature has offered a variety of expla-
nations for lapses, including inattention, motor error and incom-
plete knowledge of the task22,24,26, and recent work has argued that 
they reflect an active process of uncertainty-guided exploration17. 
However, a common thread to these explanations is that lapses arise 
independently across trials, in a way that does not depend on the 
time course of other lapses.

Here we show that lapses do not arise independently but, rather, 
depend heavily on latent states that underlie decision-making 

behavior. We use a modeling framework based on hidden Markov 
models (HMMs) to show that mice rely on discrete decision-making 
strategies that persist for tens to hundreds of trials. Although the 
classic lapse model corresponds to a special case in our frame-
work, the model that best described the empirical choice data of 
real mice had one state corresponding to an ‘engaged’ strategy, in 
which the animal’s choices were strongly influenced by the sensory 
stimulus, and other states that corresponded to biased or weakly 
stimulus-dependent strategies. Our analyses show that lapses 
arise primarily during long sequences of trials when the animal 
is in a biased or disengaged state. Conversely, we found that ani-
mals with high apparent lapse rates might, nevertheless, be capable 
of high-accuracy performance for extended blocks of trials. We 
applied our modeling framework to datasets from two different 
mouse decision-making experiments19,20 and to one dataset from 
a decision-making experiment in humans27. Taken together, these 
results shed substantial new light on the factors governing sensory 
decision-making and provide a powerful set of tools for identifying 
hidden states in behavioral data.

Results
Classic lapse model for sensory decision-making. A com-
mon approach for analyzing data from two-choice perceptual 
decision-making experiments involves the psychometric curve, 
which describes the probability that the animal chooses one 
option (for example, ‘rightward’) as a function of the stimulus 
value22–24. The psychometric curve is commonly parameterized 
as a sigmoidal function that depends on a linear function of the 
stimulus plus an offset or bias. This sigmoid rises from a mini-
mum value of γr to a maximal value of 1 − γl, where γr and γl denote 
‘lapse’ parameters, which describe the probability of making a 
rightward or leftward choice independent of the stimulus value. 
Thus, the probability of a rightward choice is always at least γr, 
and it cannot be greater than 1 − γl. In what follows, we will refer 
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to this as the ‘classic lapse model of choice behavior’, which can  
be written as:

p(yt = 1|xt) = (1− (γr + γl))
1

1+ e−xt·w + γr, (1)

where yt ∈ {0, 1} represents the choice (left or right) that an animal 
makes at trial t; xt ∈ R

M is a vector of covariates; and w ∈ R
M is a 

vector of weights that describes how much each covariate influences 
the animal’s choice. Note that xt includes both the stimulus and a 
constant ‘1’ element to capture the bias or offset, but it may also 
include other covariates that empirically influence choice, such as 
previous choices, stimuli and rewards28–30.

Although the classic lapse model can be viewed as defining a 
particular sigmoid-shaped curve relating the stimulus strength to 
behavior (Fig. 1c), it can equally be viewed as a mixture model25. In 
this interpretation, we regard the animal as having an internal state 
zt that takes on one of two different values on each trial, namely 
‘engaged’ or ‘lapse’. If the animal is engaged, it makes its choice 
according to the classic sigmoid curve (which saturates at 0 and 1). 
If lapsing, it ignores the stimulus and makes its choice based on only 
the relative probabilities of a left and right lapse. Mathematically, 
this can be written as:

p(yt = 1|xt) =
{ 1

1+e−w·xt , zt = “engaged”
γr

γr+γl
, zt = “lapse”,

(2)

where p(zt =“lapse”) = (γr + γl) and p(zt =“engaged”) = 1 − (γr + γl). In 
this interpretation, the animal flips a biased coin, with fixed prob-
ability (γr + γl), on each trial, and then adopts one of two strategies 
based on the outcome—a strategy that depends on the stimulus 
versus one that ignores it. Note that the animal can make a correct 
choice in the lapse state through pure luck; we use ‘lapse’ here sim-
ply to indicate that the animal is not relying on the stimulus when 
making its decision.

Viewing the classic lapse model as a mixture model highlights 
some of its limitations. First, it assumes that animals switch between 
only two decision-making strategies. Second, it assumes that lapses 
occur independently in time, according to an independent Bernoulli 
random variable on each trial. Finally, the model assumes that choices 
in the ‘lapse’ state are fully independent of the stimulus, neglecting 
the possibility that they are still weakly stimulus dependent24 or are 
influenced by other covariates such as reward or choice history28,29. 
These limitations motivate us to consider a more general family of 
models, which includes the classic lapse model as a special case.

A model for decision-making with multiple strategies. 
Recognizing the limitations of the classic lapse model, we propose 
to analyze perceptual decision-making behavior using a framework 
based on HMMs with Bernoulli generalized linear model (GLM) 
observations6,31. The resulting ‘GLM-HMM’ framework, also 
known as an input–output HMM32, allows for an arbitrary number 
of states, which can persist for an extended number of trials and 
exhibit different dependencies on the stimulus and other covariates.
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Fig. 1 | The GLM-HMM generalizes the classic lapse model. a, The classic lapse model formulated as a two-state GLM-HMM. Each box represents a 
GLM describing how the probability of a binary choice depends on the stimulus in the corresponding state: ‘engaged’ (left) or ‘lapse’ (right). Arrows 
between boxes indicate the transition probabilities between states. Note that the probability of switching to the engaged state at the next trial is always 
0.8 (it is independent of state at the current trial), and, similarly, there is always a 0.2 probability of entering the lapse state on each trial. b, An example 
(simulated) sequence for the animal’s internal state when the transitions between states are governed by the probabilities in a. Notice that the lapse 
state tends to last for only a single trial at a time. c, Psychometric function arising from the model shown in a, depicting the probability of a rightward 
choice as a function of the stimulus. The parameters γr and γl denote the probability of a rightward and leftward lapse, respectively. As specified by 
the transition probabilities in a, the total lapse probability for this model is γr + γl = 0.2. d, Example three-state GLM-HMM, with three different GLMs 
corresponding to different decision-making strategies (labeled ‘engaged’, ‘disengaged’ and ‘right-biased’). Note that these are just example states for 
the three-state GLM-HMM. In reality, we will learn the states that best describe each animal’s choice data using the process described in the Methods 
section. The high self-transition probabilities of 0.95, 0.86 and 0.75 ensure that these states typically persist for many trials in a row. e, An example 
sequence for the animal’s internal state sampled from the GLM-HMM shown in d. f, The psychometric curve arising from the model shown in d, which 
corresponds to a weighted average of the psychometric functions associated with each state. Note that, although the decision-making models shown 
in a and d are vastly different, the resulting psychometric curves are nearly identical, meaning that the psychometric curve alone cannot be used to 
distinguish them.
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A GLM-HMM has two basic pieces: an HMM governing the dis-
tribution over latent states and a set of state-specific GLMs, specify-
ing the decision-making strategy employed in each state (Fig. 1). 
For a GLM-HMM with K latent states, the HMM has a K × K transi-
tion matrix A specifying the probability of transitioning from any 
state to any other,

p(zt = k|zt−1 = j) = Ajk, (3)

where zt−1 and zt indicate the latent state at trials t − 1 and t, respec-
tively. The ‘Markov’ property of the HMM is that the state on any 
trial depends only on the state from the previous trial, and the ‘hid-
den’ property refers to the fact that states are latent or hidden from 
external observers. For completeness, the HMM also has a distribu-
tion over initial states, given by a K-element vector π whose ele-
ments sum to 1, giving p(z1 = k) = πk.

To describe the state-dependent mapping from inputs to deci-
sions, the GLM-HMM contains K independent Bernoulli GLMs, 
each defined by a weight vector specifying how inputs are integrated 
in that particular state. The probability of a rightward choice (yt = 1) 
given the input vector xt and the latent state zt is given by

p(yt = 1|xt, zt = k) = 1
1+ e−xt·wk

, (4)

where wk ∈ R
M denotes the GLM weights for latent state 

k ∈ {1, …, K}. The full set of parameters for a GLM-HMM, 
Θ ≡ {π, A, {wk}

K
k=1}, is learned directly from each animal’s choice 

data via the expectation–maximization (EM) algorithm described 
in the Methods section.

It is worth noting that the classic lapse model described in Eq. 
(1) and Eq. (2) corresponds to a restricted two-state GLM-HMM. 
If we consider state 1 to be ‘engaged’ and state 2 to be the ‘lapse’ 
state, then the state-1 GLM has weights w1 = w, and the state-2 GLM 
has all weights set to 0 except the bias weight, which is equal to 
−log (γl/γr). The transition matrix has identical rows, with prob-
ability 1 − (γr + γl) of going into state 1 and probability (γr + γl) of 
going into state 2 at the next trial, regardless of the current state. 
This ensures that the probability of a lapse on any given trial is stim-
ulus independent and does not depend on the previous trial’s state. 
Fig. 1a–c shows an illustration of the classic lapse model formulated 
as a two-state GLM-HMM.

However, there is no general reason to limit our analyses to 
this restricted form of the GLM-HMM. By allowing the model to 
have more than two states, multiple states with non-zero stimu-
lus weights and transition probabilities that depend on the cur-
rent state, we obtain a model family with a far richer set of 
dynamic decision-making behaviors. Figure 1d shows an example 
GLM-HMM with three latent states, all of which have high proba-
bility of persisting for multiple trials. Intriguingly, the psychometric 
curve arising from this model (Fig. 1f) is indistinguishable from that 
of the classic lapse model. Thus, multiple generative processes can 
result in identical psychometric curves, and we must look beyond 
the psychometric curve if we want to gain insight into the dynamics 
of decision-making across trials.

Mice switch between multiple strategies. To examine whether 
animals employ multiple strategies during decision-making, we 
fit the GLM-HMM to behavioral data from two binary percep-
tual decision-making tasks. First, we fit the GLM-HMM to choice 
data from 37 mice performing a visual detection decision-making 
task developed in ref. 33 and adopted by the International Brain 
Laboratory (IBL)19. During the task, a sinusoidal grating with con-
trast between 0% and 100% appeared either on the left or right side 
of the screen (Fig. 2a). The mouse had to indicate this side by turn-
ing a wheel. If the mouse turned the wheel in the correct direction, it 

received a water reward; if incorrect, it received a noise burst and an 
additional 1-s timeout. During the first 90 trials of each session, the 
stimulus appeared randomly on the left or right side of the screen 
with probability 0.5. Subsequent trials were generated in blocks 
in which the stimulus appeared on one side with probability 0.8, 
alternating randomly every 20–100 trials. We analyzed data from 
animals with at least 3,000 trials of data (across multiple sessions) 
after they had successfully learned the task (Supplementary Figs. 1  
and 2). For each animal, we considered only the data from the  
first 90 trials of each session, when the stimulus was equally likely to 
appear on the left or right of the screen.

We modeled the animals’ decision-making strategies using a 
GLM-HMM with four inputs: (1) the (signed) stimulus contrast, 
where positive values indicate a right-side grating and negative val-
ues indicate a left-side grating; (2) a constant offset or bias; (3) the 
animal’s choice on the previous trial; and (4) the stimulus side on 
the previous trial. A large weight on the animal’s previous choice 
gives rise to a strategy known as ‘perserveration’ in which the animal 
makes the same choice many times in a row, regardless of whether 
it receives a reward. A large weight on the previous stimulus side, 
which we refer to as the ‘win-stay, lose-switch’ regressor, gives rise 
to the well-known strategy in which the animal repeats a choice if 
it was rewarded and switches choices if it was not. Note that, for the 
IBL task in question, bias and trial history dependencies were subop-
timal, meaning that the maximal reward strategy was to have a large 
weight on the stimulus and zero weights on the other three inputs.

To determine the number of different strategies underlying 
decision-making behavior, we fit GLM-HMMs with varying num-
bers of latent states. Note that the one-state model is simply a stan-
dard Bernoulli GLM, whereas the classic lapse model (Eq. (1) and 
Eq. (2)) is the constrained two-state model mentioned previously. 
We found that a three-state GLM-HMM substantially outper-
formed models with fewer states, including the classic lapse model. 
The states of the fitted model were readily interpretable and tended 
to persist for many trials in a row.

Figures 2 and 3 show results for an example mouse. For this  
animal, the multi-state GLM-HMM outperformed both the standard  
(one-state) GLM and the classic lapse model, both in test log- 
likelihood and percent correct, with the improvement approximately 
leveling off at three latent states (Fig. 2b,c). Because the test set for this  
mouse contained 900 trials, test set log-likelihood increases of 0.13  
bits per trial and 0.09 bits per trial for the three-state model over 
the one-state model and classic lapse models, respectively, meant  
that the data were (20.13)900 ≈ 1.7× 1035 and (20.09)900 ≈ 2.4× 1024  
times more likely under the three-state model. Note that, whereas 
the number of model parameters increased with the number of 
states in the GLM-HMM (and a two-state GLM-HMM has more 
parameters than both the classic lapse model or single-state GLM), 
the log-likelihood of the test dataset was not guaranteed to increase 
with more states34. Indeed, as the number of states increased,  
the GLM-HMM could have started to overfit the training dataset, 
causing it to fit the test dataset poorly (Extended Data Fig. 1).

The transition matrix for the fitted three-state model describes 
the transition probabilities among three different states, each of 
which corresponds to a different decision-making strategy (Fig. 2d). 
Large entries along the diagonal of this matrix, ranging between 
0.94 and 0.98, indicate a high probability of remaining in the same 
state for multiple trials. The other set of inferred parameters was 
the GLM weights, which define how the animal makes decisions in 
each state (Fig. 2e). One of these GLMs (‘state 1’) had a large weight 
on the stimulus and negligible weights on other inputs, giving rise 
to high-accuracy performance on the task (Fig. 2f). The other two 
GLMs (‘state 2’ and ‘state 3’), by comparison, had smaller weights on 
the stimulus and relatively large bias weights.

We can visualize the decision-making strategies associated  
with these states by plotting the corresponding psychometric curves 
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(Fig. 2g), which show the probability of a rightward choice as a 
function of the stimulus, conditioned on both previous choice and 
reward. The steep curve observed in state 1, which corresponds to the 
mouse achieving near-perfect performance on high-contrast stimuli, 
led us to adopt the name ‘engaged’ to describe this state. By compari-
son, the psychometric curves for states 2 and 3 reflected large left-
ward and rightward biases, respectively. They also had relatively large 
dependence on previous choice and reward, as indicated by the gap 
between solid and dashed lines. Although this mouse had an overall 
accuracy of 80%, it achieved 90% accuracy in the engaged state com-
pared to only 60% and 58% accuracy in the two biased states (Fig. 2f).

To gain insight into the temporal structure of decision-making 
behavior, we used the fitted three-state model to compute the  

posterior probability over the mouse’s latent state across all tri-
als (Fig. 3). The resulting state trajectories reflect our posterior 
beliefs about the animal’s internal state on every trial, given the 
entire sequence of observed inputs and choices during a session  
(see Methods).

Contrary to the predictions of the classic lapse model, states 
tended to persist for many trials in a row. Remarkably, we found that 
the most probable state often had probability close to 1, indicating 
a high degree of confidence about the mouse’s internal state given 
the observed data.

To quantify state occupancies, we assigned each trial to its most 
probable state and found that this example mouse spent approxi-
mately 69% of all trials in the engaged state (out of 5,040 total 
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trials over 56 sessions) compared to 15% and 16% of trials in the 
biased-leftward and biased-rightward states (Fig. 3d). Moreover, the 
mouse changed state at least once within a session in roughly 71% of 
all 90-trial sessions and changed multiple times in 59% of sessions 
(Fig. 3e). This rules out the possibility that the states merely reflect 
the use of different strategies on different days. Rather, the mouse 
tended to remain in an engaged, high-performance state for tens of 
trials at a time, with lapses arising predominantly during interludes 
when it adopted a left-biased or right-biased strategy for multiple 
trials in a row. The multi-state GLM-HMM thus provides a very 
different portrait of mouse decision-making behavior than the basic 
GLM or lapse model.

State-based strategies are consistent across mice. To assess the 
generality of these findings, we fit the GLM-HMM to the choice 
data from 37 mice in the IBL dataset19 (Fig. 4). We found that 
the results shown for the example animal considered above were 
broadly consistent across animals. Specifically, we found that the 
three-state GLM-HMM strongly outperformed the basic GLM and 
classic lapse model in cross-validation for all 37 mice (Fig. 4a and 
Supplementary Fig. 3). On average, it predicted mouse choices with 
4.2% higher accuracy than the basic GLM (which had an average 
prediction accuracy of 78%) and 2.8% higher accuracy than the  

classic lapse model (Fig. 4b). Furthermore, for one animal, the 
improvement in prediction accuracy for the three-state GLM-HMM 
was as high as 12% relative to the basic GLM and 7% relative to the 
classic lapse model.

Although performance continued to improve slightly with 
four and even five latent states, we will focus our analyses on the 
three-state model for reasons of simplicity and interpretabil-
ity. Supplementary Fig. 4 provides a full analysis of the four-state 
model, showing that it tended to divide the engaged state from the 
three-state model into two ‘substates’ that differed slightly in bias.

Fits of the three-state GLM-HMM exhibited remarkable con-
sistency across mice, with most exhibiting states that could be 
classified as ‘engaged’, ‘biased-left’ and ‘biased-right’ (Fig. 4d) (see 
Methods section for details about the alignment of states across 
mice). Whereas we plotted inferred transition matrices for all 37 
mice in Supplementary Fig. 5, here we used the diagonal elements 
of each matrix to compute an expected dwell time for each animal 
in each state (Fig. 4e). This revealed a median dwell time across ani-
mals of 24 trials for the engaged state versus 13 and 12 trials for 
the biased-left and biased-right states, respectively. This description 
of behavior departs markedly from the assumptions of the classic 
lapse model: for the classic lapse model and a lapse rate of 20%, the 
expected dwell time in the lapse state is just 1 / (1 − 0.2) = 1.25 trials.  
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We analyzed the distribution of state dwell times inferred from data 
and found that they were well approximated by a geometric distri-
bution, matching the theoretical distribution of data sampled from 
an HMM (Extended Data Fig. 2 and Supplementary Fig. 6).

We also examined the fraction of trials per session that mice 
spent in each of the three states (Fig. 4c). To do so, we used the fit-
ted model parameters to compute the posterior probabilities over 
state and assigned each trial to its most likely state. The resulting 
‘fractional occupancies’ revealed that the median mouse spent 69% 
of its time in the engaged state, with the best mice exceeding 90% 
engagement. Moreover, most sessions (83% of 2,017 sessions across 
all animals) involved a switch between two or more states; in only 
17% of sessions did a mouse remain in the same state for an entire 
90-trial session.

To further quantify the model’s ability to capture temporal 
structure of choice data, we examined choice run length statistics, 
where runs were defined as sequences of trials in which the mouse 
repeated the same choice. We found that the IBL mice exhibited 
longer runs than if they performed the task perfectly, and the fit-
ted GLM-HMM reproduced this feature more accurately than the  
classic model (Extended Data Fig. 8).

Finally, to make sure that the states identified by the model were 
not a consequence of the IBL mice having been previously exposed 
to blocks of trials with a consistent side bias, we examined data from 
four mice that were never exposed to ‘bias blocks’. In Extended Data 
Fig. 3, we show that the retrieved states, dwell times and model 
comparison results for these animals were similar to those shown in 
the rest of the IBL population.

Data provide evidence for discrete, not continuous, states. The 
GLM-HMM describes perceptual decision-making in terms of dis-
crete states that persist for many trials in a row before switching. 
However, the model’s marked improvement over classic models 
does not guarantee that the states underlying decision-making are 
best described as discrete. One could imagine, for example, that a 
state governing the animal’s degree of engagement drifts gradually 
over time and that the GLM-HMM simply divides these continuous 
changes into discrete clusters. To address this possibility, we fit the 
data with PsyTrack, a psychophysical model with continuous latent 
states35,36. The PsyTrack model describes sensory decision-making 
using an identical Bernoulli GLM but with dynamic weights that 
drift according to a Gaussian random walk (see Methods section).

For all 37 mice in our dataset, the three-state GLM-HMM 
achieved substantially higher test log-likelihood than the PsyTrack 
model (Fig. 4f, left). Model selection also correctly identified simu-
lated data from the GLM-HMM, whereas datasets simulated from 
a matched first-order autoregressive model had roughly equal 
log-likelihood under the two models (Fig. 4f, middle and right). 
Not only was the GLM-HMM favored over PsyTrack for IBL mice, 
but we show that it was favored over PsyTrack for the other mouse 
datasets that we studied in this work (Extended Data Fig. 4). Finally, 
to verify that the GLM-HMM’s improved performance compared 
to PsyTrack was not due merely to the fact that the GLM-HMM 
does better at accounting for lapses, we also show the average fits 
of both PsyTrack and the three-state GLM-HMM to the empirical 
choice data of the example mouse in Supplementary Fig. 7. Despite 
the absence of explicit lapse parameters in both of these models, 
both are able to capture the non-zero error rates of the mouse on 
easy trials.

Mice switch between multiple strategies in a second task. To 
ensure that our findings were not specific to the IBL task or training 
protocol, we examined a second mouse dataset with a different sen-
sory decision-making task. Odoemene et al.20 trained mice to report 
whether the flash rate of an LED was above or below 12 Hz by mak-
ing a right or left nose poke (Fig. 5a). Once again, we found that the 

multi-state GLM-HMM provided a far more accurate description 
of mouse decision-making than a basic GLM or the classic lapse 
model (Fig. 5b). Although the performance of the three-state and 
four-state models was similar, we focused on the four-state model 
because—in addition to having slightly higher test log-likelihood 
for most animals (see Supplementary Fig. 8 for individual curves)—
the four-state model balanced simplicity and interpretability, with 
each state in the four-state model corresponding to a distinct behav-
ioral strategy (see Supplementary Figs. 9 and 10 for a comparison 
to three-state and five-state fits). The four-state model exhibited an 
average improvement of 0.025 bits per trial over the classic lapse 
model, making the test dataset approximately 1 × 1018 times more 
likely under the GLM-HMM than the lapse model.

Figure 5d shows the inferred GLM weights associated with each 
state in the four-state GLM-HMM. Based on the qualitative differ-
ences in the state-specific psychometric curves (Fig. 5e), we labeled 
the four states as ‘engaged’, ‘biased left’, ‘biased right’ and ‘win-stay’. 
The combination of stimulus and choice history weights for this 
fourth state gave rise to a large separation between psychometric 
curves conditioned on previous reward; the resulting strategy could 
be described as ‘win-stay’ because the animal tended to repeat a 
choice if it was rewarded. (However, it did not tend to switch if a 
choice was unrewarded). Accuracy was highest in the engaged state 
(92%) and lowest in the biased-left (67%) and biased-right states 
(77%). Similarly to the IBL dataset, the identified states tended 
to persist for many trials in a row before switching (Fig. 5f and 
Extended Data Fig. 5b).

Finally, we used the fitted model to examine the temporal evolu-
tion of latent states within a session. Figure 5g shows the average 
posterior state probabilities over the first 200 trials in a session for 
two example mice and the average over all mice (Extended Data 
Fig. 6 shows average posterior state probabilities for each individual 
mouse in the cohort separately). These trajectories reveal that mice 
typically began a session in one of the two biased states and had 
a low probability of entering the engaged state within the first 50 
trials: mice used these initial trials of a session to ‘warm up’ and 
then gradually improved their performance14. This represents a 
marked departure from the IBL mice, most of which had a high 
probability of engagement from the very first trial and had relatively 
flat average trajectories over the first 90 trials of a session (Fig. 3 
and Supplementary Fig. 12). Note, however, that the warm-up effect 
was not the only form of state switching observed in the Odoemene 
et al. mice, as the animals switched states multiple times per session 
and continued switching beyond the first 100 trials (Extended Data  
Fig. 5). We also examined whether the effects of fatigue or satiety 
could be observed in the average state probabilities at the end of 
sessions, but we did not find consistent patterns across animals 
(Extended Data Fig. 7).

External correlates of engaged and disengaged states. One power-
ful feature of the GLM-HMM is the fact that it can be used to identify 
internal states from binary decision-making data alone. However, it 
is natural to ask whether these states manifest themselves in other 
observable aspects of mouse behavior. In other words, does a mouse 
behave differently when it is in the engaged state than in a biased 
state, above and beyond its increased probability of making a cor-
rect choice? To address this question, we examined response times 
and violation rates, two observable features that we did not incor-
porate into the models.

Previous literature has revealed that humans and monkeys com-
mit more errors on long-duration trials than on short-duration tri-
als37–39. This motivated us to examine the distributions of response 
times for the engaged state compared to the disengaged (left-biased 
and right-biased) states.

In the IBL dataset, we found that engaged and disengaged 
response time distributions were statistically different for all  
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37 mice (Komogorov–Smirnov tests reject the null hypothesis 
with P < 0.05 for all 37 mice; Fig. 6a). Examining the Q-Q plots, 
it was also clear that the most extreme response times for each 
animal were associated with the disengaged states (Fig. 6b). In the 
Odoemene et al.20 dataset, we examined differences in the rate of 
violations—trials where the mouse failed to make a decision within 
the response period.The mean violation rate across all mice was 
21% (much higher than the 1% violation rate observed in the IBL 
dataset), and violations were 3.2% more common in the disengaged 
states (2, 3, and 4) than in the engaged state (state 1).

State-dependent decision-making in human visual task. Finally, 
although the primary focus of this paper is identifying the dis-
crete latent strategies underpinning mouse decision-making, the 
GLM-HMM framework is general and can be used to study choice 
behavior across species. We, thus, applied the GLM-HMM to the 
choice behavior of humans performing the visual motion discrimi-
nation task of ref. 27. Participants had to judge the difference in 
motion coherence between two consecutive random dot kinemat-
ograms: the first kinetogram always corresponded to a reference 
stimulus with 70% motion coherence, whereas the second stimulus 
could have more or less motion coherence (Fig. 7a). Participants 
indicated the stimulus that they perceived to have the greater motion 
coherence by pressing a button. Cross-validation revealed that the 
choice data of 24 of 27 humans was better explained by a two-state 
or three-state GLM-HMM compared to the classic lapse model  
(Fig. 7b,c). The mean improvement of the two-state GLM-HMM 
compared to the classic lapse model was 0.013 bits per trial, making 
a test dataset of 500 trials 90 times more likely to have been gener-
ated by a two-state GLM-HMM than by the classic lapse model.

Figure 7d shows the retrieved weights for each participant for 
the two-state model (we focus on the two-state model as this was 
the model favored by most participants), whereas Fig. 7e shows 
the probability of the participant selecting, in each of the two states 
(blue and green curves), that the second stimulus had more motion 
coherence than the first (choice = ‘more’) as a function of the rela-
tive motion coherence. The two states correspond to participants 
having a bias for selecting each of the two possible outcomes: when 

using the blue state, participants were biased toward selecting ‘more’, 
whereas participants were biased toward selecting ‘less’ in the green 
state. Figure 7f shows the expected dwell times for all participants 
in each state, whereas Fig. 7g shows the empirical number of state 
changes detected in each session (across the entire participant pop-
ulation). The median number of state changes per session was six 
switches, indicating that it is not just mice that switch between strat-
egies multiple times per session. Figure 7h illustrates the strategy 
changes across a session and shows the posterior state probabilities 
for three example sessions (for three different participants).

Discussion
In this work, we used the GLM-HMM framework to identify hid-
den states from perceptual decision-making data. Mouse behavior 
in two different perceptual decision-making tasks19,20 was far bet-
ter described by a GLM-HMM with sustained engaged and biased 
states. Unlike the classic lapse model, these states alternated on the 
time scale of tens to hundreds of trials. We also applied the model 
to human psychophysical data27 and found that human behavior 
was also better described by a GLM-HMM with sustained states 
that differed in bias. Although it might seem obvious that mice 
should exhibit fluctuations in task engagement over time, this is a 
very different account of behavior to that given by the classic lapse 
model, which assumes that error trials do not occur in blocks and 
are, instead, interspersed throughout a session. Furthermore, our 
method offers the practical benefit that it allows practitioners to 
segment trials according to the inferred behavioral strategy. Finally, 
it was not obvious that this alteration in choice policy over the 
course of a session should occur in a discrete rather than continu-
ous manner. Comparing our results with those for PsyTrack—a 
model with continuous decision-making states—provided sup-
port for the view that mice use discrete rather than continuous  
decision-making states.

Although we found similarities in the strategies pursued by 
mice performing the different visual detection tasks, we also found 
some differences. For example, we found that mice performing the 
Odoemene et al.20 task used an additional ‘win-stay’ strategy that 
was not observed in the IBL mice. One possible explanation for 
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these strategy differences is that they arise due to the different shap-
ing protocols associated with the different tasks. A follow-up study 
could investigate the role of shaping on GLM-HMM behavioral 
strategies.

The ability to infer the state or strategy employed by an animal 
on a trial-by-trial basis will be useful for characterizing differences 
in performance across sessions and across animals. It will also  
provide a powerful tool for neuroscientists studying the neural 
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mechanisms that support decision-making40–46. It might be the case 
that different strategies rely on different circuits or different pat-
terns of neural activity47.

Although we found evidence of warm-up behavior at the start 
of sessions in the Odoemene et al.20 mice, we were somewhat sur-
prised to find few signatures of satiation or fatigue toward the end 
of a session. This might be due to the fact that sessions were typi-
cally of fixed duration and might have ended before mice had a 
chance to grow satiated or fatigued. One future direction will be to 
apply the GLM-HMM to experiments with longer sessions, where it 
might be useful for detecting changes in behavior reflecting satiety  
or fatigue.

Compared to the mice we studied, humans used two relatively 
engaged strategies with opposite biases when performing the per-
ceptual decision-making task of ref. 27. Unfortunately, it is impos-
sible to say if the difference in strategies observed across species 
were due to species differences or to differences in task protocol. An 
interesting follow-up experiment would be to apply the GLM-HMM 
to data from different species performing the same task.

In future work, we will aim to make explicit the connection 
between the ‘engaged’ and ‘disengaged’ strategies identified by our 
model and existing measures of arousal and engagement in the 
literature. Identifying the relationship between the GLM-HMM’s 
hidden states and pupil diameter, low-frequency LFP oscillations, 
spontaneous neuronal firing, noise correlations and the action of 
neuromodulators48–51 will be a priority.

That discrete states underpin mouse and human choice behavior 
might also call for new normative models to explain why subjects 
develop these states to begin with52. The existence of disengaged 
and engaged states could reflect explore–exploit behavior17,53,54 or 
optimal learning (for example, refs. 55–58), or it could simply indicate 
incomplete learning of the task. Alternatively, if the states uncov-
ered by our model reflect a similar phenomenon to the internal and 
external modes of sensory processing observed in refs. 59,60, it might 
be that they arise due to the limited information processing capacity 
of the brain.

Another promising direction will be to replace the model’s fixed 
transition matrix with a GLM so as to allow external covariates to 
modulate the probability of state changes6. This would allow us to 
identify the factors that influence state changes (for example, a pre-
ponderance of unrewarded choices) and, potentially, seek to control 
such transitions.

Although there are many avenues for future research, we think 
that these results call for a critical rethinking of rodent and human 
perceptual decision-making behavior and the methods for analyz-
ing it. Indeed, standard analysis methods do not take account of the 
possibility that an animal makes abrupt changes in decision-making 
strategy multiple times per session. We think that the ability to infer 
internal states from choice behavior will open up new directions for 
data analysis and provide new insights into a previously inaccessible 
dimension of perceptual decision-making behavior.
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Methods
We confirm that our research complies with all relevant ethical regulations.

Inference of GLM-HMM parameters. GLM-HMM objective function. When 
fitting the GLM-HMM, the goal is to learn the transition matrix A ∈ R

K×K , the 
set of weights influencing choice in each state, {wk}

K
k=1 with wk ∈ R

M, and the 
initial state distribution, π ∈ R

K . We fit this set of parameters, collectively labeled 
as Θ, to choice data using maximum a posteriori estimation. This was practically 
implemented by the EM algorithm61.

The EM algorithm has been previously adapted to fit HMMs with 
 external inputs6,31,32. However, there are some application-specific  
choices in the implementation, so, for completeness, we describe the full  
procedure here.

The EM algorithm seeks to maximize the log-posterior of the parameters given 
the choice and input data, D ≡ {y, {x}Tt=1}. The log-posterior is given, up to an 
unknown constant, by:

log p(Θ|D) =

S
∑

s=1
log





∑

zs

p(ys, zs|{xs,t}Ts
t=1, Θ)



 + log p(Θ), (5)

where s indexes the session in which the data were collected (out of S total 
sessions), and the sum over zs is over all KTs possible latent state paths in the Ts 
trials of session s.

The prior distribution over the model parameters p(Θ) that we used was:

p(Θ) ≡ p({wk})p(A)p(π) =

(

K
∏

j=1
N (wj|0, σ2I)

)

(

K
∏

j=1
Dirichlet(Aj|α)

)

Dirichlet(π|απ)

. (6)

The prior over the GLM weight vectors wk was, thus, an independent, zero-mean 
Gaussian with variance σ2. Smaller values of σ2 have the effect of shrinking the fitted 
weights toward 0, whereas σ2 = ∞ corresponds to a flat prior. For the transition 
matrix, we placed an independent Dirichlet prior over each row Ai, which is a 
natural choice for vectors on the unit (K − 1) simplex (that is, all elements of 
the vector must be non-negative and sum to 1). The Dirichlet distribution is 
controlled by a shape parameter α: p(Aj|α) = 1

B(α)

∏K
i=1 (Aji)

α−1. A value of α = 1 
corresponds to a flat prior, whereas large values of α have the effect of spreading 
probability mass equally over states. We also placed a Dirichlet prior over the initial 
state distribution π.

To select the hyperparameters σ and α governing the prior, we performed a grid 
search for σ ∈ {0.5, 0.75, 1, 2, 3} and α ∈ {1, 2} and selected the hyperparameters that 
resulted in the best performance on a held-out validation set. For IBL mice, the 
prior hyperparameters selected were σ = 2 and α = 2. For mice in the Odoemene 
et al.20 dataset, the best hyperparameters were σ = 0.75 and α = 2. Finally, for the 
initial state distribution, we set απ = 1.

EM algorithm. We used the EM algorithm61,62 to maximize the log-posterior given 
in Eq. (5) with respect to the GLM-HMM parameters. As the sum given in Eq. (5) 
involves an exponential number of terms—O(KTs ) terms to be specific—we do not 
maximize this expression directly. Instead, the EM algorithm provides an efficient 
way to compute this term using a single forward and backward pass over the data. 
During the E-step of the EM algorithm, we compute the ‘expected complete  
data log-likelihood’ (ECLL), which is a lower bound on the right-hand side  
of Eq. (5)61–63. Then, during the ‘maximization’ or M-step of the algorithm, we 
maximize the ECLL with respect to the model parameters, Θ. It can be shown  
that this procedure has the effect of always improving the log-posterior in each  
step of the algorithm63.

Concretely, the ECLL can be written as a sum over the ECLLs for each session 
and the log-prior. The ECLL for a single session s can be written

ECLLs(Θ) ≡
∑

zs
p
(

zs|Ds, Θold) log p
(

ys, zs|Θ, {xs,t}Ts
t=1

)

=
K
∑

k=1
γs,1,klog πk +

Ts
∑

t=1

K
∑

j=1

K
∑

k=1
ξs,t,j,klogAjk

+
Ts
∑

t=1

K
∑

k=1
γs,t,klog p(ys,t|zs,t = k, xs,t ,wk)

(7)

To get to the second line, we substituted the definition of the joint distribution for 
the GLM-HMM:

p(ys, zs|{xs,t}Ts
t=1, Θ) ≡ p(z1)p(y1|z1, x1)

Ts
∏

t=2
p(zt|zt−1)p(yt|zt, xt). (8)

In Eq. (7), p(ys,t∣zs,t = k, xs,t, wk) is the Bernoulli GLM distribution given  
by Eq. (4). Finally,

γs,t,k ≡ p
(

zs,t = k|Ds, Θold) (9)

is the posterior state probability at trial t (in session s) for state k, whereas

ξs,t,j,k ≡ p
(

zs,t+1 = k, zs,t = j
∣

∣

∣
Ds, Θold

)

(10)

is the joint posterior state distribution for two consecutive latents.
While the formula for the log-posterior (Eq. (5)) involved the sum  

over all possible state assignments at each trial, by taking advantage of the  
structure of the joint probability distribution for the GLM-HMM (Eq. (8)),  
this sum was implemented efficiently, and Eq. (7) involves summing over at  
most O(K2Ts) elements.

The single and joint posterior state probabilities, γs,t,k and ξs,t,k, are estimated via 
the forward–backward algorithm, which we describe below.

Expectation step: forward–backward algorithm. During the E-step of the EM 
algorithm, the single and joint posterior state probabilities for all trials and states, 
{γs,t,k} and {ξs,t,j,k}, are estimated using the forward–backward algorithm64 at the 
current setting of the GLM-HMM parameters, Θold.

The forward–backward algorithm makes use of recursion and memoization to 
allow these posterior probabilities to be calculated efficiently, with the forward and 
backward passes of the algorithm each requiring just a single pass through all trials 
within a session.

The goal of the forward pass is to obtain, for each trial t within session s and 
each state k, the quantity

as,t,k ≡ p
(

ys,[1:t], zs,t|{xt′}
t
t′=1

)

, (11)

which represents the posterior probability of the choice data up until trial t and the 
latent state at trial t being state k.

The posterior probability associated with trial 1, as,1,k, can be calculated  
as follows:

as,1,k = πkp (ys,1|zs,1 = k, xs,1,wk) , (12)

where p (ys,1|zs,1 = k, xs,1,wk) is the usual Bernoulli GLM distribution.
For trials 1 < t≤Ts, we can obtain these probabilities as follows:

as,t,k =

K
∑

j=1
as,t−1,jAjkp (ys,t|zs,t = k, xs,t ,wk) . (13)

During the backward pass, the goal is to calculate the posterior probability of 
the choice data beyond the current trial, bs,t,k, for each trial t within session s and 
for all states k:

bs,t,k ≡ p
(

ys,[t+1:Ts]|zs,t = k, {xt′}
Ts
t′=t+1

)

. (14)

Similarly to the forward pass, these quantities can be calculated efficiently by 
recognizing that

bs,Ts ,k = 1 (15)

and, for t ∈ {Ts − 1, . . . , 1}:

bs,t,j =
K

∑

k=1
bs,t+1,kAjkp (ys,t+1|zs,t+1 = k, xs,t+1,wk) . (16)

From the as,t,k and bs,t,k quantities obtained via the forward–backward algorithm, 
we can form the single and joint posterior state probabilities, γs,t,k and ξs,t,j,k, that we 
actually care about for forming the ECLL of Eq. (7) as follows:

γs,t,k ≡ p
(

zs,t = k|ys, {xs,t}Ts
t=1, Θold)

=
p
(

ys,[0:t] ,zs,t=k|{xs,t′ }
t
t′=1

,Θold
)

p
(

ys,[t+1:Ts]
|zs,t=k,{xs,t′ }

Ts
t′=t+1

,Θold
)

p
(

ys|{xs,t}
Ts
t=1 ,Θold

)

=
as,t,kbs,t,k

∑K
k=1 as,Ts ,k

.

(17)

Similarly,

ξs,t,j,k =
as,t,jAjkbs,t+1,kp (ys,t+1|zt+1 = k, xt+1,wk)

∑K
k=1 as,Ts ,k

(18)

where, once again, p (ys,t+1|zt+1 = k, xt+1,wk) is the Bernoulli GLM distribution.
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Maximization step. After running the forward–backward algorithm, we can 
compute the total ECLL by summing over the per-session ECLLs (Eq. (7)) and 
adding the log-prior. During the M-step, we maximize the ECLL with respect 
to the GLM-HMM parameters, Θ. For the initial state distribution π and the 
transition matrix A, this results in the closed-form updates:

π new
k =

∑S
s=1 γs,1,k

∑S
s=1

∑K
j=1 γs,1,j

(19)

Anew
jk =

α − 1 +
∑S

s=1
∑Ts

t=2 ξs,t,j,k

K(α − 1) +
∑S

s=1
∑Ts

t=2
∑K

k=1 ξs,t,j,k
. (20)

For the GLM weights, there is no such closed form update, but a Bernoulli 
GLM falls into the class of functions mapping external inputs to HMM emission 
probabilities considered in ref. 31, so we know that the ECLL is concave in the GLM 
weights. As such, we can numerically find the GLM weights that maximize (not 
just locally but globally) the ECLL using the BFGS algorithm65–68 as implemented 
by the scipy optimize function in Python69.

Comparing states across animals and GLM-HMM parameter initialization. In  
Figs. 4 and 5, we show the results from fitting a single GLM-HMM to each animal; 
however, it is non-trivial to map the retrieved states across animals to one another. 
As such, we employed a multi-stage fitting procedure that allowed us to make 
this comparison, and we detail this procedure in Algorithm 1. In the first stage, 
we concatenated the data for all animals in a single dataset together (for the IBL 
dataset, this would be the data for all 37 animals). We then fit a GLM (a one-state 
GLM-HMM) to the concatenated data using maximum likelihood estimation. We 
used the fit GLM weights to initialize the GLM weights of a K-state GLM-HMM 
that we again fit to the concatenated dataset from all animals together (to obtain 
a ‘global fit’). We added Gaussian noise with σinit = 0.2 to the GLM weights, so 
that the initialized states were distinct, and we initialized the transition matrix of 
the K-state GLM-HMM as 0.95 × + N (0, Σtrans.) where Σtrans. ∈ R

K2
×K2

 
and Σtrans. = 0.05 × . We then normalized this so that rows of the transition 
matrix added up to 1 and represented probabilities. Although the EM algorithm 
is guaranteed to converge to a local optimum in the log-probability landscape 
of Eq. (5), there is no guarantee that it will converge to the global optimum70. 
Correspondingly, for each value of K, we fit the model 20 times using  
20 different initializations.

In the next stage of the fitting procedure, we wanted to obtain a separate 
GLM-HMM fit for each animal, so we initialized a model for each animal 
with the GLM-HMM global fit parameters from all animals together (out of 
the 20 initializations, we chose the model that resulted in the best training set 
log-likelihood). We then ran the EM algorithm to convergence; it is these recovered 
parameters that are shown in Figs. 4 and 5. By initializing each individual  
animal’s model with the parameters from the fit to all animals together, it  
was no longer necessary for us to permute the retrieved states from each animal  
so as to map semantically similar states to one another.

Algorithm 1. Multi-stage GLM-HMM fitting procedure

1: Fit GLM (one-state GLM-HMM) to all data from all animals
2: Fit global GLM-HMM to all data from all animals:
3: for K ∈ {2, . . . , 5} do
4:     for init. ∈ {1, . . . , 20} do
5:         Initialize K-state GLM-HMM using noisy GLM weights
6:         Run EM algorithm until convergence
7:     end for
8: end for
9: Fit separate GLM-HMM to each animal by initializing with global fit:
10: for each individual animal do
11:     for K ∈ {2, . . . , 5} do
12:         �Initialize K-state GLM-HMM using best global 

GLM-HMM parameters for this K
13:        Run EM algorithm until convergence
14:     end for

15: end for

We note that the initialization scheme detailed above is sufficiently robust so 
as to allow recovery of GLM-HMM parameters in various parameter regimes of 
interest. In particular, we simulated datasets from a GLM-HMM with the global fit 
parameters for both the IBL and Odoemene et al.20 datasets as well as a global fit 
lapse model. We show the results of these recovery analyses in Extended Data  
Figs. 9 and 10.

Assessing model performance. Cross-validation. There are two ways in which to 
perform cross-validation when working with HMMs. First, it is possible to hold 
out entire sessions of choice data for assessing test set performance. That is, when 
fitting the model, the objective function in Eq. (5) and the ECLL in Eq. (7) are 
modified to include only 80% of sessions (because we use five-fold cross-validation 
throughout this work); and the log-likelihood of the held-out 20% of sessions is 
calculated using the fit parameters and a single run of the forward pass on the 
held-out sessions:

LLtest ≡
∑

s∈S\S′
log p

(

ys|{xs,t}Tt=1, Θ
′

)

= log
∑

s∈S′

K
∑

k=1
as,T,k (21)

where S \ S′ is the set of held-out sessions, and Θ′ is the set of GLM-HMM 
parameters obtained by fitting the model using the trials from S′.

The second method of performing cross-validation involves holding out 20% 
of trials within a session. When fitting the model, the third term in the ECLL is 
modified so as to exclude these trials and is now

∑

t∈T′

∑K

k=1
γs,t,klog p (ys,t,k|zs,t = k, xs,twk) ,

where T′ is the set of trials to be used to fit the model. Furthermore, 
the calculation of the posterior state probabilities, γs,t,k and ξs,t,j,k, is also 
modified so as to exclude the test set choice data. In particular, γs,t,k is now 
p
(

zs,t|{ys,t′}t′∈T′ , {xs,t′}t′∈T′ , Θ
old) and, similarly, ξs,t,j,k is now

p
(

zs,t+1 = k|zs,t = j, {ys,t′}t′∈T′ , {xs,t′}t′∈T′ , Θ
old) .

The method of calculating these modified posterior probabilities is as detailed 
in Eq. (17) and Eq. (18), but now the calculation of the forward and backward 
probabilities as,t,k and bs,t,k in Eq. (12), Eq. (13), Eq. (15) and Eq. (16) is modified so 
that, on trials that are identified as test trials, the p (ys,t|zs,t = k, xs,t ,wk) term in 
these equations is replaced with 1.In Figs. 2, 4 and 5, we perform cross-validation 
by holding out entire sessions. We thought it would be more difficult to make 
good predictions on entire held-out sessions, compared to single trials within a 
session, as we thought that mice would exhibit more variability in behavior across 
sessions compared to within sessions. When we compare the performance of the 
GLM-HMM against the PsyTrack model of ref. 35 in Fig. 4f, we use the second 
method of cross-validation so as to use the same train and test sets as PsyTrack 
(PsyTrack cannot make predictions on entire held-out sessions).

Units for test set log-likelihood. In Figs. 2, 4, 5 and 7, as well as in some 
Supplementary Figures, we report the log-likelihood of different models on 
held-out sessions in units of bits per trial. This is calculated as follows:

LLbits per trial =
LLtest − LL0
ntestlog (2)

(22)

where, for the GLM-HMM, LLtest is the log-likelihood of the entire test set as 
calculated in Eq. (21), and LL0 is the log-likelihood of the same test set under 
a Bernoulli model of animal choice behavior. Specifically, this baseline model 
assumes that animals flip a coin on each trial so as to decide to go right, and the 
probability of going right is equal to the fraction of trials in the training set in 
which the animal chose to go to the right. ntest is the number of trials in the test 
set, and it is important to include because LLtest depends on the number of trials in 
the test set. Dividing by log (2) gives the log-likelihood the units of bits per trial. 
Clearly, larger values of the log-likelihood are better, with a value of 0 indicating 
that a model offers no improvement in prediction compared to the crude baseline 
model described above. However, even small values of test set log-likelihood,  
when reported in units of bits per trial, can indicate a large improvement in 
predictive power. For a test set size of ntest = 500, a log-likelihood value of 0.01 
bits per trial indicates that the test data are 31.5 times more likely to have been 
generated with the GLM-HMM compared to the baseline model. For a test  
set of ntest = 5,000, and the same value of 0.01 bits per trial for the log-likelihood,  
the test set becomes 1 × 1015 times more likely under the GLM-HMM compared  
to the baseline model.

Predictive accuracy. In Figs. 2, 4 and 5, we also report the predictive accuracy of 
the GLM-HMM. When calculating the predictive accuracy, we employ a method 
similar to the second method of cross-validation described above. In particular, we 
hold out 20% of trials in a session and then obtain the posterior state probabilities 
for these trials, t′′ ∈ {T \ T′

}, as γs,t′′ ,k = p
(

zs,t′′ |{ys,t′}t′∈T′ , {xs,t′}t′∈T′ , Θ
)

, 

using the other 80% of trials (this latter set of trials being labeled T′). We then 
calculate the probability of the held-out choices being to go right as:

pR,s,t′′ ≡ p
(

ys,t′′ = 1|{ys,t′}t′∈T′ , {xs,t′}t′∈T′ , xs,t′′ , Θ
)

=
k
∑

k=1

(

γs,t′′ ,k

)

p
(

ys,t′′ = 1|zs,t′′ = k, xs,t′′ ,wk

)

(23)
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We then calculate the predictive accuracy as:

predictive accuracy

=

∑

t
′′

∈T\T′

(( (

y
s,t
′′

=1
) (

p
R,s,t

′′
>0.5

))

+

( (

y
s,t
′′

=0
) (

p
R,s,t

′′
≤0.5

)))

|{T\T′}|

(24)

Comparison with PsyTrack Model of Roy et al. The PsyTrack model of Roy 
et al.36 assumes that an animal makes its choice at trial t according to

p(yt = 1|xt) =
1

1 + e−wt·xt
(25)

where wt evolves according to

wt = wt−1 + ηt (26)

where ηt ∼ N (0, diag (σ2
1, ..., σ2

M)) and w0 ∼ N (0, diag(σ2
init,1, ..., σ

2
init ,M)). 

Specifically, the animal is assumed to use a set of slowly changing weights to make 
its decision on each trial.

To perform model comparison with the PsyTrack model of refs. 35,36, we used 
the code provided at https://github.com/nicholas-roy/psytrack (version 1.3).

Simulating choice data with AR(1) model for weights. Although the GLM-HMM is a 
generative model that can be readily used to simulate choice data that resembles, in 
accuracy and in the resulting psychometric curves, the choice data of real animals, 
this is not true for the PsyTrack model of refs. 35,36. Indeed, specifying only the 
{σ2

init ,m} and {σ2m } hyperparameters of that model and then generating weights 
according to Eq. (26) and choice data according to Eq. (25) will likely result in 
choice behavior that is vastly different from that of real animals (the PsyTrack 
model is under-constrained as a generative model). As such, so as to produce the 
right-most panel of Fig. 4f, we simulated smoothly evolving weights from an AR(1) 
model where the parameters of this model were obtained using the PsyTrack fits to 
real data. Specifically, we assumed that the probability of going rightward at time t 
was given by:

p(yt = 1|wt, xt) =
1

1 + e−wt·xt
(27)

and we assumed that the weights evolved according to an AR(1) process as follows:

wm,t = αmwm,t−1 + (1 − αm)m̄PsyTrack
m + ηm,t (28)

where wm,t is the mth element of wt in Eq. (27), and w̄PsyTrack
m  is the average 

weight that an animal places on covariate m across all trials when fit with the 

PsyTrack model: w̄PsyTrack
m = 1

T
∑

tw
PsyTrack
t,m . We obtained αm by regressing 

wPsyTrack
t,m  against wPsyTrack

t−1,m  and taking the retrieved slope (after confirming 
that the retrieved slope had a magnitude of less than 1, so as to ensure that the 
weights did not diverge as t → ∞). ηm,t ∼ N (0, σ̃2

m), where σ̃2
m = (1 − α2

m)σ2
m 

and σ2
m, was obtained from the PsyTrack fit to an animal’s real choice data. 

Finally, we set w0 = 0.
We simulated weight trajectories for thousands of trials for each animal, so that 

the AR(1) process reached the stationary regime for each covariate, and so that the 
mean, variance and autocovariance of each weight for each covariate were close to 
those returned by the PsyTrack fits to the real choice data.

Datasets studied. In this paper, we applied the GLM-HMM to three publicly 
available behavioral datasets associated with recent publications. First, we studied 
the data associated with ref. 19 that is made available via Figshare at https://doi.
org/10.6084/m9.figshare.11636748. We used the framework developed in ref. 71 
to access the data. We modeled the choice data for the 37 animals in this dataset, 
which had more than 30 sessions of data during the ‘bias block’ regime. We  
focused on this regime because of the fact that mice, when they have reached  
this regime, understand the rules of the task and exhibit stationary behavior  
(see Supplementary Fig. 1 for plots of accuracy against session identity for each 
animal, as well as Supplementary Fig. 2 for the psychometric curves for these 
animals for the trials studied). For each session, we subset to the first 90 trials of 
data because, during these trials, the stimulus was equally likely to appear on the 
left or right of the screen. After the first 90 trials, the structure of the task changed, 
and, for a block of trials, the stimulus appeared on the left with a probability of 
either 80% or 20%; the block identity switched multiple times throughout a session, 
so that 80% and 20% blocks were interleaved. We subset to the animals with more 
than 30 sessions of data because we were able to confidently recover GLM-HMM 
and lapse model generative parameters when we simulated datasets with this 
number of trials (Extended Data Figs. 9 and 10). As a sanity check, to make sure 
that the recovered states and transitions were not a consequence of the animals 
that we study having been exposed to bias blocks in earlier sessions, we obtained 
data for four animals that were never exposed to bias blocks (not included in the 
publicly released dataset) and fit the GLM-HMM to the choice data for these 

animals. In Extended Data Fig. 3, we show that the retrieved states, dwell times  
and model comparison results for these animals look very similar to those  
shown in Fig. 4.

The second dataset that we studied was that associated with ref. 20, with  
the data being made available at https://doi.org/10.14224/1.38944. Once again,  
we studied sessions after animals had learned the task (Supplementary Figs. 13  
and 14). For this dataset, the retrieved states were less distinct than those for 
the IBL dataset, and, as such, we required more trials to be able to recover the 
generative parameters in simulated data (Extended Data Fig. 9). We, thus, subset 
to the 15 animals with more than 20 sessions of data and 12,000 trials of data. 
Compared to the IBL dataset, where the violation rate across all animals’ data  
was less than 1% of trials (where a violation is where the animal chose not to 
respond), the violation rate across the 15 animals that we studied from this  
second dataset was 21%. Thus, it was important to develop a principled method  
for dealing with violation trials. We treated violation trials as trials with missing 
choice data, and we handled these trials in a similar way to how we handled  
test data when performing the second type of cross-validation described above. 
That is, we modified the third term of the ECLL given in Eq. (7) to exclude 
violation trials, and we modified the definition of the posterior state probabilities 
for these trials to be γs,t,k = p

(

zs,t|{ys,t′}t′∈T′ , {xs,t′}t′∈T′ , Θ
old) and 

ξs,t,j,k = p
(

zs,t+1 = k|zs,t = j, {ys,t′}t′∈T′ , {xs,t′}t′∈T′ , Θ
old), where T′is the 

set of non-violation trials. The calculation of the forward and backward 
probabilities, as,t,k and bs,t,k, was modified so that, on violation trials, in  
Eq. (12), Eq. (13), Eq. (15) and Eq. (16), the p (ys,t|zs,t = k, xs,t ,wk) term  
was replaced with 1.

Finally, the third dataset that we studied was the human dataset associated  
with ref. 27, with the data being made available at https://doi.org/10.6084/ 
m9.figshare.4300043. We applied the GLM-HMM to the data from all 27 
participants in this dataset. This dataset has five sessions, each of approximately 
500 trials, for each participant and does not include the initial session that was 
used to teach participants how to perform this task.

Forming the design matrix. Each of the models discussed in this paper 
(GLM-HMM, the classic lapse model and the PsyTrack model of Roy et al.36) were 
fit using a design matrix of covariates, X ∈ R

T×M, where T was the number of 
trials of choice data for a particular animal. A single row in this matrix was the 
vector of covariates, xt ∈ R

M, influencing the animal’s choice at trial t. For all 
analyses presented in the text, unless specified otherwise, M = 4.

For all tasks, the first column in the design matrix was the z-scored stimulus 
intensity. For the IBL task, we calculated the stimulus intensity as the difference 
in the value of the visual contrast on the right side of the screen minus the visual 
contrast on the left side of the screen. This resulted in nine different values for 
the ‘signed contrast’: { − 100, − 25, − 12.5, − 6.25, 0, 6.25, 12.5, 25, 100}. We then 
z-scored this difference quantity across all trials. For the Odoemene et al.20 task, we 
subtracted the 12-Hz threshold from the flash rate presented on each trial and then 
z-scored the resulting quantity. For the human dataset27, we z-scored the relative 
motion strength presented on each trial.

For all trials, all animals and all tasks, the second column of the design 
matrix was set to 1, so as to enable us to capture the animal’s innate bias for going 
rightward or leftward. The third column in the design matrix was the animal’s 
choice on the previous trial Xt,3 ≡ 2yt−1 − 1. Whereas yt−1 ∈ {0, 1}, Xt,3 ∈ { − 1, 1}. 
It is not strictly necessary to perform this scaling, but we did so to ensure that 
the range of values for X:,1 and X:,3 were more similar (which can be useful 
when performing parameter optimization). Finally, the fourth column in the 
design matrix was the win-stay, lose-switch covariate, which was calculated as 
X
:,4 ≡ rt−1 × (2yt−1 − 1), where rt−1 ∈ { − 1, 1} was a binary variable indicating 

whether or not the animal was rewarded on the previous trial. Again, X:,4 ∈ { − 1, 1}.

Response time data. In Fig. 6, we analyzed response times for IBL animals, as 
reaction time data were unavailable for most sessions. The mouse’s response time 
is the time from the stimulus onset to the time at which it received feedback on 
its decision (receiving its reward or hearing an auditory cue to indicate an error 
trial). In comparison, a reaction time for the IBL task is the time from the stimulus 
appearing on the screen to the mouse moving the wheel for the first time in the 
direction of its decision. Response times ranged from a few hundred milliseconds 
to 10 s in the most extreme case, whereas typical reaction times (calculated on a 
few sessions for which we had reliable data) tended to be on the order of a few 
hundred milliseconds. Relative to other tasks, the IBL task is a task that results in 
short reaction times.

Statistics and reproducibility. We examined the choice data of animals in the IBL 
dataset with more than 3,000 trials of data. In the case of Odoemene et al. animals, 
we required 12,000 trials of data. As detailed in the Methods, as well as in the 
Supplementary Information, we determined that these numbers were sufficient 
because we found that we could successfully recover the generative parameters  
of a GLM-HMM in simulated data in the two different parameter regimes with  
these numbers of trials. All animals with the requisite number of trials of data  
were included in the analyses that we present in this paper. Each experiment 
presented in this paper was repeated in multiple animals (37 in the case of the 
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IBL dataset, 15 for the Odoemene et al. dataset and 27 in the case of the Urai et al. 
human dataset). The effects identified were largely consistent across subjects: 
the choice data for all 37 IBL animals, for 15 Odoemene et al. mice and for 24 
of the 27 humans were better explained by a GLM-HMM than a classic lapse 
model. Analysis was performed with code that is freely available to promote 
replication. We randomized the allocation of sessions to folds for each animal 
when performing five-fold cross-validation. Blinding was not performed. All trials 
from animals with the requisite number of trials were analyzed; blinding was not 
necessary as cross-validation ensured that the results were not due to the particular 
choice of train/test split.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw data studied in this paper are publicly available. The IBL data associated 
with ref. 19 can be accessed at https://doi.org/10.6084/m9.figshare.11636748. 
The Odoemene et al. data associated with ref. 20 can be accessed at https://doi.
org/10.14224/1.38944. Finally, the human data associated with ref. 27 can be 
accessed at https://doi.org/10.6084/m9.figshare.4300043.

Code availability
We contributed code to version 0.0.1 of the Bayesian State Space Modeling 
framework of ref. 72, and we used this code base to perform GLM-HMM inference. 
The code to analyze the resulting model fits and to produce the figures in this paper 
is available at https://github.com/zashwood/glm-hmm.
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Extended Data Fig. 1 | Cross-validation for Model Selection. (a,b) Here we show the cross-validated train and test loglikelihood in units of bits per trial for 
two humans performing the task of27 as a function of the number of states. While the number of parameters of the GLM-HMM increases as the number 
of states is increased (and a two state GLM-HMM has more parameters than both the classic lapse model and single state GLM), only the loglikelihood 
of the training dataset (red) is guaranteed to increase as the number of parameters increases. Indeed, as the number of states increases, the GLM-HMM 
may start to overfit the training dataset causing it to fit the test dataset poorly. This is what we see here when the grey curves begin to decrease in each 
of the two figures as the number of states increases. Thus, by observing the performance of the model on a test dataset, we can appropriately trade off 
predictive performance with model complexity.
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Extended Data Fig. 2 | Retrieved state dwell times are approximately geometrically distributed. With the solid line, we show the predicted dwell 
times (according to the retrieved transition matrix) in each of the three states for the example animal of Fig. 2 and Fig. 3. Predicted dwell times can be 
obtained from the transition matrix as p( dwell time = t) = (1− Akk)At−1

kk  because state dwell times in the Hidden Markov Model are geometrically 
distributed. We then use the posterior state probabilities to assign states to trials in order to calculate the dwell times that are actually observed in the 
real data (shown with the dashed line); we also show the 68% confidence intervals associated with these empirical probabilities (n is between 36 and 
86, depending on state). We find that the empirical dwell times for the biased leftward and rightward states seem to be geometrically distributed. For 
the engaged state, because there are some entire sessions (each session is 90 trials) during which the animal is engaged, we see that the empirical dwell 
times associated with this state are not as well described by a geometric distribution. A future direction may be to allow non-geometrically distributed 
state dwell times by replacing the Hidden Markov Model with e.g. the Hidden semi-Markov Model73.
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Extended Data Fig. 3 | GLM-HMM application to 4 mice not exposed to bias blocks in IBL task. We confirm that mice that have never been exposed to 
bias blocks in the IBL task continue to show state-dependent decision-making. This is a sister figure to Fig. 4, and each panel can be interpreted in the 
same way as in Fig. 4.
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Extended Data Fig. 4 | Additional comparisons with PsyTrack model. (a) Copy of left panel from Fig. 4f showing the difference in test set loglikelihood for 
37 IBL animals for the 3 state GLM-HMM compared to the PsyTrack model of35,36. Black indicates the mean across animals. The 3 state GLM-HMM better 
explained the choice data of all 37 animals compared to the PsyTrack model with continuously evolving states. (b) Analogous figure for the 4 additional 
IBL animals studied in Fig. ED3. All 4 animals’ data were better explained by the GLM-HMM compared to PsyTrack. (c) Same as in panel a for Odoemene 
et al. animals shown in Fig. 5, although comparison now utilizes 4 state GLM-HMM fits. All 15 animals’ data were better explained by the GLM-HMM 
compared to PsyTrack.
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Extended Data Fig. 5 | State switching in Odoemene et al. task. (a) Posterior state probabilities for three example sessions for three example mice 
(different mice are shown in each row). (b) Histogram giving number of state changes (identified with posterior state probabilities) per session for all 
sessions across all animals. For visibility, state changes are censored above 60. (c) Different sessions have different numbers of trials, so we normalize 
the histogram of b to give the number of state changes per 500 trials for each session (the median session length is 683 trials). Again, for visibility, state 
changes are censored above 60. Left: we use all data from all trials to generate the normalized histogram. Right: we plot the normalized histogram when 
we exclude the first 100 trials of a session. As can be observed, the left and right normalized histograms are very similar (p-value = 0.96 using KS-test). 
While the GLM-HMM is able to capture ‘warm-up’ effects (as described in the main text), this test reveals that the GLM-HMM is able to capture more 
than this, and state switching occurs much later in the session too (as also indicated by the posterior state probabilities shown in a).
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Extended Data Fig. 6 | GLM-HMM captures ‘warm-up’ effect for Odoemene et al. animals. Average (across 20 sessions) posterior state probabilities for 
the first 200 trials of a session for each animal in the Odoemene et al. dataset. Orange corresponds to the engaged state, green to the biased left, blue to 
the biased right and pink to the win-stay state from Fig. 5. Error bars represent standard errors.
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Extended Data Fig. 7 | GLM-HMM posterior state probabilities at end of session. Average (across 20 sessions) posterior state probabilities for the last 
200 trials of a session for each animal in the Odoemene et al. dataset. Orange corresponds to the engaged state, green to the biased left, blue to the 
biased right and pink to the win-stay state from Fig. 5. Error bars represent standard errors.
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Extended Data Fig. 8 | Simulated data from GLM-HMM captures statistics of real choice data. (a) Definition of choice run-length. Shown are the  
choices that an IBL mouse made over the course of 30 trials (red, bottom), as well as the choices it should have made during that same time course  
if the mouse performed the task perfectly (grey, top). Choice run-length is defined as the number of trials during which a mouse repeated the same 
decision (example choice run-lengths of 2, 3 and 9 trials are highlighted). (b) Red: fraction of trials in choice run-lengths of between 1 and 30 trials  
when calculated from all trials for all mice. Grey: distribution of choice run-lengths that would have been obtained if IBL mice performed the task perfectly. 
(c) Difference in choice run-length distribution for simulated data (from three different models) compared to the red distribution shown in (b). Models 
used to simulate data were a lapse model with only stimulus intensity and bias regressors, a lapse model that also included history regressors (previous 
choice and win-stay-lose-switch), and a 3 state GLM-HMM (also with history regressors). We simulated 100 example choice sequences from each model 
and calculated the mean histogram of choice run-lengths across the 100 simulations. This was then subtracted from the red histogram of (b). (d) Number 
of choice run-lengths with more than 5 trials for each model simulation used in (c). In the 181,530 trials of real choice data, there were 6111 run-lengths 
lasting more than 5 trials (as shown with the dashed line). When we simulated choice data according to each of the models shown in (c), we found that 
only the GLM-HMM could generate simulations with as many run-lengths lasting more than 5 trials as in the real data (15/100 simulations had 6111 or 
more run-lengths lasting more than 5 trials for the GLM-HMM compared to 0/100 for both of the lapse models).
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Extended Data Fig. 9 | GLM-HMM Recovery Analysis 1. For dataset sizes comparable to those of real animals, we can recover the IBL and Odoemene 
global parameters in simulated data. (a) Dataset sizes for each of the 37 IBL animals studied (left) and 15 mice from Odoemene et al. (right). The dashed 
vertical line indicates the number of trials that we used in simulation data in panels b, c and d (3240 for the IBL parameter regime and 12000 for the 
Odoemene regime simulation). (b) Test set loglikelihood for each of 5 simulations is maximized at 3 states (blue vertical line) after we simulate according 
to the (IBL regime) parameters shown in panel c. Similarly, in the right panel, test set loglikelihood is maximized at 4 states when we simulate choice data 
with the (Odoemene regime) parameters shown in panel d. The thick black line marked as ‘ex. sim.’ (example simulation) indicates the simulation  
whose generative and recovered parameters we show in panels c and d. (c) Left: the generative and recovered GLM weights (for the simulation marked  
as ‘ex. sim.’ in panel b) when we simulate choice data in the IBL parameter regime. Middle and right: the generative and recovered transition matrices.  
(d) The generative and recovered parameters in the Odoemene et al. parameter regime.
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Extended Data Fig. 10 | GLM-HMM Recovery Analysis 2: We can recover lapse behavior. (a) We simulate 5 datasets, each with 3240 trials, according 
to the best fitting lapse model for IBL animals. We then fit these simulated datasets with GLM-HMMs, as well as a lapse model (a constrained 2 state 
GLM-HMM). The test set loglikelihood is highest for the lapse model in all simulations, indicating that lapse behavior can be distinguished from the 
long-enduring multi-state behavior that best described the real data. The thick black line marked as ‘ex. sim.’ (example simulation) indicates the simulation 
whose generative and recovered parameters we show in panels b and c. (b) Left: the generative and recovered weights when recovery is with a lapse 
model. Right: the generative weights are the same as in the left panel, but we now recover with an unconstrained 2 state GLM-HMM (thus the stimulus, 
previous choice and w.s.l.s. weights for the second state can be non-zero) (c) The generative (left) transition matrix and the recovered transition matrices 
when we recover with a lapse model (middle) and an unconstrained 2 state GLM-HMM (right). While the lapse model and 2 state GLM-HMM results 
don’t perfectly agree, if mice were truly lapsing, the transition matrix would not have the large entries on the diagonals that we observe in the real data.
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2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.
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