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ABSTRACT Compositional changes in the gut microbiota have been associated with a

variety of medical conditions such as obesity, Crohn’s disease, and diabetes. However,

connecting microbial community composition to ecosystem function remains a chal-

lenge. Here, we introduce MICOM, a customizable metabolic model of the human gut

microbiome. By using a heuristic optimization approach based on L2 regularization, we

were able to obtain a unique set of realistic growth rates that corresponded well with

observed replication rates. We integrated adjustable dietary and taxon abundance con-

straints to generate personalized metabolic models for individual metagenomic samples.

We applied MICOM to a balanced cohort of metagenomes from 186 people, including a

metabolically healthy population and individuals with type 1 and type 2 diabetes. Model

results showed that individual bacterial genera maintained conserved niche structures

across humans, while the community-level production of short-chain fatty acids (SCFAs)

was heterogeneous and highly individual specific. Model output revealed complex cross-

feeding interactions that would be difficult to measure in vivo. Metabolic interaction net-

works differed somewhat consistently between healthy and diabetic subjects. In particu-

lar, MICOM predicted reduced butyrate and propionate production in a diabetic cohort,

with restoration of SCFA production profiles found in healthy subjects following met-

formin treatment. Overall, we found that changes in diet or taxon abundances have

highly personalized effects. We believe MICOM can serve as a useful tool for generating

mechanistic hypotheses for how diet and microbiome composition influence community

function. All methods are implemented in an open-source Python package, which is

available at https://github.com/micom-dev/micom.

IMPORTANCE The bacterial communities that live within the human gut have been

linked to health and disease. However, we are still just beginning to understand

how those bacteria interact and what potential interventions to our gut microbiome

can make us healthier. Here, we present a mathematical modeling framework

(named MICOM) that can recapitulate the growth rates of diverse bacterial species in

the gut and can simulate metabolic interactions within microbial communities. We

show that MICOM can unravel the ecological rules that shape the microbial land-

scape in our gut and that a given dietary or probiotic intervention can have widely

different effects in different people.

KEYWORDS flux balance analysis, gut microbiome, metagenome, systems biology

The composition of the gut microbiome can influence host metabolism (1) and has

been associated with a variety of health conditions such as obesity, Crohn’s disease,

diabetes, and colorectal cancer (2–6). However, the causal roles played by the gut

microbiota in host physiology and disease remain unclear. Several studies have
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mapped individual gut microbial genes to functions (7–9). However, these mappings

are largely qualitative, as the presence of a particular gene does not guarantee

expression of a functional enzyme. An alternative strategy to quantify the metabolic

capacity of a microbial community is to use computational models for inferring fluxes

in biochemical networks (10, 11). While direct experimental measurement of fluxes by

carbon or nitrogen labeling is costly, one can readily estimate the metabolic fluxes of

a model organism using genome-scale metabolic models. For individual bacteria,

metabolic modeling using flux balance analysis (FBA) has been a valuable tool for

exploring metabolic capacities under different conditions and has been used exten-

sively in basic research, biochemical strain engineering, and in vitro models of bacterial

interactions (12–15). In FBA, fluxes are usually approximated from a genome-scale

model containing all known biochemical reactions by maximizing the production of

biomass under constraints mirroring enzymatic, thermodynamic, and environmental

conditions (13). For instance, one can restrict metabolic import fluxes to those whose

substrates are present in the growth medium (12, 14, 16) in order to simulate a

particular nutrient environment. Extending FBA to microbial communities is challeng-

ing due to the necessity of modeling metabolic exchanges between many taxa and

selecting an appropriate objective function to account for potential trade-offs between

species and community growth rates.

Maximizing the community growth rate is at odds with maximizing individual

species growth rates. Multiobjective methods, like OptCom, attempt to find the joint

maximum of individual and community growth rates (17). However, these multiobjec-

tive methods are limited to smaller-sized communities. The human gut microbiome, on

the other hand, may contain up to several hundred distinct species (18). An additional

challenge is the integration of relative abundances obtained from 16S amplicon or

metagenomic shotgun sequencing into a community FBA model. This is particularly

important for accurately inferring the metabolic exchanges taking place between

different species within the community. A very abundant species should import and

export much greater absolute quantities of metabolites than a very rare species, which

in turn impacts the resulting community-level biochemical fluxes. Despite the chal-

lenges, genome-scale metabolic modeling of microbial communities holds great prom-

ise as a tool for estimating the metabolic potential of an individual’s gut microbiome.

In particular, this approach could yield valuable insights into possible metabolic

mechanisms underlying host disease states.

Here, we present a computational approach that efficiently extends metabolic

modeling to entire microbial communities. Using a two-step optimization procedure,

we were able to simulate growth and metabolic exchange fluxes for metagenome-scale

metabolic models of ecologically diverse bacterial systems. Additionally, we explicitly

included microbial abundance estimates from metagenomic shotgun sequencing and

realistic dietary inputs in order to make quantitative, personalized, metabolic predic-

tions. This entire strategy is implemented in an open-source Python software package

called MICOM (shorthand for microbial community).

We tested our approach by applying MICOM to a balanced data set of 186 Danish

and Swedish individuals, including healthy controls, patients with type 1 diabetes, and

patients with type 2 diabetes with and without metformin treatment. We show that

individual bacterial growth rates vary greatly across samples and are correlated with

independently measured replication rates. We quantified exchanges between the gut

microbiota and gut lumen and studied the effect of the microbiota composition on the

production of short-chain fatty acids (SCFAs) for samples from healthy and diabetic

individuals. Overall, we found that MICOM predicted a bimodal usage pattern of dietary

metabolites, ecological interactions between microbes tended to be community spe-

cific and largely competitive, key gut genera associated with health participated in the

largest number of ecological interactions, inferred SCFA production was lower in

diabetic patients, and targeted dietary or probiotic interventions had unique functional

consequences for each individual.
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RESULTS

A regularization strategy for microbial community models. Metabolic modeling

is commonly applied to model a single strain of bacteria in log phase, where the growth

rate is approximately constant and the log of the bacterial abundance increases linearly

with time. Modeling bacterial growth in natural environments is often more complex

than this, but some information on environmental context can be extracted from the

relative abundances of bacterial taxa. Within a single individual and in the absence of

persistent dietary changes, gut microbial relative abundances tend to fluctuate around

a fixed median value over month-to-year time scales (19–21). This is consistent with a

steady-state model where bacterial growth is in equilibrium with a dilution process that

continuously removes biomass from the system (22). Using this approximation, bacte-

rial growth rates are constants �i (in 1/hour), which is compatible with the assumption

of FBA. All bacteria in the microbial community then contribute to the production of

total biomass, with an overall growth rate constant �c. The community growth rate �c

is obtained from the individual growth rates �i by a weighted mean, with the relative

contribution of species i (ai) to the total biomass serving as the weight (17, 22).

�C � �i ai�i (1)

Even though FBA can be used to obtain the maximum community growth rate, one

can see from equation 1 that there is an infinite combination of different individual

growth rates �i for any given community growth rate �c (see Fig. 1A for an example).

Various strategies have been employed in order to deal with this limitation, where the

simplest strategy is to report any one of the possible growth rates distributions for �i.

Other approaches attempt to find the set of growth rates that maximize community

growth and individual growth at the same time (17), but this is computationally

intensive and may not scale well to the species-diverse gut microbiome (18, 23). Thus,

we formulated a strategy that allows us to identify a realistic set of individual growth

rates �i and scales to large communities. The simplest case of a microbial community

is a community composed of two identical clonal strains, each present in the same

abundance. Assuming that the maximum community and individual growth rates are

equal to 1.0, there are now many alternative solutions giving maximal community

growth (Fig. 1A). However, the two populations are identical and present in the same

abundance, so one would expect that both grow at the same rate. In order to enforce

a particular distribution of individual growth rates, one can try to optimize an additional

function over the individual growth rates �i. This is known as regularization, and a

feasible regularization function should enrich for biologically relevant growth rate

FIG 1 Regularization of growth rates. (A) Regularization values for a toy model of two identical Escherichia coli populations. Two alternative solutions are shown
with different individual growth rates and respective values of regularization optima. Here, L1 denotes minimizing the sum of growth rates, whereas L2 denotes
minimizing the sum of squared growth rates. Only L2 regularization favors one over the other and identifies the expected solution where both populations
grow with the same rate. (B) Effects of different trade-off values (fraction of maximum community growth rate) on the distribution of individual genus growth
rates. Zero growth rates were assigned a value of 10�16, which was smaller than the observed nonzero minimum. Growth rates smaller than 10�6 were
considered to not represent growth (gray shaded area). (C) Pearson correlation between replication rates and inferred growth rates with different trade-off
values. “none” indicates a model without regularization returning arbitrary alternative solutions (see Materials and Methods). The dashed line indicates a
correlation coefficient of zero.
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distributions. As a heuristic, our minimal requirement for a feasible regularization

function was consistency with the observed metagenomic abundances. This means

that a taxon that is observed in the data should be able to grow. Thus, the growth rate

of a taxon should be nonzero if its abundance is nonzero. We show in Text S1 in the

supplemental material that no linear regularization function can comply with that

requirement, whereas a simple quadratic regularization, also known as L2 regulariza-

tion, does fulfill that requirement (24, 25). L2 regularization is known to distribute

magnitude over all variables, which is also consistent with a maximization of individual

growth rates and thus forms a heuristic for the simultaneous maximization of individual

and community growth rates.

L2 regularization can be readily integrated into FBA as a quadratic optimization

problem, which is not necessarily true for any generic function. In the previous example

of two identical strains, only the L2 norm correctly identifies the solution where both

strains grow at the same rate as optimal. Additionally, the L2 norm has a unique

minimum. Thus, there is only one configuration of individual growth rates �i that

minimizes the L2 norm for a given community growth rate �c. In practice, maximal

community growth might be achievable only if many taxa are excluded from growth,

for instance by giving all resources to a fast-growing subpopulation. Again, this is

inconsistent with reality if one has prior knowledge that the other taxa are present in

the gut and should be able to grow. Instead of enforcing the maximal community

growth rate, one can limit community growth to only a fraction of its maximum rate,

thus creating a trade-off between optimal community growth and individual growth

rate maximization. Community growth maximization requires full cooperativity,

whereas the L2 norm minimization represents selfish individual growth maximization.

Thus, we call our two-step strategy of first fixing community growth rate to a fraction

of its optimum and then minimizing the L2 norm of individual growth rates a “coop-

erative trade-off.” Even though it is difficult to formulate a closed form solution for this

two-step optimization, one can obtain a solution for the second optimization (minimi-

zation of regularization term) when dropping additional constraints for growth rates

(see Text S1 for derivation). In that case, growth rates are given by:

�i �
��c

aT a
ai (2)

Thus, optimal growth rates will be approximately correlated with abundance where

the slope depends on the abundance distribution and the maximum community

growth rate.

We found that computation time generally scaled well with the community size

(with most individual optimizations taking less than 5 min) when using interior point

methods, which are known to provide better performance for larger models (26).

However, we found that it was difficult to maintain numerical stability with large

community models. None of the tested solvers were able to converge to optimality

when solving the quadratic programming problem posed by the L2 norm minimization

(see Materials and Methods). Thus, we used a crossover strategy to identify an optimal

solution to the L2 minimization (see Materials and Methods).

Regularization by cooperative trade-off yields realistic growth rate estimates.

In order to test whether cooperative trade-off yields realistic growth rates, we imple-

mented and applied it to a set of 186 metagenome samples from Swedish and Danish

individuals (27), consisting of healthy individuals, individuals with type 1 diabetes, and

individuals with type 2 diabetes stratified by metformin treatment (a known modulator

of the gut microbiome) (28). Relative abundances and cleaned coverage profiles for a

total of 239 bacterial genera and 637 species were obtained with SLIMM (29) from

previously published metagenomic reads (27, 29) as described in Materials and Meth-

ods. We used ratios in coverage between replication initiator and terminus as a

measure for replication rates, which have been reported to be good proxies for

bacterial growth rates in vivo (30). This provided a set of 1,571 strain-level replication

rate measurements for the 186 samples that were used for validation of the inferred
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growth rates (1,062 and 1,113 on the genus and species levels, respectively; see

Materials and Methods). Abundance profiles for all identified genera for all samples

were connected with the AGORA models, a set of manually curated metabolic models

which currently comprises 818 bacterial species (31). Ninety-three gut-associated gen-

era within the AGORA reconstructions (version 1.03) represented more than 91% � 5%

of metagenomic reads for the 186 samples (see Table 1, genus row). Even though the

cooperative trade-off strategy is applicable to species- or even strain-level data, the

AGORA reconstructions accounted for only 52% � 9% of all bacterial species in the data

set. Thus, we decided to perform community model construction separately on the

species level as well as the genus level, which covered a larger fraction of the observed

microbiome. To accomplish this, individual strain models from AGORA were pooled into

the higher phylogenetic ranks (see Materials and Methods). After removing low-

abundance taxa (�0.1% for genera and �0.01% for species), the resulting communities

contained between 12 and 30 taxa at the genus level and between 23 and 81 taxa at

the species level. Each taxon was represented by a full genome-scale metabolic model

and connected by exchange reactions with the gut lumen, thus yielding two sets of 186

complete metagenome-scale metabolic models (one set for the species level and one

for the genus level). We used the relative read abundances as a proxy for the relative

biomass of each taxon in each sample (see Materials and Methods). Even though

relative abundances from shotgun metagenomes are not an exact representation of

bacterial mass (in grams [dry weight]), we argue that the discrepancy between the two

is probably much smaller than the variation in intertaxon abundances, which spans

several orders of magnitude (18).

The data on 186 individuals used in this analysis did not include diet, metabolomics,

or data on total microbial load. Thus, we were limited to study metabolic effects that

are driven by microbiota composition alone and not by additional factors such as diet

or total bacterial biomass. To use a moderately realistic set of import constraints for the

community models, we modeled all individuals as consuming an average Western diet

(32). Import fluxes for external metabolites were based on a reported set of fluxes for

an average Western diet (31, 33). To account for uptake in the small intestine, we

reduced all import fluxes for metabolites commonly absorbed in the small intestine by

a factor of 10 (34).

To evaluate the performance of the cooperative trade-off, we compared the inferred

growth rates with the replication rates obtained directly from sequencing data (see

Materials and Methods). First, to establish a baseline, we ran an optimization that

maximized only the community growth rate and used the distribution of growth rates

returned by the solver when applying no regularization. This was followed by applying

the cooperative trade-off strategy with various levels of suboptimality ranging from

10% to 100% of the maximum community growth rate. The predicted growth rates

were now compared to the mean measured replication rates for each taxon in each

sample using Pearson correlation (see Materials and Methods). As stated above, we

TABLE 1 Distribution of taxon assignments for ranks

Taxon No. of unique taxaa

% of readsb

Assigned readsc With modeld

Kingdom 1 100 � 0 100 � 0
Phylum 22 100 � 0 99 � 0
Class 32 100 � 0 99 � 0
Family 102 100 � 0 91 � 0
Genus 239 94 � 5 91 � 5
Species 637 79 � 9 52 � 9

aNumber of unique taxa for each rank.
bPercentages of reads are shown as means � standard deviations for the 186 samples. Only reads classified
as bacteria were considered.

cPercentage of mapped reads that could be uniquely assigned to taxa within the rank.
dPercentage of reads whose taxon had at least one representative in the AGORA genome-scale metabolic
models.
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observed that simply optimizing the community growth rate with no regularization of

the individual growth rates led to solutions where only a few taxa grew with unrea-

sonably high growth rates (doubling times shorter than 5 min), whereas the rest of the

microbial community had growth rates near zero (compare Fig. 1B with tradeoff of

“none”). Consequently, the resulting model growth rates were uncorrelated with

replication rates (mean Pearson rho � �0.02). Adding the L2 norm minimization while

maintaining maximum community growth allowed more genera to grow (see Fig. S1 in

the supplemental material) but yielded growth rates that were anticorrelated with

replication rates (mean r � �0.11). Lowering the community growth rate to suboptimal

levels strongly increased the growing fraction of the population (Fig. S1) and led to a

much better agreement with replication rates for trade-off values smaller than 0.7

(mean Pearson rho � 0.4). Calculating correlations for all samples rather than within

samples showed a similar tendency, with no regularization showing no correlation with

replication rates (r � �0.05, Pearson exact test P � 0.07) and increased agreement

up to a trade-off value of 0.5 (r � 0.21, Pearson exact test P � 2e�12). The lower

magnitude correlations in the across-sample setting is likely due to differences in diet

or bacterial load for people that were not taken into account. Overall, the best

agreement with the observed replication rates across and within samples was observed

at a trade-off value of 0.5. Using Spearman correlation instead of Pearson correlation

also identified the same optimal trade-off, albeit with a slightly lower mean correlation

within samples (Spearman r � 0.28) and slightly stronger correlation for samples

(Spearman r � 0.27, Spearman exact test P � 7e�19). Thus, the observed Pearson

correlation results were not dominated by outliers. We also observed similar perfor-

mance with the species-level models (Fig. S2). For the Spearman analysis, the best

agreement with in vivo replication rates was observed for a trade-off parameter of 0.7

(Fig. S2C). Because the genus-level models performed equally well as the species-level

models but represented a higher percentage of observed reads (Table 1), we decided

to continue all further analyses using genus models with a trade-off parameter of 0.5.

Growth rates are heterogeneous and depend on community composition. A

trade-off value of 0.5 for maximal community growth led to good agreement with

replication rates. Bacterial communities showed an average doubling time of about 6 h,

where individual genera had an average doubling time of 11 h. Community growth did

not vary substantially for samples (0.246 � 0.002 1/h), indicating that each individual’s

microbiota was almost equally efficient at converting dietary metabolites into biomass

at the community level. However, we found that individual genus-level growth rates

often varied over 5 orders of magnitude (Fig. 2). Bacteroides was predicted to be the

fastest growing genus overall and was closely followed by Eubacterium, which is

consistent with the ubiquitous presence of these abundant taxa in microbiome samples

(35, 36).

In the absence of additional constraints, L2 regularization will result in growth rates

that are linearly dependent on the taxon abundances (see equation 2 and Text S1).

However, this requires some simplifying assumptions that may not be met in the

particular constraints of the full metabolic community models. We compared growth

rate estimates obtained from numerical optimization with the approximation from

equation 2. We found that growth rates obtained with the cooperative trade-off usually

followed the derived linear relationship, albeit with a large variation (mean R2 � 0.94,

standard deviation [SD] � 0.34; Fig. 3A). Deviations from that relationship were mostly

observed for small growth rates (Fig. 3A) which could not reach the suggested growth

rate due to additional constraints on growth. Thus, the linear relationship between

growth rates and abundance holds for most growth rates but is likely inaccurate for

very small growth rates. It is important to note that even though abundances are

positively correlated with growth rates within a single individual, this is not true across

samples where one can observe a negative correlation for abundant taxa (Fig. 3A). This

is a consequence of the coefficient in equation 2, which depends on the actual

abundance distribution as well. In particular, the slope of the linear relationship
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between abundance and growth rate will be the greatest if all taxa have equal

abundances and take its lowest value when one taxon dominates.

We observed a wide variation in individual taxon growth rates for samples. Because

all of the community models were constrained by the same diet, this phenomenon was

due to microbiota composition only. To explain this variation in individual growth rates,

we hypothesized that different genera might influence each other’s growth rate, either

FIG 2 Nonzero growth rates (�10�6) for genera obtained by cooperative trade-off (50% maximum community growth rate). Each small solid circle denotes
a growth rate for one sample of the 186 samples, and larger circles with white centers denote the mean growth rate for the genus (see Materials and Methods).
Genera are sorted by mean growth rate from lowest growth rate (left) to the highest growth rate (right).

FIG 3 Codependencies of growth rates. (A) Relationship between abundance and growth rate for samples. The large scatter plot shows growth rates and
abundances for the first 10 samples. Each circle denotes one genus in one sample and its sample provenance is indicated by the color. Dashed lines denote
the linear relationship between growth rates and abundances predicted by equation 2 for each sample. The black box demonstrates how different slopes (i.e.,
as community evenness declines, so does the within-sample slope) can result in negative correlation between abundance and growth rate across the samples.
The smaller inset scatter plot shows data from all samples (Pearson rho � 0.69, n � 39,815). (B) Growth rate interactions between genera as estimated by genus
knockouts. Only interactions that induce a mean growth rate change of 0.1 for all samples (i.e., ubiquitous interactions) are shown. The color of the edges
indicates change of growth rate and type of interaction. Red edges denote competition where removal of one genus increases the growth rate of the other,
and blue edges denote cooperation or syntropy where the removal of one genus lowers the growth rate of the other. The nodes are colored by the degree
(number of total connections) from lime (few) to dark blue (many).

MICOM: Metagenome-Scale Modeling

January/February 2020 Volume 5 Issue 1 e00606-19 msystems.asm.org 7

https://msystems.asm.org


by competition or by cooperation. In order to quantify growth rate interdependencies,

we performed in silico knockouts for each genus in each sample and tracked the

change in growth rates for all remaining genera in the sample (see Materials and

Methods). Here, we found that the growth rate of each genus was influenced by

another genus in at least one of the 186 samples. As would be expected for bacterial

species competing for the same resources, most interactions were competitive (red

edges in Fig. 3B). However, we observed a distinct subset of bacteria that were

interconnected by a network of cooperative interactions, including Akkermansia and

Faecalibacterium (blue edges in Fig. 3B; see also Fig. S3). Strikingly, genera participating

in many interactions for all samples, such as Bacteroides, Eubacterium, Akkermansia,

Alistipes, and Faecalibacterium, are known to be ubiquitous members of the gut

microbiome and are often associated with health (6, 37–41). We found that the

prevalence and strength of interactions were highly dependent on the composition of

the microbiome. The vast majority of strong growth interactions were present in only

one-to-five samples, whereas all other samples showed very few strong interactions

(Fig. S3). This result is perhaps unsurprising, as many strong species-species interactions

are thought to be destabilizing to ecological communities (42, 43).

Analysis of exchange fluxes reveals differential use of diet components and

niche partitioning in the microbiota. One of the major modes of interaction between

the gut microbiota and the host is by means of consumption or production of

metabolites in the gut. In our simulations, all individuals were on the same average

Western diet (see Materials and Methods), which imposes an upper bound for the flux

of metabolites into the gut lumen. However, this does not determine a priori which

components of the diet are consumed at what rate in each sample, because individual

microbiota may consume less than what is imposed by that maximum diet flux. We

quantified this effect by obtaining all import and export fluxes for each individual genus

for all samples (1,613 exchange reactions in each of 62 genera) as well as metabolite

exchanges between the microbiota and the gut lumen (152 metabolites). This was

done in the absence of a metabolic model for enterocytes, colonocytes, or goblet cells

due to the lack of a curated metabolic reconstruction and validated objective function

for those cells. A unique set of exchange fluxes was obtained by considering the set of

exchange fluxes with smallest total import flux for the growth rates obtained by the

cooperative trade-off (see Materials and Methods). This assumes that the microbiota

compete for resources with the host gut and will thus favor an efficient import that

yields the maximum growth rate. This also corresponds to the particular distribution of

import fluxes an individual microbiota is most adapted to.

Even though the minimization of total import fluxes favors simpler medium com-

positions, most samples showed a diverse consumption of metabolites from the gut,

particularly in the wide array of carbon and nitrogen sources (Fig. 4A). There was a large

set of metabolites that were consumed for all samples, but we also observed many

metabolites with differential import fluxes for individuals. In particular, we observed a

bimodal distribution where microbiota either consumed fibers and starches or

branched-chain amino acids (see the metabolites indicated in Fig. 4A). This bimodal

pattern did not correlate with health or disease states. As expected, all communities

showed net anaerobic growth. Those preferred usage patterns did not seem to depend

on the choice of the dilution factor used to lower import flux bounds for metabolites

that are commonly absorbed in the small intestine (Fig. S4).

Given the observed heterogeneity in taxon growth rates and the large number of

interactions, we were interested in looking at the uptake rates of metabolites from the

gut lumen for each genus. There was overlap of metabolite usage across genera. On

average 32% of the metabolites were shared between any two genera in any sample

(standard deviation of 13%; see Materials and Methods). Consequently, more than two

thirds of metabolites were used differentially between pairs of genera. To visualize the

structure of metabolite consumption by individual bacterial genera in the gut, we used

t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction on

genus-specific import fluxes (44). This revealed clear genus-specific niche structure for
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samples, where individual genera could be uniquely identified by their particular set of

import fluxes (Fig. 4B). Here, taxa closer to one another overlap more in consumed

metabolites (Fig. 4B). For instance, Bacteroides and Prevotella were relatively close to

each other in the center of the map, which may help explain the observed trade-off

between Bacteroides and Prevotella abundances in humans (45). Blautia, Desulfovibrio,

Bifidobacterium, and Eubacterium had the most unique growth niches overall. Genus

identity alone explained 61% of the variance in import fluxes (Euclidean permutational

multivariate analysis of variance [PERMANOVA] P � 0.001). Thus, there was extensive

growth niche partitioning between bacterial genera.

SCFA production is driven by extensive cross-feeding within the microbiota

and can be modulated by personalized interventions. Given the association be-

tween SCFAs and disease phenotypes, we investigated the degree of SCFA production

by the model microbiota (2, 46, 47). Intestinal cells have access to the full pool of SCFAs

in the gut lumen and would probably take up a significant fraction of those extracel-

lular SCFAs. Thus, the total export flux of any SCFA into the gut lumen by all taxa in a

specific model is a measure of host-available SCFAs produced by the microbiota (see

Materials and Methods for details on computation). Overall SCFA production for the

major SCFAs showed large variations even in healthy individuals, which indicates a

large impact of gut microbiota composition on SCFA availability. In particular, we

observed that Swedish individuals showed higher SCFA production rates than the

Danish individuals in the study. Butyrate production was diminished by about twofold

in Danish individuals with type 1 diabetes (Welch’s t test, P � 0.004) but not in Swedish

individuals. Danish and Swedish individuals with type 1 diabetes had microbiota that

produced more acetate than healthy individuals (Welch’s t test, P � 0.02 and 0.003,

respectively; Fig. 5A). Metformin treatment had a moderate effect in increasing

butyrate production in both cohorts; however, this effect was strongest when

comparing Danish individuals with type 1 diabetes (T1D) and metformin-treated

Danish individuals with type 2 diabetes (T2D) (Welch’s t test, P � 0.003). Higher

production of SCFAs was usually accompanied by an increased consumption of

SCFAs within the gut microbiota (Fig. S5). This is consistent with prior findings in

Danish and Chinese populations (4, 27, 48).

FIG 4 Microbiota import fluxes across samples. Exchange fluxes were calculated as the smallest set of import fluxes that could maintain the genera growth
rates obtained by the cooperative trade-off. (A) Import fluxes for samples. Rows were normalized to their absolute maximum, and colors denote the import
rate ranging from 0% to 100% maximum import. Metabolite groups of interest are marked by blue and red bars to the right (branched-chain amino acids
[BCAA]). Column headers are colored by the metabolic health state of the host (CTRL, control [metabolically healthy]; T1D, type 1 diabetes; T2D, type 2 diabetes;
metformin�, with metformin treatment; metformin�, without metformin treatment). (B) Growth niche map for gut genera. Import fluxes for each genus in each
sample were reduced to two dimensions using t-SNE. Each symbol denotes a genus in one sample and is colored and named by its genus. Genera that are
close to each other consume similar sets of metabolites.
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Decreases in butyrate production were usually accompanied by increases in acetate

production. This appeared to indicate SCFA cross-feeding within the microbiota, which

we confirmed by comparing the total production and consumption fluxes for each

bacterial genus for all samples (Fig. 5B). We observed that butyrate was almost

exclusively formed in an acetate-dependent manner from acetyl coenzyme A (acetyl-

CoA), which is the most prevalent butyrate production pathway in bacteria (49). In

particular, production of butyrate depended on acetate production in the community.

This was enabled by an extensive cross-feeding between the genera. All SCFAs were

produced by a heterogeneous set of taxa, with acetate and propionate production

being spread out for most taxa in the system and butyrate production being somewhat

more restricted to a smaller set of taxa (Fig. 5B). Across samples, the most efficient

butyrate producers were Faecalibacterium, Coprococcus, Roseburia, Anaerostipes, and

Lachnoclostridium, all of which are known butyrate producers (49, 50). However, the

models also predicted consumption of acetate by Bacteroides and consumption of

butyrate by Eubacterium, which has not been commonly reported in vivo. Production of

SCFAs was complemented by several other genera, generating a network of SCFA

cycling within the microbiota. SCFA production by any genus showed high variation

across samples and in some cases would even switch between consumption and

production of a particular SCFA, which shows how specific SCFA production is to a

particular microbial community (compare colored box plots in Fig. 5B). Net production

of SCFAs was low compared to overall production (Fig. 5A and Fig. S5B), which indicates

that most SCFAs in our models were cycled within the bacterial community.

Finally, as a proof of concept for the utility of MICOM, we aimed to quantify the

impact of targeted interventions on the net consumption or production of SCFAs by

the microbiota. To do this, we chose three Swedish samples from three individuals

(healthy, T2D without metformin treatment, T2D with metformin treatment). The

impacts of particular univariate interventions were then quantified by using elasticity

coefficients (51, 52), which are dimensionless measures of how strongly a parameter

affects a given flux (see Materials and Methods). Univariate interventions included

increasing the availability of a single metabolite in the diet or increasing the abundance

of a single bacterial genus. We observed that the effects of these single interventions

were very heterogeneous for all three samples (Fig. 6). The strongest and most

commonly observed effects were to diminish overall SCFA production. However, we

FIG 5 SCFA fluxes. (A) Production capacities of the major SCFAs stratified by population. Fluxes denote total amount of SCFA produced by 1 g of bacterial
biomass in the gut. Values that were significantly different by Welch’s t test are indicated by bars and asterisks as follows: *, P � 0.05; **, P � 0.01. (B)
Genus-specific fluxes for the three major SCFAs. Only genera with a relative abundance of �1% are shown. Fluxes denote total production/consumption for
each genus (see Materials and Methods) and are directed toward exports. Flux is shown in millimoles per hour per gram (dry weight). Thus, positive fluxes
denote production of the metabolite, and negative fluxes denote consumption. Genera are ordered by average relative abundance (relative abundances are
shown in the first column) from top to bottom.
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observed a few interventions that were able to weakly increase SCFA production. There

was a distinct set of metabolites that would increase butyrate production in the T2D

individuals but not in the healthy individual. This was also dependent on metformin

status. For instance, arabinan increased butyrate production in the metformin-treated

individual, and D-xylose increased butyrate production in the non-metformin-treated

individual, but not vice versa. Thus, MICOM is able to explore the potential functional

consequences of targeted dietary or probiotic interventions, which can differ greatly

depending on the context of the microbiota in which the interventions are made.

DISCUSSION

There is a large amount of sequencing data on microbial communities available

today. This is due in part to the falling cost of 16S rRNA and shallow shotgun

sequencing (53). There is wide interest in extracting information from sequencing data

that goes beyond bacterial proportions (54). Metabolic modeling incorporates a rich

knowledge base from genomics and biochemistry and is a valuable resource for adding

value to existing sequencing data sets. Specifically, MICOM allows for the integration

of genome-scale metabolic models, dietary information in the form of import flux

bounds, and abundance estimates from metagenomic shotgun or marker gene

sequencing. This framework enables in silico predictions concerning ecological

interactions within microbial communities, inferred exchanges between microbial

communities and their environment, and mechanistic hypotheses for how meta-

bolic interactions can be modulated by changes in the environment. The design of

reasonable metagenome-scale metabolic models is challenging due to apparent trade-

offs between individual and community growth rates and issues with computational

tractability. Here, we provided a viable strategy that allows for complex analysis of the

metabolic consequences of variation in microbial community composition. Our regu-

larization strategy allows for fast identification of unique sets of individual growth rates,

which operate in biologically realistic ranges. Our assumption that there is a trade-off

between community growth rate and individual taxon growth rates is supported by the

observation that most microbial communities are composed of a large number of

species with nonnegligible abundances. Individual growth rates for bacterial genera

varied greatly across samples (Fig. 2) and were tightly coupled to genus abundances

within a sample (Fig. 3A). However, there may be other regularization strategies that

provide better agreement with the underlying biology. Our validation strategy using

replication rates obtained directly from metagenomic data provides a simple frame-

work to test new regularization functions in the future. It seems that the large variation

of growth rates can be explained by the dependence of the growth rate on the

presence of other bacteria in the sample (Fig. 3B). Thus, bacterial growth in the gut

microbiota is dictated not only by abundance but also by taxon-taxon interactions.

FIG 6 Effects of interventions on SCFA production in three samples. Each row denotes an SCFA in a specific individual, and each column denotes either a diet
component or bacterial genus. Colors denote the elasticity (i.e., the percent change in SCFA production given a percent increase in the specific effector). Red
denotes interventions that would increase SCFA production, and blue denotes interventions that would decrease production. Only interventions with nonzero
elasticities in at least one sample are shown.
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Our predictions are somewhat limited by a variety of factors. For instance, the lack

of metabolic models for the major cell types of the gut epithelium (especially goblet

cells, enterocytes, and colonocytes) and sample-specific metabolite availability in the

gut lumen limits the accuracy of MICOM’s predictions. Additionally, the use of repre-

sentative models for bacterial genera is a notable caveat. Available metabolic recon-

structions are often based on laboratory strains that may not represent the exact

metabolic capacity of strains in the human gut. Thus, reconstructions may lack certain

metabolic pathways present in the sample and yield inaccurate results, especially when

not applying appropriate bounds for the underlying diet (33, 55). Thus, the inferred

metabolic exchanges should be seen as qualitative and will require validation against

quantitative data. Model predictions may become more quantitative as better (more

personalized) data become available. The incorporation of personalized data on diet

and a better grasp of what fraction of each metabolite is absorbed in the small intestine

should help to improve model-based predictions. Personalized reconstruction of mi-

crobial community metabolic models directly from metagenomic sequencing data may

provide more accurate predictions as well, but this approach is currently limited by

insufficient sequencing coverage for low-abundance taxa.

MICOM provided valuable ecological insights into the gut microbiota. For instance,

the cooperative trade-off in equation 2 indicates that a more diverse microbiome (i.e.,

higher evenness) results in higher individual growth rates (on average) due to the

magnitude scaling of the abundance vector (denominator in equation 2). We also

found strong niche partitioning in the model, where taxa showed minimal overlap with

each other in resource utilization space. This minimal overlap implies that there is likely

an upper bound on alpha diversity in the gut, due to the fact that growth niches

eventually saturate and limit the number of taxa that can engraft. Even though only

about a third of metabolites were co-consumed by any pair of taxa in the models, this

small amount of niche overlap still resulted in resource competition between taxa. This

was particularly true for dominant taxa (e.g., Bacteroides), which tended to show

competitive interactions with many other genera, likely due to the comparatively

higher resource requirements of these abundant taxa for maintaining growth. This

community-wide resource competition fits well with the observed growth dependence

on amino acid import fluxes for all taxa (Fig. 3A), which is consistent with prior work

that suggest that nitrogen may be the global limiting factor for microbial growth in the

gut (56). Finally, the methods here extend to any ecosystem containing many bacterial

taxa. As such, MICOM can be employed to perform functional analyses on a wide range

of microbial ecosystems.

It has been difficult and time-consuming to obtain empirical evidence for the

mechanistic basis of gut-microbiota interactions. MICOM provides a high-throughput

platform for generating mechanistic hypotheses and running in silico experiments that

would be impossible to perform in vivo. Thus, we feel that the major application for

MICOM is to provide detailed functional hypotheses that can serve as targets for

experimental validation. For example, MICOM reveals widespread SCFA cross-feeding in

the gut microbiota. The mere presence of butyrate producers was not enough for

stable butyrate production—acetate production was also required. Furthermore, MI-

COM generated personalized predictions for how dietary and probiotic interventions

influenced SCFA production capacity. This basic approach could be extended to any

number of clinically relevant metabolites. Thus, we hope that the method presented

here will aid researchers in leveraging existing gut microbiome data to design and test

personalized intervention strategies.

MATERIALS AND METHODS

Metagenomic shotgun data analysis. All metagenomic analyses were performed in R using an
in-house pipeline which is available as an open-source package along with documentation at https://
github.com/resendislab/mbtools. Sample FASTQ files were downloaded using the SRA toolkit and
trimmed and filtered using the DADA2 “filter_and_trim” function (57) with a left trimming of 10 bp, no
right trimming, a quality cutoff of 10, and a maximum number of two expected errors under the Illumina
model. Abundances for different taxa levels were then obtained using SLIMM (29) which was chosen
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because it supported one of the largest references (almost 5,000 reference bacterial genomes). In brief,
all sample FASTQ files were first aligned to the SLIMM reference using Bowtie2, saving the 100 best
matches for each read. Taxon abundance profiles were then obtained using SLIMM with a window size
of 100 bp and assembled into a single abundance file. SLIMM coverage profiles resolved to single strains
were then used to infer replication rates using the iRep method (58). In brief, coverage profiles were first
smoothed with a rolling mean over 5-kbp windows, and only genomes with at least a mean coverage
of 2 and with at least 60% of total length covered were considered. Coverage values were log
transformed and sorted, and the lowest and highest 10% of the data points were removed to obtain the
linear part of the curve. Replication rates were then inferred from the slope of a regression on the linear
portion. An estimate for the minimum coverage was then obtained from the intercept of the regression,
and only replication rates for strains with a minimum coverage of �2 were kept. No correction for GC
content was performed. Before model construction, genus-level and species-level quantifications for
each sample were matched separately to the AGORA models (version 1.03) by name. The final quanti-
fication and mapping are provided in the data repository (“genera.csv” and “species.csv” at https://github
.com/micom-dev/paper).

The growth rates predicted by MICOM were then compared to the mean replication rate for each
taxonomic rank (either species or genus) in each sample. Concordance was quantified by Pearson
correlation either within each sample with at least six measured replication rates or for all samples.
Dependence on outliers was checked by an inspection of log-log plots of predicted growth rates versus
measured replication as well as by running the same analysis using Spearman correlations, which yielded
similar results.

Strategies used in MICOM. MICOM is based on the popular COBRApy Python package for
constraint-based modeling of biological networks and is compatible with its application programming
interface (API) (59). The cooperative trade-off strategy as described here was introduced to MICOM in
version 0.9.0. Flux balance analysis obtains approximate fluxes for a given organism by assuming a steady
state for all fluxes in the biological system and optimizing an organism-specific biomass reaction. Using
the stoichiometric matrix S which contains reactions in its columns and metabolites in its rows, this can
be formulated as a constrained linear programming problem for the fluxes vi (in millimoles per gram [dry
weight {DW}] per hour {mmol/[gDW h]):

maximize vbm

such that �s.t.� Sv � 0

lbi � vi � ubi

The biomass reaction vbm is usually normalized such that it will produce 1 g of biomass which results
in a unit 1/h corresponding to the growth rate � of the organism. The upper and lower bounds (ubi and
lbi, respectively) impose additional thermodynamic constraints on the fluxes or restrict exchanges with
the environment (in the case of exchange fluxes). In order to describe a community model containing
several organisms with each organism having a particular abundance ai (in grams [DW]), one usually
embeds each organism in an external compartment which represents the community environment (for
instance, the gut lumen for models of the gut microbiota). Adding exchanges for the environment
compartment and exchanges between a particular organism and the environment, one obtains a
community model with the following constraints:

maximize �c ��
i

ai�i

s.t. ∀ i : Sv � 0

�i � vi
bm � �i

min

lbi � vi � ubi

lbi
ex � aivi

ex � ubi
ex

lbi
m � vi

m � ubi
m

Here, ai denotes the relative abundance of genus i, �i is its growth rate, vibm is its biomass flux, �i
min

is a user-specified minimum growth rate, viex represents the exchange fluxes with the external environ-
ment, and lb and ub are the respective lower and upper bounds. Additionally, �c denotes the community
growth rate and vi

m represents the exchanges between the entire community and the gut lumen.
The described constraints are identical to the ones employed in SteadyCom (22, 29). However,

SteadyCom aims to predict microbial abundances from a list of taxa present in a sample, whereas MICOM
predicts growth rates and fluxes and requires abundances as input. In particular, SteadyCom assumes
that all taxa grow at the same rate as they are all subject to the same dilution rate in the SteadyCom
model. Previous studies have shown that bacterial growth rates in the human gut vary widely across taxa
(30). Thus, MICOM allows for taxon-specific dilution and growth rates.

We assigned an upper bound of 100 mmol/[gDW h] for the internal exchange fluxes viex. Assuming
a total microbiota biomass of 200 g and a representative bacterial cell weight (dry weight) of 2 pg (60),
this corresponds to a maximum import or export of more than 100,000 molecules per cell per s.
Diet-derived lower bounds with values smaller than 10�6mmol/[gDW h] were set at zero, as they would
have been lower than the numerical tolerance of the solver. Taxa with relative abundances ai smaller
than 10�3 for the genus models or 10�4 for the species models were discarded, since they would not be
able to affect the external metabolite levels in a significant way but do increase computation time.
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Internal fluxes vi received respective bounds of 1,000.0 (or 0 if irreversible), making them essentially
unbounded. The described constraints are applied to all optimization problems in MICOM and will be
further called the “community constraints.”

The cooperative trade-off method consists of two sequential problems. First, maximize the commu-
nity growth rate �c to obtain �c

max. Using a user-specified trade-off �, now solve the following quadratic
minimization problem:

minimize�
i

�i
2

s.t. �c � ��c
max

and community constraints

The knockout for a genus i was performed by setting all fluxes belonging to this genus along with
its exchanges with the external environment to zero (lb � 0 and ub � 0). This is followed by running
cooperative trade-off on the knockout model and comparing the growth rates after the knockout with
the ones without the knockout.

Solvers and numerical stabilization. Most genome-scale metabolic models usually do not treat
more than 10,000 variables in the corresponding linear or quadratic programming problems. However,
in microbial community models, we usually treat tens to hundreds of distinct genome-scale models,
which makes the corresponding problem much larger. Unfortunately, many open-source and commer-
cial solvers have difficulties solving problems of that scale, so we also implemented strategies to increase
the success rate of those optimizations. All linear and quadratic programming problems were solved
using interior point methods, as these methods were much faster than simplex methods for problems
with more than 100,000 variables. Here, we used CPLEX (https://cplex.org) but also tested all methods
with Gurobi (https://www.gurobi.com/) (see “Data availability” below). Since growth rates tend to be
small, we also multiplied the objectives used in the cooperative trade-off (maximization of community
growth rate and minimization of regularization term) with a scaling factor in order to avoid near-zero
objective coefficients. A scaling factor on the order of the largest constraint (1,000.0) seemed to work
well. Nevertheless, the default interior point methods for quadratic problems in CPLEX or Gurobi were
usually not capable of solving the minimization of the regularization term to optimality and usually failed
due to numerical instability. The solutions reported by the aborted optimization run were usually close
to the optimum but tended to violate some numerically ill-conditioned constraints. To alleviate this
problem, we implemented a crossover strategy where we took the solution of the numerically ill-
conditioned quadratic interior point method as a candidate solution set �i

ca. On the basis of that, we
then optimized the following linear programming problem in order to restore feasibility:

maximize �c ��
i

ai�i

s.t. �i � �i
ca

and community constraints

Linear interior point methods are usually numerically stable so this linear programming problem can
usually be solved to optimality. The maximization together with the new constraints will push the
individual growth rates toward the candidate solution as long as it is numerically feasible.

Minimal medium and exchange fluxes. By convention, MICOM formulates all exchange fluxes in
the export direction so that all import fluxes are positive and export fluxes are negative. Based on this,
the minimal medium flux for a community was obtained by minimizing the total import flux:

minimize vtot ��
i

�|vi
m|, vi

m � 0�

s.t. ∀ i : �i � �i
ct

�c � ��c
max

and community constraints

Here, �i
ct denotes the optimal genus growth rates obtained by cooperative trade-off. The community

exchanges were then obtained by extracting all vim, whereas genus-specific exchanges were given by all
vi
ex as defined earlier.
Overall production fluxes were calculated as

vtot
m � �i,vi

m�0
aivi

m

where vi
m denotes an exchange flux for the metabolite m in taxon i. Overall consumption rates were

calculated in a similar manner but restricting fluxes to ones with vi
m � 0 (imports).

Single target intervention studies.We used elasticity coefficients (51, 52) to evaluate the sensitivity
of exchange fluxes to changes in exchange flux bounds (ergo diet changes) or changes in genus
abundances. The logarithmic formulation of elasticity coefficients is given by

	p
v �


 ln|v|


 ln|p|

where v denotes the exchange flux of interest and p is the changed parameter. Since the absolute value
removes information about the directionality of the flux, this was logged separately to maintain this
information. We used a value of 0.1 as differentiation step size in log space, which corresponds to a
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bound or abundance increase of about 10.5% in the native scale. To enable efficient computation,
elasticity coefficients were grouped by the p parameter, then the cooperative trade-off was run once
without modification, the p parameter was increased, the cooperative trade-off was run again, and
differentiation was performed for all exchange fluxes at once.

Data availability. All data to reproduce the manuscript, intermediate results as well as Python scripts
to reproduce the figures in the manuscript are available in a data repository at https://github.com/
micom-dev/paper. Metagenomic reads for the 186 individuals were obtained from a balanced sample set
generated from the SRA BioProjects PRJEB4336, PRJEB5224, and PRJEB1786 as published by Forslund et
al. (27) and can be downloaded from the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with
the SRA toolkit (https://github.com/ncbi/sra-tools). An exhaustive list of accession identifiers (IDs) for the
individual samples is provided in the data repository (https://github.com/micom-dev/paper/blob/
master/data/recent.csv). All algorithms and methods used here were implemented in a Python package
and can be easily applied to different data sets. The Python package MICOM (for microbial communities)
along with documentation and installation instructions are available at https://github.com/micom-dev/
micom. A QIIME2 plugin for MICOM (q2-micom) is available at https://github.com/micom-dev/q2-micom.
The AGORA reference reconstructions (version 1.03) can be downloaded from https://vmh.uni.lu/
#downloadview. The Western average diet fluxes along with used dilution factors have been deposited
at https://github.com/micom-dev/paper/blob/master/data/western_diet.csv. Several methods used in
MICOM require an interior point solver with capabilities for quadratic programming problems (QPs) for
which there is currently only commercial software available. MICOM supports CPLEX (https://cplex.org)
and Gurobi (https://www.gurobi.com/) both of which have free licenses for academic use. Intermediate
results that required those solvers are also provided in the data repository to permit reproduction of our
major conclusions.
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