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Abstract A complete set of genetic tools is still

being developed for the micro-alga Chlamydomonas

reinhardtii. Yet even with this incomplete set, this

photosynthetic single-celled plant has demonstrated

significant promise as a platform for recombinant

protein expression. In recent years, techniques have

been developed that allow for robust expression of

genes from both the nuclear and plastid genome.

With these advances, many research groups have

examined the pliability of this and other micro-algae

as biological machines capable of producing recom-

binant peptides and proteins. This review describes

recent successes in recombinant protein production in

Chlamydomonas, including production of complex

mammalian therapeutic proteins and monoclonal

antibodies at levels sufficient for production at

economic parity with existing production platforms.

These advances have also shed light on the details of

algal protein production at the molecular level, and

provide insight into the next steps for optimizing

micro-algae as a useful platform for the production of

therapeutic and industrially relevant recombinant

proteins.
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Introduction

As genetically accessible photosynthetic organisms,

algae are now recognized for their potential as a

platform for recombinant protein expression where

large scale and reduced material costs are important.

The most-commonly used eukaryotic model alga,

Chlamydomonas reinhardtii, has recently been shown

to be able to fill this role, and this review will

primarily discuss the technical and biological

advances made in recombinant protein production

in this alga. Algae have now come of age as a

platform for recombinant protein expression.

All three genomes (chloroplast, mitochondrial, and

nuclear) can be transformed in Chlamydomonas, and

each has distinct transcriptional, translational,

and post-translational properties that make them

distinct. Each of these genomes has been fully

sequenced, providing a wealth of information and a

strong foundation for targeted manipulation (Maul

et al. 2002; Popescu and Lee 2007; Merchant et al.

2007). Recent efforts have primarily focused on

understanding and improving gene transformation,

mRNA transcript accumulation, and protein accumu-

lation of nuclear and chloroplast recombinant genes.
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Chlamydomonas is an excellent system for reasons

beyond its genetic and metabolic malleability. This

alga has a rapid doubling time (about 10 h), it is

easily scaled in homogenous culture as an aqueous

microbe, it can be grown either photoautotrophically

or with acetate as a reduced carbon source, and it has

a controllable and rapid sexual cycle (about 2 weeks)

with stable and viable haploids.

Advantages of algal protein production

Protein production in plants provides a number of

advantages not found in other production platforms.

First, a major advantage that all plant protein

production systems have over cell culture systems

(including bacteria, yeast, and mammalian cell cul-

ture) is the potential for significant reduction in cost.

It is estimated that protein production in transgenic

plants can be as much as four orders of magnitude

less expensive than production in mammalian cell

culture, on a per gram of unpurified protein basis

(Dove 2002). Secondly, plant-produced proteins are

not susceptible to viral or prion contamination that

can harm humans, as is always a concern with animal

cell culture (Chebolu and Daniell 2009). Third, as

eukaryotes, algae and other plants possess the chap-

erones and cellular machinery required to fold

complex human proteins that bacteria and yeast

may not be able to process properly (Franklin and

Mayfield 2004). Finally, many species of green algae

are considered GRAS (generally regarded as safe)

(Rosenberg et al. 2008), meaning that if the protein

can be expressed in a bioavailable form, purification

steps could potentially be eliminated altogether.

Algae possess a number of advantages over

transgenic plant systems for the production of

recombinant proteins. They can be grown in con-

tained bioreactors, reducing the risk of contamination

of the production system by airborne contaminants,

and also protecting the environment from any

potential flow of transgenes into the surrounding

ecosystem. Growth in containment also greatly

reduces the potential for loss of the crop due to

predation or pathogen attack. Algae progress from

initial transformation to large-scale protein produc-

tion in a matter of weeks, compared to timescales on

the order of months or years in higher plants such as

corn or tobacco (Franklin and Mayfield 2004). As

micro-algae are all a single cell type, there should

also be less variation in recombinant protein accu-

mulation, making downstream processing more

uniform.

Production of recombinant proteins in chloroplasts

also possesses several unique attributes. At present

transgenic proteins can accumulate to much higher

levels in the chloroplast than when expressed from

the nuclear genome, mainly because plastids lack

gene silencing mechanisms and other mechanisms

that reduce recombinant protein production from

nuclear encoded genes (Bock 2007). Chloroplasts can

be transformed with multiple genes in a single event,

due to the availability of multiple insertion sites, as

well as an ability to process polycistronic transcripts,

allowing an entire gene cassette to be regulated by a

single promoter (Rymarquis et al. 2006; Bock 2007).

Additionally, proteins produced within the chloro-

plast are not glycosylated (Franklin and Mayfield

2005), which can prove useful in many applications

such as producing antibodies that are similar to native

antibodies in their ability to recognize their antigen,

but whose lack of glycosylation prevents them from

recruiting killer cells (Tran et al. 2009). In fact, it is

estimated that over two-thirds of the therapeutic

human monoclonal antibodies in the testing pipeline

do not require glycosylation for therapeutic function

(Dove 2002).

Genetic tools and techniques

Transformation techniques

The plastid genome can be reliably transformed

through homologous recombination using bombard-

ment by DNA-coated gold or tungsten particles

(Koop et al. 2007). Nuclear transformation in algae

can also be achieved by biolistic bombardment, but

the preferred methods are electroporation or agitation

with glass beads using a cell-wall defective strain

(Eichler-Stahlberg et al. 2009; Leon and Fernandez

2007). New transformation techniques using the Cre/

lox recombination system have been demonstrated to

recombine in the nuclear genome of Chlamydomonas

(Heitzer and Zschoernig 2007). Robust in vivo

recombinant reporters, including GFPs (Fuhrmann

et al. 1999; Franklin et al. 2002) and luciferases

(Mayfield and Schultz 2004; Shao and Bock 2008),

have been developed for tracking both nuclear and
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chloroplast gene expression. Techniques that have

been employed previously on higher plants, such as

transformation by Agrobacterium tumefaciens, have

also been demonstrated to work with Chlamydo-

monas (Kumar et al. 2004). However, nuclear

transformants still generally fail to accumulate

recombinant proteins to the levels observed in

plastids, most likely due to nuclear silencing mech-

anisms (see Nuclear Gene Silencing below).

Codon optimization

As with other expression systems, codon optimization

has played a large role in the success of recombinant

protein expression in both the chloroplast and nuclear

genomes of Chlamydomonas (Heitzer et al. 2007).

The nuclear genome and the plastid genome have

highly divergent codon usage, with the chloroplast

preferring an A or T in the wobble position while the

nuclear genome prefers a G or C (Nakamura et al.

2000). Using GFP, early work showed that codon

optimization to reflect the genome bias could increase

transgene protein accumulation 5-fold in the nucleus

(Fuhrmann et al. 1999) and up to 80-fold in the

chloroplast (Franklin et al. 2002). Today, recombi-

nant genes are universally codon optimized for

improved protein expression in almost every system

(Xia 2007; Puigbo et al. 2007, 2008).

Chloroplast gene regulation

Promoter and regulatory mRNA untranslated region

(UTR) choices are both crucial factors in transgene

expression levels. In chloroplasts, the most successful

promoter to date in algae is the psbA promoter in

combination with the psbA UTRs (Manuell et al.

2007; Surzycki et al. 2009). However, there are two

caveats with using the psbA regulatory elements.

First, they appear to be highly auto-attenuated; if any

of the psbA gene product (D1 protein) is present, it

will strongly decrease expression of any recombinant

coding sequence under the control of its 50-UTR.

Secondly, since D1 is essential for the function of

photosystem II, psbA knockouts are nonphotosyn-

thetic. This would clearly negate the benefits of using

a photosynthetic organism for protein production.

There is evidence that reintroducing an attenuated

psbA gene at a new locus elsewhere in the plastid

genome can restore photosynthesis while only mildly

reducing recombinant protein production (Manuell

et al. 2007).

Other UTRs in use for transgene expression

include those from the endogenous atpA, rbcL, and

psbD genes (Fletcher et al. 2007; Hallmann 2007).

These have been used with varying levels of success,

though as with the psbA promoter, it is unclear why

certain regulatory elements engender high expression

levels with some genes but not others (Marin-Navarro

et al. 2007). While endogenous promoters have been

primarily used, other exogenously induced expression

systems have been explored in the chloroplast. It has

been demonstrated that inducible systems, such as the

lac operon system from E. coli, can be engineered

into the Chlamydomonas chloroplast (Kato et al.

2007), and more recently a riboswitch was shown to

work to regulate translation in Chlamydomonas

chloroplasts using a small molecule for induction

(Croft et al. 2007), similar to their use in many other

expression platforms (Suess 2005; Winkler and

Breaker 2005).

While regulation of gene expression occurs at both

the transcriptional and translational level in the

nucleus, it appears that most regulation is post-

transcriptional in the plastid (Marin-Navarro et al.

2007). However, many of the activators and suppres-

sors of mRNA splicing and processing in the

chloroplast are indeed encoded by nuclear genes

(Boudreau et al. 2000; Somanchi et al. 2005;

Raynaud et al. 2007; Schwarz et al. 2007; Loiselay

et al. 2008). A multi-component copper-induced

system has been designed as a switch for chloroplast

protein expression. This system utilizes the nuclear-

encoded Nac2 chloroplast protein necessary for stable

accumulation of psbD RNA by acting on its

50-regulatory region. By transforming a copper

induced cytochrome c6 promoter fused to the Nac2

coding sequence into a Nac2 deficient strain, proteins

encoded with the psbD regulatory region only

accumulate in the presence of copper (Surzycki

et al. 2007). Additionally, nuclear gene products are

required for splicing of group I introns in the

chloroplast 23S rRNA and psbA genes, and can

potentially be used to regulate plastid gene expres-

sion (Li et al. 2002).

Post-transcriptional control in the chloroplast is

mediated by both cis- and trans-acting-elements. The

50-UTR of chimeric chloroplast mRNAs was shown to

significantly impact recombinant protein production,
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while 30-UTRs had little if any effect (Barnes et al.

2005). Cis-acting elements in 30-UTRs include UG-

repeats that are used in circadian protein regulation

(Kiaulehn et al. 2007) and inverted repeat sequences

that contribute to mRNA processing (Goldschmidt-

Clermont et al. 2008). Recent work has identified a

complex comprising an RNA stabilizing factor and a

translational activator that appears to be specific to the

D2 protein of photosystem II (Schwarz et al. 2007).

Post-transcriptional control mechanisms can also have

synergistic or antagonistic effects. Kasai et al. (2003)

used the GUS reporter controlled by various endog-

enous 30- and 50-UTRs to determine that there is

an inverse correlation between protein accumulation

and transcript stability, suggesting a feedback mech-

anism. Together all of these data suggest that regu-

lation of mRNA translation has the greatest impact

on recombinant protein accumulation, and is clearly

an area where additional research seems likely to

identify mechanisms for increased recombinant pro-

tein accumulation. For a comprehensive review of

chloroplast translation regulation, see Marin-Navarro

et al. 2007.

Nuclear gene regulation

In the nucleus, the most commonly used promoters

are those from the HSP70A, psaD, and rbcS2 genes

(Schroda et al. 2002; Fischer and Rochaix 2001;

Berthold et al. 2002). Chimeric promoters have also

demonstrated high levels of transcription and expres-

sion (Schroda et al. 2000; Fischer and Rochaix 2001;

Wu et al. 2008). Additionally, placing endogenous

intronic sequences in transgenes has been shown to

enhance expression regardless of orientation or

position. The first intron from the endogenous rbcS2

gene has shown particular efficacy in increasing

mRNA and protein accumulation and is now com-

monly used to enhance recombinant gene expression

(Lumbreras et al. 1998).

In the nucleus, gene expression can be induced by

a number of factors, including heat-shock or metal

addition (Wu et al. 2008; Ferrante et al. 2008). The

Nit1 promoter suppresses transcription in the pres-

ence of ammonia, but induces transcription when

cells are grown in nitrate- or nitrite-containing media

(Ohresser et al. 1997). More recently, iron-deficiency

response elements (FeREs) in nuclear gene promoters

have been characterized in Chlamydomonas (Fei and

Deng 2007). Signaling cascades triggered by photo-

oxidative stress in the chloroplast can also activate

transcription of specific nuclear genes, indicating that

gene regulation in Chlamydomonas is not necessarily

localized to the site of signal production (Fischer

et al. 2007). More recently, signaling molecules such

as Mg-protoporphyrin and heme produced in the

plastid have been shown to activate transcription of

nuclear genes such as HSP70A through an interac-

tion with the plastid response element (PRE) (von

Gromoff et al. 2008). While these inducible systems

provide great insight into gene regulatory strategies,

there is still significant work to be done before robust

production of recombinant proteins can be routinely

achieved from nuclear genes in algae.

Nuclear gene silencing

Transgene silencing is a significant obstacle for

recombinant protein expression in Chlamydomonas

nuclear transformants, but recent work is helping to

overcome this problem (Casas-Mollano et al. 2007,

2008a, b). Neupert et al. (2009) have developed

strains with impaired transgene silencing by using

UV mutagenesis and selection on media that permits

higher antibiotic tolerance proportional to higher

expression of the transgene product, to select strains

with improved protein accumulation. However, their

most impressive yields of exogenous protein accu-

mulation are only 0.2% of total soluble protein (TSP),

as compared to nearly 10% TSP obtained in plastids

(Manuell et al. 2007). It has been postulated that gene

silencing may be difficult to eliminate because it may

have evolved as a protective measure against intra-

cellular pathogens or viruses (Rosenberg et al. 2008;

Neupert et al. 2009). It appears that combating gene

silencing will be a major hurdle before recombinant

proteins can be expressed at economically viable

levels from nuclear transgenes in Chlamydomonas.

Current successes in algal protein production

Plastid transformation in higher plants has identified a

few recombinant proteins that accumulate to very

high levels, reported up to as high as 70% of total

protein for some antibiotic proteins in tobacco leaves

(Oey et al. 2009), but in general recombinant protein

expression is highly variable. For an extensive review
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of vaccine production in plants, see Davoodi-Semir-

omi et al. (2009). However, very recent work in

Chlamydomonas has demonstrated that fully bioac-

tive proteins can indeed be produced to appreciable

levels in green algae. A recent technique has been

exploited to improve protein accumulation and sta-

bility by expression of cleavable fusions to highly

expressed endogenous proteins (Muto et al. 2009), or

to highly expressed recombinant proteins in the

chloroplast (Rasala et al. 2010).

The first demonstration of mammalian protein

expression in the chloroplast was of a large single-

chain antibody (HSV8-lsc) directed against glyco-

protein D of the herpes simplex virus (Mayfield et al.

2003). The protein was soluble, suggesting that it was

correctly folded, and electrophoresis indicated the

formation of the dimer by disulfide bond formation.

This work was followed up by the expression of a

single chain fragment variable antibody that accu-

mulated to 0.54% TSP (Mayfield and Franklin 2005).

More recently a full-length human IgG1 monoclonal

antibody, directed against anthrax protective antigen

83 (83K7C), was expressed in the chloroplast of

Chlamydomonas (Tran et al. 2009). Unlike the

previously expressed lsc antibody, this antibody was

assembled in the chloroplast from separately

expressed light chain and heavy chain proteins, and

it could be purified at 100 lg per 1 g dry algal

biomass, and was found to have binding activity

identical to that of the same antibody expressed in a

traditional mammalian cell culture system (Tran et al.

2009).

A host of non-antibody recombinant proteins have

been expressed in the chloroplast for therapeutic

purposes. The human metallothionein-2 gene prod-

uct, which is considered to have anti-radiation

function, was expressed and demonstrated to improve

the survivorship of transgenic algae compared to wild

type algae (Zhang et al. 2006). The human tumor

necrosis factor-related apoptosis-inducing ligand

(TRAIL) protein, known to induce apoptosis in

virus-infected and tumor cells, accumulated in the

chloroplast at 0.43–0.67% TSP based on densitomet-

ric analysis of Western blot (Yang et al. 2006). The

expression of human glutamic acid decarboxylase

(hGAD65) was also achieved in the chloroplast of

Chlamydomonas (Wang et al. 2008). This protein

is an important autoantigenic marker in type I

diabetes, and the algae-derived protein remained

immunologically active, accumulating at 0.25–0.3%

TSP. Human erythropoietin (Epo), used in the

treatment of anemia, was fused to an export sequence

and expressed from the nuclear genome (Eichler-

Stahlberg et al. 2009). Protein was detected in and

isolated from the culture medium, although with

uncharacterized post-translational modification clo-

sely matching the mass of endogenous human Epo.

Also, biologically active bovine mammary-associated

serum amyloid (M-SAA) was expressed in the

chloroplast (Manuell et al. 2007). Notably, the

accumulation of this soluble protein was above 5%

TSP as quantified by Western blot, with levels of

expression determined to be more than twice that

amount using ELISA quantification.

A fusion protein containing the foot-and-mouth

disease virus VP1 gene and the cholera toxin B

subunit (CTBVP1) was produced in the chloroplast as

well (Sun et al. 2003). The protein was reported to

accumulate to 3% total protein by ELISA quantifi-

cation, and retained GM1-ganglioside binding activ-

ity and antigenicity. Another viral protein, classical

swine fever virus E2 structural protein, was expressed

in the chloroplast (He et al. 2007). ELISA quantifi-

cation indicated the accumulation of the E2 protein to

1.5–2% TSP, and retained immunological activity.

Similarly, along with a list of other recombinant

proteins, the white spot syndrome virus protein 28

(VP28) was expressed in the chloroplast (Surzycki

et al. 2009). VP28 was reported to accumulate to a

striking 10.5% TSP, although no data was presented

to show how this level of expression was determined.

Recently, the D2 fibronectin-binding domain from a

Staphylococcus aureus protein was fused to the B

subunit of cholera toxin, and expressed in the

chloroplast (Dreesen et al. 2010). The transgenic

algae were fed to mice, and induced resistance

against lethal doses of S. aureus, presumably by

eliciting a systemic antigenic response to the

S. aureus peptide. This is the first demonstration of

the functional possibility of orally delivered vaccines

from algal production.

More recently, Rasala et al. (2010) attempted the

expression of a set of seven recombinant proteins in

the chloroplast and were met with very good success

(four out of the seven genes expressed at economi-

cally viable levels). This work demonstrates that

recombinant protein expression in algal chloroplasts

is on par with any other expression platform, and

Biotechnol Lett (2010) 32:1373–1383 1377
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shows that expression of complex mammalian pro-

teins is as likely to be achieved in algae as it is in any

eukaryotic system. These data are summarized in

Table 1.

Potential future applications

Oral vaccines

Traditional vaccines are normally produced from an

attenuated or killed form of the pathogenic organism

itself. An alternative approach is to produce a

pathogen antigen as a recombinant protein, and this

is now used for some select vaccines like the hepatitis

A vaccine (Powdrill and Johnston 1991). As algae

contain very sophisticated protein folding machinery

that bacteria and other prokaryotes lack, algae can be

used to produce complex eukaryotic proteins that

cannot be easily produced on large scale in bacterial

culture without costly denaturation and refolding

steps. Algae are also ideal for producing vaccines

against pathogens which exhibit little or no glyco-

sylation, such as those from the parasites plasmodium

(Gowda and Davidson 1999).

Algae are also especially suited for the production

of oral vaccines on a large scale due to their GRAS

status. Once the process of oral delivery of a vaccine

protein is refined, algae could produce inexpensive

oral vaccines, making vaccination an accessible form

of disease management for a whole host of third-

world diseases. Furthermore, the oral delivery

method and the option to store doses at ambient

temperature would allow vaccines to be transported

and administered to remote populations without the

need for expensive refrigeration or highly trained

medical personnel (Chebolu and Daniell 2009).

Evidence for the feasibility of plastid-produced

vaccines has been provided by several groups who

have produced antigens that elicit similar immune

responses as the actual pathogen when injected in

standard vaccine adjuvants (Tregoning et al. 2003;

Koya et al. 2005; Molina and Shoenfeld 2005;

Chebolu and Daniell 2009). Furthermore, fusions of

antigens with the cholera toxin B subunit show

promise for eliciting immune response from mucosal

delivery alone, as the cholera toxin B subunit allows

a fused protein to penetrate the intestinal lining

(Sun et al. 2003; Harakuni et al. 2005).

Discovery of novel bioactive molecules

Screening of diverse algal species for novel bioactive

compounds has become a field of intense interest

lately, as algae are a rich source of secondary

metabolites that often have industrial or nutritional

implications. A wide range of functional molecules

produced by algae—everything from antioxidants to

pigments used in laboratory analytical techniques—

have been isolated (Plaza et al. 2009). High-through-

put screening methods comprising pressurized liquid

extraction; functional characterization of antioxidant

or antimicrobial activity; and chemical characteriza-

tion by HPLC and GC-MS have been optimized to

streamline the screening process (Plaza et al. 2010).

Protein secretion

Figure 1 illustrates the basic structure of Chlamydo-

monas reinhardtii, as well as the cellular locations of

recombinant protein accumulation depending on the

gene construct and transformation method. Plastid

transformation results in accumulation of the trans-

gene product in the single large chloroplast. Nuclear

gene products accumulate in the cytosol by default,

but nuclear transformation with appropriate signal

sequences allows for targeting to the endoplasmic

reticulum and Golgi for export (Griesbeck et al.

2006) or for localization to the cell membrane, which

may be sufficient for antigenic recognition in the case

of an oral vaccine (Eichler-Stahlberg et al. 2009).

Other algal transformation efforts

Genetic manipulation of algae is no longer limited to

Chlamydomonas reinhardtii. Recent successes in

generating transgenic algae are growing in number.

Exogenous genes have been expressed in the unicel-

lular charophyte alga, Closterium peracerosum–strig-

osum–littorale complex (Abe et al. 2008). The nuclear

genome of volvocine alga Gonium pectorale has been

stably transformed (Lerche and Hallmann 2009),

as has the chlorophyceae Haematococcus pluvialis

(Kathiresan and Sarada 2009), by co-cultivation with

Agrobacterium (Kathiresan et al. 2009). Some suc-

cesses have been made by transient transformation of

marine chlorarachniophyte Lotharella amoebiformis

(Hirakawa et al. 2008), chlorophyta alga Ulva pertusa

1378 Biotechnol Lett (2010) 32:1373–1383

123



T
a

b
le

1
R

ec
en

t
su

cc
es

se
s

in
th

er
ap

eu
ti

c
p

ro
te

in
p

ro
d

u
ct

io
n

in
al

g
ae

G
en

e
ex

p
re

ss
ed

F
u

n
ct

io
n

E
x

p
re

ss
io

n
le

v
el

ac
h

ie
v

ed
A

p
p

li
ca

ti
o

n
S

o
u

rc
e

H
S

V
8

-l
sc

F
ir

st
m

am
m

al
ia

n
p

ro
te

in
ex

p
re

ss
ed

,

an
ti

b
o

d
y

D
et

ec
ta

b
le

P
h

ar
m

ac
eu

ti
ca

l
M

ay
fi

el
d

et
al

.
(2

0
0

3
)

C
T

B
-V

P
1

C
h

o
le

ra
to

x
in

B
su

b
u

n
it

fu
se

d
to

fo
o

t
an

d

m
o

u
th

d
is

ea
se

V
P

1

3
%

T
S

P
V

ac
ci

n
e

S
u

n
et

al
.

(2
0

0
3

)

H
S

V
8

-s
cF

v
C

la
ss

ic
si

n
g

le
-c

h
ai

n
an

ti
b

o
d

y
0

.5
%

T
S

P
P

h
ar

m
ac

eu
ti

ca
l

M
ay

fi
el

d
et

al
.

(2
0

0
5

)

h
M

T
-2

H
u

m
an

m
et

al
lo

th
io

n
in

e-
2

D
et

ec
ta

b
le

P
h

ar
m

ac
eu

ti
ca

l,
U

V
-p

ro
te

ct
io

n
Z

h
an

g
et

al
.

(2
0

0
6

)

h
T

R
A

IL
H

u
m

an
tu

m
o

r
n

ec
ro

si
s

fa
ct

o
r-

re
la

te
d

ap
o

p
to

si
s-

in
d

u
ci

n
g

li
g

an
d

(T
R

A
IL

)

*
0

.6
7

%
T

S
P

P
h

ar
m

ac
eu

ti
ca

l
Y

an
g

et
al

.
(2

0
0

6
)

M
-S

A
A

B
o

v
in

e
m

am
m

ar
y

-a
ss

o
ci

at
ed

se
ru

m

am
y

lo
id

*
5

%
T

S
P

T
h

er
ap

eu
ti

cs
,

o
ra

l
d

el
iv

er
y

M
an

u
el

l
et

al
.

(2
0

0
7

)

C
S

F
V

-E
2

S
w

in
e

fe
v

er
v

ir
u

s
E

2
v

ir
al

p
ro

te
in

*
2

%
T

S
P

V
ac

ci
n

e
H

e
et

al
.

(2
0

0
7
)

h
G

A
D

6
5

D
ia

b
et

es
-a

ss
o

ci
at

ed
an

u
to

an
ti

g
en

h
u

m
an

g
lu

ta
m

ic
ac

id
d

ec
ar

b
o

x
y

la
se

6
5

*
0

.3
%

T
S

P
D

ia
g

n
o

st
ic

s
an

d
th

er
ap

eu
ti

cs
W

an
g

et
al

.
(2

0
0

8
)

A
R

S
2

-c
rE

p
o

-h
is

6
H

u
m

an
er

y
th

ro
p

o
ie

ti
n

fu
se

d
to

A
R

S
2

ex
p

o
rt

se
q

u
en

ce
w

/6
x

h
is

ta
g

1
0

0
l

g
/l

cu
lt

u
re

P
h

ar
m

ac
eu

ti
ca

l,
p

ro
te

in
ex

p
o

rt
E

ic
h

le
r-

S
ta

h
lb

er
g

et
al

.
(2

0
0

9
)

8
3

K
7

C
F

u
ll

-l
en

g
th

Ig
G

1
h

u
m

an
m

o
n

o
cl

o
n

al

an
ti

b
o

d
y

ag
ai

n
st

an
th

ra
x

p
ro

te
ct

iv
e

an
ti

g
en

8
3

0
.0

1
%

d
ry

al
g

al
b

io
m

as
s

T
h

er
ap

eu
ti

cs
T

ra
n

et
al

.
(2

0
0

9
)

Ig
G

1
M

u
ri

n
e

an
d

h
u

m
an

an
ti

b
o

d
ie

s

(L
C

an
d

H
C

)

D
et

ec
ta

b
le

T
h

er
ap

eu
ti

cs
T

ra
n

et
al

.
(2

0
0

9
)

V
P

2
8

W
h

it
e

sp
o

t
sy

n
d

ro
m

e
v

ir
u

s
p

ro
te

in
2

8
*

1
0

.5
%

T
S

P
V

ac
ci

n
e

S
u

rz
y

ck
i

et
al

.
(2

0
0

9
)

C
T

B
-D

2
D

2
fi

b
ro

n
ec

ti
n

-b
in

d
in

g
d

o
m

ai
n

o
f

S
ta

p
h

y
lo

co
cc

u
s

au
re

u
s

fu
se

d
w

it
h

th
e

ch
o

le
ra

to
x

in
B

su
b

u
n

it

0
.7

%
T

S
P

O
ra

l
v

ac
ci

n
e

D
re

es
en

et
al

.
(2

0
1

0
)

1
0

N
F

3
,

1
4

F
N

3
D

o
m

ai
n

s
1

0
an

d
1

4
o

f
h

u
m

an
fi

b
ro

n
ec

ti
n

,

p
o

te
n

ti
al

an
ti

b
o

d
y

m
im

ic
s

1
4

F
N

3
:

3
%

T
S

P

1
0

F
N

3
:

d
et

ec
ta

b
le

T
h

er
ap

eu
ti

cs
R

as
al

a
et

al
.

(2
0

1
0

)

M
-S

A
A

-I
n

te
rf

er
o

n
b1

M
u

lt
ip

le
sc

le
ro

si
s

tr
ea

tm
en

t
fu

se
d

to

M
-S

A
A

D
et

ec
ta

b
le

T
h

er
ap

eu
ti

cs
R

as
al

a
et

al
.

(2
0

1
0

)

P
ro

in
su

li
n

B
lo

o
d

su
g

ar
le

v
el

-r
eg

u
la

ti
n

g
h

o
rm

o
n

e,

ty
p

e
I

d
ia

b
et

es
tr

ea
tm

en
t

D
et

ec
ta

b
le

T
h

er
ap

eu
ti

cs
R

as
al

a
et

al
.

(2
0

1
0

)

V
E

G
F

H
u

m
an

v
as

cu
la

r
en

d
o

th
el

ia
l

g
ro

w
th

fa
ct

o
r

is
o

fo
rm

1
2

1

2
%

T
S

P
T

h
er

ap
eu

ti
cs

R
as

al
a

et
al

.
(2

0
1

0
)

H
M

G
B

1
H

ig
h

m
o

b
il

it
y

g
ro

u
p

p
ro

te
in

B
1

2
.5

%
T

S
P

T
h

er
ap

eu
ti

cs
R

as
al

a
et

al
.

(2
0

1
0

)

Biotechnol Lett (2010) 32:1373–1383 1379

123



(Kakinuma et al. 2009), and red alga Cyanidioschyzon

merolae (Ohnuma et al. 2008). Methods have also

been improved for previously transformed alga, such

as Dunaliella salina (Feng et al. 2009), and cyano-

bacterial genetics have also been extensively

explored, but will not be discussed in this review.

Future challenges

A significant obstacle for algal protein expression

systems is the lack of production systems optimized

for large-scale growth and harvesting of algae under

photoautotrophic conditions. The main limitations

in photobioreactor size arise from inhibited gas

exchange and light penetration in large cultures,

especially at the high cell densities required to keep

costs low (Ugwu et al. 2008). An alternative

approach, which has been discussed extensively by

Chen and Chen (2006), is to grow algae heterotro-

phically in conventional fermentation bioreactors.

This is certainly an economically viable option for

high-value products such as therapeutics or enzymes,

and indeed is currently used in much of the micro-

algae products industry (Chen and Chen 2006) with

yields reported as high as 83 g dry weight per liter of

culture for some species (de Swaaf et al. 2003).

Maximum yields for Chlamydomonas reinhardtii are

around 1.5 g dry biomass per liter when grown in

continuous flow on acetate media (Chen and Johns

1996).

The scale and cost requirements for algal biofuels

will likely necessitate photoautotrophic open cultiva-

tion systems. These systems are being improved, as

are processes for efficiently harvesting the algae. For

example, new methods have been optimized for

harvesting algae using microbes capable of floccu-

lating 90% of the algal mass with no deleterious

effect on algal viability (Lee et al. 2009). More

efficient methods and systems for large-scale growth

are critical if algal-derived biofuels are to become a

reality. If these issues can be resolved, algae repre-

sent a far superior source of biofuel than terrestrial

plants. It is estimated algae can produce up to ten

times as much oil per acre than any current terrestrial

crop (Cooney et al. 2009). For a detailed recent

review on the potential of algal biofuels, see Mata

et al. 2010.

Conclusion

Several decades of work in Chlamydomonas has

elucidated a better understanding of the transcrip-

tional and translational machinery and regulation of

the cell, ultimately generating improved methods for

transgenic expression of recombinant proteins in

algae. However, only in the past few years have these

advances been used to successfully express large,

fully bioactive, therapeutically relevant proteins at a

level sufficient for economically viable large-scale

production. Extensive research on optimal transfor-

mation constructs and gene optimization have greatly

increased yields of recombinant protein, though

further work is still needed to address nuclear gene

Fig. 1 Chlamydomonas reinhardtii as a versatile recombinant

protein production platform. Protein expressed from the

chloroplast genome is accumulated inside the single large

chloroplast (a). The reducing environment of the chloroplast

allows for proper folding of heavily disulfide bonded proteins,

which is not easily accomplished in bacterial production

platforms. Protein expressed from the nuclear genome accumu-

lates in the cytosol (b), unless it is given an export signal

sequence. In this case, it is sent to the endoplasmic reticulum for

translocation and processing and then moves to the Golgi

apparatus for packaging and export to the extracellular media (c)
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silencing, plastid auto-attenuation, and to optimize

reactor design for large-scale use. Algae have proven

their utility and tractability as a production system for

therapeutic or industrial proteins and peptides, and

algae now seem poised to become the ‘‘green’’

alternative to current mammalian, yeast, or bacterial

recombinant protein production systems.
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