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Abstract Previous studies showed that rats and pigeons can
count their responses, and the resultant count-based judgments
exhibit the scalar property (also known as Weber’s Law), a
psychophysical property that also characterizes interval-
timing behavior. Animals were found to take a nearly norma-
tive account of these well-established endogenous uncertainty
characteristics in their time-based decision-making. On the oth-
er hand, no study has yet tested the implications of scalar prop-
erty of numerosity representations for reward-rate maximiza-
tion in count-based decision-making. The current study tested
mice on a task that required them to press one lever for a
minimum number of times before pressing the second lever
to collect the armed reward (fixed consecutive number sched-
ule, FCN). Fewer than necessary number of responses reset the
response count without reinforcement, whereas emitting re-
sponses at least for the minimum number of times reset the
response counter with reinforcement. Each mouse was tested
with three different FCN schedules (FCN10, FCN20, FCN40).
The number of responses emitted on the first lever before press-
ing the second lever constituted the main unit of analysis. Our
findings for the first time showed that mice count their re-
sponses with scalar property. We then defined the reward-rate
maximizing numerical decision strategies in this task based on

the subject-based estimates of the endogenous counting uncer-
tainty. Our results showed that mice learn to maximize the
reward-rate by incorporating the uncertainty in their numerosity
judgments into their count-based decisions. Our findings ex-
tend the scope of optimal temporal risk-assessment to the do-
main of count-based decision-making.
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Introduction

Many animal species were previously shown to keep track of
discrete quantities though a nonverbal counting-like process
(Davis, 1984; Mechner, 1958; Platt & Johnson, 1971; Brannon
& Roitman, 2003, Gallistel, 1990; Gallistel & Gelman, 2000).
Number (set cardinality) is not only an important quantity in
and of itself in some behaviorally important decisions, but it
also enters into the determination of other quantities that have
demonstrated importance (e.g., rate in the matching phenome-
non [Gallistel et al., 2007], and discrete probability in temporal
discrimination [Balci, Freestone, Gallistel, 2009]).

The counting ability has been claimed to rely on mecha-
nisms that are similar to those that underlay interval timing
(Gallistel & Gelman, 1978, 2000; Meck & Church, 1983).
Supporting a possible link between these two quantitative do-
mains, the scalar property (e.g., proportionality of standard
deviation to the mean)—more commonly known as Weber’s
Law in psychophysics—has been demonstrated for both inter-
val timing and nonverbal counting (Cordes et al., 2001;
Mechner, 1958; Platt & Johnson, 1971; Whalen et al.,
1999). For instance, the spread in number of responses or in
delay increases in proportion to the target number or target
delay, respectively (Platt & Johnson, 1971; Whalen et al.,
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1999 for counting and Buhusi et al., 2009; Gibbon, Fairhurst,
& Goldberg, 1997 for timing). In more formal terms, the coef-
ficient of variation (standard deviation/mean) of the relevant
response dimension (number and time) was found to be con-
stant (Brannon & Roitman, 2003, Gallistel & Gelman, 2000;
Malapani & Fairhurst, 2002). When the coefficient of variation
is constant, the discriminability becomes a function of the ratio
between the to-be-discriminated quantities (Weber’s Law).

There are now a number of studies showing that the decision
process takes into account the uncertainty and its statistical
properties when it sets the target (or decision threshold, for
review see Balcı et al, 2011). Importantly, as summarized above
these statistical properties of timing uncertainty are shared by
numerical cognition pointing at a relationship between endog-
enous numerical uncertainty and reward maximizing numerical
decisions. The current study aims to fill this empirical and the-
oretical gap between numerical cognition and optimal decision-
making. Specifically, the aims of the current study are to test: 1)
if evidence for counting ability and its scalar property general-
ize to mice, and 2) if and how mice can incorporate their en-
dogenous uncertainty about counts into their numerosity-based
decisions to maximize reward rate.

The fixed consecutive number (FCN) schedule (Mechner,
1958) constitutes an ideal test for addressing these research
questions. In this procedure, animals are required to press one
of the levers (run lever) for a minimum number of times before
collecting the armed-reward by pressing a second lever (rein-
forcement lever). If the number of lever presses emitted before
pressing the second lever was less than the minimum require-
ment, the accrued number of run lever presses would reset
without reinforcement. If the number of run-lever presses be-
fore pressing the second lever was equal to or more than the
minimum requirement, the run-lever presses would reset with
reinforcement.

The mean and the spread of the number of run-lever re-
sponses in this task are proportional to the minimum require-
ment (Mechner, 1958); however, animals typically emit more
responses than needed (Mechner, 1958; Rivalan et al., 2007;
Smith et al., 1976; Szostak & Tombaugh, 1981). Although
this behavioral tendency can be interpreted in terms of biased
estimates of numerosities, given the imprecision in numerical
representations, responding more than the minimum require-
ment qualitatively points at the optimal numerical decision
strategy in this task. On the other hand, how much more than
the minimum requirement the subject should aim at
responding before Bclaiming^ the reward depends on the en-
dogenous numerical uncertainty.

The reward rate in the FCN task can be defined in
terms of the reward earned per unit effort exerted: p(re-
ward)/number of responses. Thus, the optimality problem
can be conceptualized as maximizing the unit of rein-
forcements per lever press. Assuming that the number of
run-lever responses is an inverse-Gaussian distributed

random variable, the expected reward rate in the FCN task

can be calculated as 1−waldcdf FCN ; n̂; λ̂
� �� �

=n̂, where n̂ is

mean number of run-lever responses and λ̂ is the shape param-

eter. The CV is
ffiffiffiffiffiffiffiffi
n̂=λ̂

q
. When this calculation is conducted for

different target number of responses (n̂ ) for a given level of CV

(
ffiffiffiffiffiffiffiffi
n̂=λ̂

q
), the reward-rate maximizing target number of re-

sponses can be determined for that level of CV by finding the
n̂ that maximizes this function. The resultant optimal perfor-
mance curve dictates a non-linear increase in target number of
responses with increasing levels of numerical uncertainty. This
in turn provides an objective reward function for the evaluation
of decision-making performance in the FCN task.

In the current study, we tested mice with three different
FCN schedules (FCN-10, FCN-20, FCN-40) in different
phases and evaluated their performance within the framework
of optimality outlined above. Our findings showed that mice
can count the lever presses they have emitted with scalar var-
iability and integrate their representational uncertainty about
numerosities into their decisions in a nearly optimal fashion.

Method

Subjects

Fifteen, 8-week-old, naïve, C57BL/6j male mice acquired
from LifeSci, Boğaziçi University (Istanbul, TR) served as
subjects in this experiment. Mice were housed in groups of
four per individually ventilated cages (IVC) made of
polysulfone. They were kept with 12:12 h light-dark cycle
with lights on at 6 a.m. Experiments were run only during
the light phase. The mice were maintained at 85 % of their
free-feeding weight and had ad libitum access to water. All
animal procedures were approved by the Koç University An-
imal Research Local Ethics Committee.

Apparatus

The experiment was conducted in 12 operant chambers (Med
Associates, ENV-307 W: 21.6 cm × 17.8 cm × 12.7 cm),
which were placed inside sound-attenuating boxes. Two re-
tractable levers (ENV-213 2W) were placed 2.2-cm above the
grid floor and 11-cm apart from each other on one of the two
metal walls. The other metal wall contained three illuminable
feeding hoppers (ENV-203-20). Only the middle hopper was
active during the experiment. A cooling fan was turned on
during testing. The experimental protocol was coded in
MED-PC IV software. The temporal resolution for data re-
cording was 10 ms.
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Procedure

Lever Press Training

Eachmouse was magazine and lever press trained for at least 5
sessions. The insertion of both levers into the chamber initiat-
ed the trials. The levers remained available until the mouse
pressed one of them or 60 s has elapsed without a response
(FR1–FT60s), whichever occurred first. The middle food dis-
penser delivered 0.01 cc of liquid feed (Nestlé Nutrition
Isosource, vanilla flavor) for 6 seconds and the mid magazine
was illuminated with the retraction of the lever. To finish this
phase, the mice had to press each lever for at least 20 times per
session for three consecutive sessions. If this criterion was not
met within 10 sessions, an FR-1 schedule of reinforcement
was then commenced. In the FR-1 training, one of the two
levers (randomly picked) was inserted in a trial and reinforce-
ment was delivered only contingent upon a lever press. The
criterion was kept the same with the FR-1/FT-60 phase.

Fixed Ratio Training

In this phase, each animal was assigned to FR10, FR20, or
FR40 schedule in a pseudo-random fashion to equate the sam-
ple sizes. Half of the animals had only the left lever, whereas
the other half had only the right lever inserted during training.
Emitting the scheduled number of responses on the available
lever was reinforced. This phase was completed if and when
20 reinforcements were obtained per session for three consec-
utive sessions. The success criterion was in effect after the first
two sessions. Animals who obtained less than five rewards for
two consecutive sessions were moved to a lower FR schedule
(i.e., FR40→ FR20 and FR20→ FR10) and had to reach the
success criterion to move back to their original schedule.

Fixed Consecutive Number Schedule Testing

In this phase of testing, the FCN and FR trials were presented
with equal probability in a session. The first three trials of each
session were always FR trials. The FR trials were identical to
the previous training phase but in FCN trials animals were
required to press a second lever (inserted at the same timewith
the first lever) after pressing the first lever at least for a fixed
minimum number of times to obtain the reward. Pressing the
second lever before emitting the necessary number of run-
lever responses terminated the trial without the delivery of a
reward. Failure to obtain a reward in an FCN trial forced the
next trial to be another FCN trial until the subject obtained a
reward or failed to obtain a reward for five consecutive trials.

After finishing 35 sessions of testing in the initially
assigned schedule, animals were moved to another schedule
(random assignment) and tested with the new schedule for 15
sessions (e.g., FCN10 → FCN40). After finishing the 15

sessions of testing with the second schedule, animals were
trained in the remaining schedule for another 15 sessions
(e.g., FCN40 → FCN20).

Data Analysis

The steady-state (last five sessions of each phase) response
frequencies were fit with an exponential inverse-Gaussian
mixture distribution (MLE) that has been previously shown
to fit inter-response time data in a time-based paradigm with
similar rules (i.e., DRL; Freestone, Balcı, Simen & Church,
2015). Information regarding the comparison of these fits to
other distributions is presented in the SOM. The best fit mean
and shape parameters of each mouse for each FCN schedule
were used to calculate the optimal strategy for that mouse for
the corresponding phase. To test whether animals relied on the
time instead of number of responses, the time interval between
the first and the last run-lever press (steady state) were fit with
an exponential inverse-Gaussian distribution. The best-fit in-
verse-Gaussian parameters were used to estimate the CV of
response times. FCN-10 condition of one subject was exclud-
ed from the analyses due to loss of data caused by a program-
ming error. The data collected from different FCN schedules
were compared with repeated-measures ANOVA tests.

Since the null-hypothesis significance testing cannot deliver
evidence in favor of the null-hypothesis (Gallistel, 2009) and
some of the invariances are theoretically important in our case
(i.e., indifference between empirical vs. optimal number of run-
lever responses), we complemented several of our conventional
t-test comparisons with the corresponding Bayesian t-test
(Rouder et al., 2009). This test allowed us to state preference
for null vs. alternative hypothesis based on the relative evidence
gathered for one hypothesis over the other given the data (i.e.,
Bayes Factor). Finally, we have conducted three analyses (i.e.,
CV, regression, and response pattern analyses) to determine if
mice relied on the number or duration of their responses. Infor-
mation regarding the regression and response pattern analyses
and their outputs are presented in the SOM.

Results

Figure 1 shows the average response curves separately for
three different FCN schedules after normalizing each subject’s
frequencies by the total number of FCN trials of that subject in
the corresponding schedule (see SOM Figures 1 and 2 for
representative individual subject’s data and the response curve
defined as a function of response duration). The average num-
ber of responses emitted on the first lever before claiming the
reward (run responses) was 14.43 (standard error of mean
[SEM] = 0.41, median = 14.55, interquartile range [IQR] =
2.13) in the FCN-10 condition, 27.35 (SEM = 0.56, median =
27.42, IQR = 2.65) in the FCN-20 condition, and 52.00 (SEM
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= 1.00, median = 50.78, IQR = 6.32) in the FCN-40 condition.
In each of these conditions, the average number of responses
was significantly higher than the minimum requirement, t(13)
= 10.72, p < 0.001, t(14) = 13.20, p < 0.001, and t(14) = 12.06,
p < 0.001, respectively. As expected, the average response
numbers differed significantly between the three FCN sched-
ules, F(2,26) = 916.33, p < 0.001, ηp

2 = 0.99. Post-hoc analysis
showed that the average number of responses were different
between each pair of FCN-schedule (all p < 0.001). The FCN-
schedule also had a significant effect on the normalized

number of responses, F(2,26) = 6.10, p < 0.01 ηp
2 = 0.32.

Post-hoc analysis showed that normalized response numbers
were higher for the FCN-10 schedule compared to the FCN-
40 schedule, p < 0.05 (Bonferroni corrected).

There was no significant difference between optimal and
empirical number of run responses in FCN-10 (t(13) = 1.24, p
= 0.23), FCN-20 (t(14) = 0.59, p = 0.57) or FCN-40 schedules
(t(14) = −1.93, p = 0.07). We complemented these statistics
with one-sample Bayesian t-test since the corresponding null
hypothesis is theoretically important in our case (Rouder et al.,
2009). With the scale r on effect size = 0.707, the scaled JZS
Bayes Factors were 1.95 (anecdotal evidence) and 3.27 (sub-
stantial evidence) in favor of the null, and 1.14 (anecdotal
evidence) in favor of the alternative hypothesis for the FCN-
10, 20, and 40 schedules, respectively. With the scale r on
effect size = 1, these values were 2.49 (anecdotal evidence),
4.36 (substantial evidence), and 1.06 (anecdotal evidence) in
favor of the null hypothesis. Overall, these results revealed
more support for the null hypothesis that the empirical number
of run-lever responses was not different from the correspond-
ing optimal number responses.

Figure 2 shows the expected reward rate curves separately
for three different FCN schedules each calculated for the av-
erage CVestimates in the corresponding FCN condition along
with the corresponding average empirical response numbers.
The visual inspection of this figure also pointed at the nearly
optimal decision strategies in this task. The proportion of max-
imum expected reward rates corroborated these observations.
Subjects achieved 97.9 % (SEM = 0.5 %, median = 98.4 %,
IQR = 2.3%), 98.8% (SEM= 0.3%,median = 99.2%, IQR =
0.8 %), and 98.3 % (SEM = 0.5 %, median = 98.7 %, IQR =
1.9 %) of the maximum possible expected reward rate defined
for their level of numerical uncertainty (i.e., CV of run-lever
response numbers) in the FCN-10, FCN-20, and FCN-40
schedules, respectively. There was no significant effect of
the FCN-schedule on this measure, F(2,26) = 1.04, p = 0.37
ηp
2 = 0.07.
The average CVs for the number of run-lever responses

were 0.30 (SEM = 0.02) for the FCN-10 schedule, 0.25
(SEM = 0.02) for the FCN-20 schedule, and 0.25 (SEM =
0.02) for the FCN-40 schedule. The FCN-schedule had a sig-
nificant effect on CV, F(2,26) = 3.81, p < 0.05 ηp

2 = 0.23.
However, further analysis showed that CVs were not signifi-
cantly different from each other after Bonferroni correction
(there was a significant difference between FCN10 and
FCN40 before the correction).

It is possible that subjects relied on timing rather than num-
ber of responses they emitted in this task. To address this issue,
we conducted three independent analyses (only the compari-
son of CVs are presented in the main text). We compared the
CVs of the number of run-lever responses with the CVs of the
response durations under the assumption that the dimension
that had stronger control over the response pattern would
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exhibit lower CV (see also Fetterman et al., 1985). The aver-
age CVs for the duration of the run-lever responses were 0.42
(SEM = 0.05), 0.38 (SEM = 0.05), and 0.47 (SEM = 0.08) for
the FCN-10, 20, and 40 schedules, respectively. When we
compared the CVs of the number and duration (since first
response) of run-lever responses CVs across all schedules,
we found that response number based CVs were significantly
lower, F(1,13) = 24.94, p < 0.001, ηp

2 = 0.66. There was no
main effect of schedule, F(2,13) = 0.50, p = 0.61, ηp

2 = 0.04 or
an interaction effect, F(2,13) = 1.33, p = 0.28, ηp

2 = 0.09. The
same results held when the response duration was calculated
as the interval between trial onset and the last run-lever re-
sponse (see SOM). Consistent with these findings, the results
of our regression and response-pattern analyses also showed
that mice relied on the number rather than the duration of their
responses (for details see SOM).

Discussion

In the current study, mice were required to emit a minimum
number of responses on one lever before pressing the second
lever to collect the armed reward. The optimal strategy in this
task required the animals to aim at responding more than the
minimum response requirement (i.e., FCN schedule). Impor-
tantly, how much more than the minimum requirement should
the animals respond depended on the level of an individual
animal’s endogenous uncertainty about counts. Our findings
showed that animals can optimize the number of responses by
integrating their numerosity-related uncertainty into their de-
cisions and maximize the reward-rate attained in this task.
These findings are consistent with the conclusions of previous
studies that utilized temporal decision-making tasks; these
studies showed that humans and other animals can adopt re-
ward maximizing temporal decision strategies by taking ac-
count of their scalar endogenous timing uncertainty (Balcı
et al., 2011; Çavdaroğlu et al., 2014). Thus, this study extend-
ed the scope of optimal temporal risk assessment to the do-
main of numerosity-based decision-making.

The DRL task in the interval timing domain highly resem-
bles the FCN procedure and the related reward-rate maximiz-
ing decision strategies. In the DRL task, animals are trained to
wait for a minimum delay since their previous response to
attain reward. Responses emitted earlier than this minimum
delay resets the corresponding wait time without the delivery
of the reward. If animals respond after this delay, their wait
time resets with reward delivery. Reward-rate maximization in
this task requires animals to aim at waiting longer than the
minimum delay and how much more than the minimum delay
animals should on average wait depends on their level of
scalar endogenous timing uncertainty. Our previous findings
showed that humans and non-human animals can optimize
their wait time and maximize the reward-rate (Balcı et al.,

2011; Çavdaroğlu et al., 2014; but see Freestone et al.,
2015). The results of the current study showed that similar
optimal decision-strategies can be attained when the reinforce-
ment schedule is based on the number of responses rather than
their timing. These findings overall emphasize the generality
of optimal risk-assessment in experiential tasks that entail the
representation of both continuous and discrete quantities and
the associated scalar uncertainty.

Previous studies on nonverbal counting ability were pri-
marily conducted with rats and pigeons.We tested eachmouse
in three different FCN schedules (FCN-10, FCN-20, and
FCN-40). The mean number of responses emitted by mice
was proportional to the FCN schedule. Moreover, the CV of
the number of responses emitted per FCN-schedule was near-
ly constant within individual animals, at least for the larger
schedules (i.e., FCN-20 and FCN-40). These findings showed
that counting ability also applies to mice and that the scalar
property also is apparent in their numerosity-based judgments.
Overall, these findings support the notion that non-human
animals can count and the psychophysical properties of this
ability is similar to interval timing. We believe that these re-
cent findings along with the earlier results point at the need for
the development and refinement of models of non-verbal
counting in a way that is consistent with the processing dy-
namics that are assumed to underlie interval timing.

Although animals were assumed to perform in the FCN
task primarily by counting the number of run-lever presses,
it is possible that they instead relied on time (a correlate of
lever press). This possibility has been ruled out by a number of
early studies (see SOM for summary). For instance, Fetterman
et al. (1985) found that the CV of number of responses was
lower and less variable (between different experimental con-
ditions) than the CVof the timing of responses in a numerical
discrimination task. Dehaene (1997) argued that earlier find-
ings point at numerical rather than temporal control over
responding in animals.

In our study, we tested the possible reliance on timing by
running a series of independent analyses. We first looked at if
mice were more precise in terms their run response numbers or
response times before claiming reward under the assumption
that more precision in one domain would suggest its stronger
control over behavior. The variability of the number of re-
sponses was lower than the variability of the timing of re-
sponses. Furthermore, we did not observe the break-run pattern
of responding (transitioning from low rates of responding to
high rates of responding as a function of trial time), which is
the typical response pattern observed in fixed-interval schedules
(Schneider, 1969). Finally, our regression analyses showed that
the number of run-lever responses had more predictive power
regarding decisions than the response duration (see SOM).
Thus, consistent with the conclusion of earlier studies, our find-
ings from a number of independent analyses point at numerical
rather than temporal control over responding in the FCN task.
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Future studies that use different procedures are required to
test the generality of optimal numerical risk assessment per-
formance. The ability to utilize a count-based task, such as
FCN in mice, also enables the study of genetic basis of nu-
merical cognition.
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