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Abstract. Contact of rough surfaces at micro and macro scales is studied in this
paper. The asperities at micro scale are characterised by small radius of curvature
whereas the waviness is characterised by large radius of curvature. When two rough
surfaces come in contact, on the micro scale, of asperities contacts in a very small
area leave large gaps between the surfaces; whereas on the macro scale the surfaces
conform to each other under the application of load without gaps. Contact at micro
scale is modelled by superposition of Hertzian stress fields of individual asperity
contacts and the waviness at macro scale is modelled as a mixed boundary problem
of rough punch indentation where displacements of uneven profile are prescribed
along the region of contact. In both the cases for simplification the roughness is
assigned to one surface making the other surface perfectly flat an assumption often
made in contact mechanics of rough bodies.

The motivation for modelling the asperities at micro scales comes from the pre-
liminary results obtained from photoelastic experiments. Numerical results are pre-
sented based on the analytical results available for Hertzian contacts. The motiva-
tion for modelling the asperities at macro scales comes from the results available in
literature for flat contacts from solving mixed boundary elasticity problems. A con-
dition of full stick is assumed along the contact which is a common assumption
made for rough contacts. The numerical results are presented for both the cases of
rough contact at micro and macro scales.

Keywords. Hertzian contact; interaction stress field; photoelasticity; shrink-fit;
rough hub.

1. Introduction

Design of contact between engineering components is challenging and important, since unex-
pected failures well below expected life of the components are often observed, for example,
due to fretting fatigue. Besides the geometry of the contacting bodies, the roughness of the
surfaces under contact plays a major role in deciding the severity of contact stresses. The sur-
face roughness leads to interlocking of asperities at micro scale resulting in friction between
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the contacting surfaces. Friction in general is expected to increase with the surface roughness
and can be reduced appreciably by the use of lubricants and soft coatings.

The asperities at micro scale are characterised by small radius of curvature and when two
rough surfaces come into contact (figure 1a), the contact at micro scale is characterised by a
large number of asperities making contacts in a very small area leaving large gaps between
the surfaces. At macro scale there is a possibility of uneveness in the surface formed during
manufacturing process. This waviness in surfaces is in general characterised by large radius
of curvature and when two such surfaces come into contact (figure 1c) they conform to each
other under the application of load without leaving any appreciable gap between the surfaces.

While asperity contacts at micro scale are often detrimental the waviness at macro scale
could be advantageous at some instances as it accomodates the local strains which otherwise
would create large contact stresses especially in cylindrical contacts. In order to take advantage
of these features, it is necessary to design such waviness based on rigorous contact stress
analyses and which remains widely unexplored.

Contact at micro scale is modelled by superposition of Hertzian stress fields of individual
asperity contacts and the waviness at macro scale is modelled as a mixed boundary problem of
rough punch indentation where displacements of uneven profile are prescribed along the region
of contact. In both the cases for simplification the roughness in both surfaces is accumulated
in to one surface making the other surface perfectly flat an assumption often made in contact
mechanics of rough bodies (figures 1b and d).

Since contact of rough surfaces at microscale is characterised by large number of very small
contacts at asperities separated from each other leaving large gaps between the surfaces, it
is possible to superpose the stresses due to the contact of each asperity to obtain the state of
stress developed due to the contact. Hence assuming the other surface to be made of large
number of individual indenters simultaneously indenting a surface (assumed to be half-plane)
at multiple regions, the state of stress developed can be determined if the load acting on each
of the assumed individual indenters and the contact areas under each indenter is known. The
friction in general caused by the interlocking of irregularities of the surface at the micro scale.
Hence at micro scale the concept of friction fails and therefore for analysis the surfaces is
considered to be frictionless, inspite of the fact that there could be a possible adhesive forces
at atomic levels providing shear tractions.

Figure 1. Micro and macro level contacts.
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At macro scale the contact of uneven surfaces which will conform to each other under
load can be modelled as punch of uneven profile indenting a surface. The surface away
from the punch is considered to be traction free. This problem of elasticity can be mod-
elled in terms of mixed boundary problem prescribing the uneven surface profile under the
punch and prescribing traction free condition in the remaining surface. The evolution of
friction due to locking of asperities at microscale is often modelled at a macro scale assum-
ing a coefficient of friction. However, a condition of full stick is assumed at the contact
interface.

In this paper, the analysis of contact of rough surface at both the scales are attempted in
different contexts. The rough contact at micro scale is considered in terms of interaction of
Hertzian contact stress fields without the presence of any shear tractions. On the other hand,
the problem of contact of uneven surfaces is analysed by formulating a mixed boundary
elasticity problem prescribing the displacements of uneven profiles within the assumed region
of contacts.

2. Interacting Hertzian micro contact stress fields

Based on the above discussions, it is possible to model the problem of asperity contacts of
rough surfaces in terms of individual indenters each representing an asperity, indenting an half-
plane. Because of the relative heights between the individual profiles the number of asperities
making contact in general increases with load. Further, the important issue of the analysis is
that the interaction of contact stress fields which is focussed in this paper. In this context a
problem of asperity contact at micro scale is modelled as two adjacent indenters indenting
a half-plane. The load acting on each indenter is assumed to be equal and the interaction of
Hertzian contact stress field is analysed.

The predictions from Hertz theory applied to the 2D contact of a disc over half-plane is

that the pressure distribution is semi-elliptical p(x) = p0

√
1 − (

x
a

)2
, with p0 being the peak

pressure at the middle of contact and 2a being the contact length. p0 and a are related by
p0 = 2P

πa
where, P is the applied load. The semi-contact length a is related to the radius of

the indenter R, the load applied P and the effective modulus of the contacting bodies E as

a =
√

4PR
πE

(Johnson 1985). The important implication of the Hertz theory is that maximum
shear stress reaches its peak directly below the contact at a distance of about 0·78a.

The Hertzian solution can be extended to obtain near contact stress fields of rough contacts,
by assuming the asperity to be an indenter and the other body to be a smooth half-plane.
This solution is valid only near the contact and it may not be accurate far away from the
contact because of actual component geometry. However, since the stress field developed
in a region very near to the contact is crucial to operate any mechanism of wear and crack
initiation at microscopic level the solution obtained could provide clues to predict these micro
mechanisms.

When rough surfaces make contact the indentation will occur at more than one place.
Hence it is important to study the interaction between the individual contact stress fields.
Rajendrakumar & Biswas (1996) discussed the non-Hertzian contact of rough indenter indent-
ing a smooth half-plane. In such a case the load acting on each contact region will be different.
If load acting on each contact is known then the problem of indentation at multiple places can
be studied by superposing the stress fields due to individual contact. The interaction problem
becomes important when the contact areas lie close to each other. The problem of a half-plane
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Figure 2. Photoelastic experiment. (a) Isochro-
matics (rigid indenter). (b) Isochromatics (elas-
tic indenter).

indented by two indenters with circular profiles very close to each other is considered in this
paper. Assuming the load to be same on both the indenters, the interacting contact stress field
is obtained by superposing the individual contact stress field.

Preliminary photoelastic experiments were conducted to simulate the Hertzian contact
stress fields with a disc indenting a plate whose dimensions are sufficiently larger than the
contact area so that the half-plane assumptions are valid. The plate was made of Araldite
which is a common photoelastic material. Two experiments were conducted, one with steel
disc and other with araldite disc for indenting the plate. Figure 2 shows the fringe patterns
corresponding to steel and araldite discs. The small dark spot near the surface is called as
the eye in the sequel. This eye gives the location of the maximum shear stress mentioned
earlier.

Figure 3a shows the schematic of loading arrangement along with the specimen and indenter
for double indentation configuration. The indenters shown in figure are machined from a
circular disc so that the contact profiles are circular. The indenters are clamped in a metal plate
so that the load applied to the metal plate is distributed equally to the two contact regions.
They were cut in a manner to achieve different spacings between the contact, by aligning
the opposite sides of the cut-outs. While applying the load care was taken to minimize the
out-of-plane bending of the plate.

The photoelastic fringes obtained for two different cut-out spacing with dark field is shown
in figures 3b and 3c. The fringes show the Hertzian fringe pattern along with the eye corre-
sponding to each contact. Further, the interaction between the stress fields is clearly demon-
strated. Also forms a third eye along the mid-plane between the two contacts. This shows the
presence of a peak or valley in the distribution of maximum shear stress. The magnitude of
the maximum shear stress level is important if it is comparable to that of the Hertzian eye.
However, the fringe order shows that magnitude of stress level is lower than that of Hertzian
eye. The slight tilting of the fringes with respect to the horizontal is due to the interaction of
the contact stresses.

2.1 Theoretical analysis

Motivated by the results of the experiment, the problem of double indentation is analysed by
superposing the stress fields due to individual Hertzian contacts. Closed form solutions for
the stresses are given in Johnson (1985); Hills et al (1993) for a single Hertzian contact. These
results are utilised for superposition to achieve the interaction stress field. Figure 4 shows
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Figure 3. (a) Loading configuration; (b) Small
spacing; (c) Large spacing.

that, the obtained fringe patterns correspond with the experimental results. The formation of
third eye is predicted. Since this third eye is found to be an isotropic point under hydrostatic
compression. Thus the results demonstrate that the superposition of the individual stress fields
to obtain the interaction stress field is valid.

It can be stated from the results that as the distance between the contacts decreases the
fringes of higher order start interacting.

3. Contact of surfaces with uneven profiles at macro scale

The contact of surfaces with uneven profiles at a macro scale is considered in this section.
Since this analysis is for macro scale, the assumption of half-plane is no longer valid. Hence
the actual geometry of the component becomes important. For analysis a hub shrink-fitted
onto a cylindrical shaft is considered.

Figure 4. Contours of maximum
shear stress for a half-plane indented
by two spherical indenters.
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Figure 5. Cylinder with an axisymmetric hub having sinusoidal profile.

Shrink-fitted components often fail by fatigue due to growth and propagation of cracks
initiated at the contact interface by fretting. The stress analysis of shrink-fits has been discussed
in Conway & Farnham (1967); Spillers (1964); Tranter & Craggs (1945). Yau & Cakmak
(1966) discussed the indentation of homogenous hollow cylinder with punches of different
profiles assuming the contact to be frictionless. The analysis of cylinder shrink-fitted to a
flat hub assuming slipless condition is discussed in Yau (1967). The analysis is extended in
this paper assuming the surface of hub to be uneven instead of flat. The case of full stick is
considered as is the case of any rough contact. Surface roughness of the hub is modelled by
assuming sinusoidal variation of the profile.

Consider a solid cylinder of radius R made of linear elastic material shrink-fitted to an
axisymmetric rigid hub with sinusoidally varying profile (figure 5). The length of the hub
making the contact is taken to be 2a. The a/R ratio becomes important when the ratio is
small. For larger ratio (a/R � 1) the problem can be simplified to that of Lame problem.
Hence a small value of a/R = 0·5 is chosen for analysis. The ends of the hub are assumed
to be sharp leading to singular stresses.

3.1 Formulation

The solution for the Love stress function in the fourier space as explained in ‘Near surface
stress analysis strategies in axisymmetric fretting’ (in this issue)

� = A1f1(ξr) + A2f2(ξr). (1)

The expressions for fi(ξx2) are

f1(ξr) = 1

ξ 2

I0(ξr)

I0(ξR)
(2)

f2(ξr) = 1

ξ 2

ξrI1(ξr)

I0(ξR)
, (3)
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where R is the radius of the cylinder. The stresses and displacements at the surface are

τ rz = A1(ξ)p1 + A2(ξ)p2 (4)

σ r = A1(ξ)p3 + A2(ξ)p4 (5)

ur = A1(ξ)a11 + A2(ξ)a12 (6)

uz = A1(ξ)a21 + A2(ξ)a22, (7)

where the expressions for pi and aij are

p1 = ξ
I1(ξR)

I0(ξR)
(8)

p2 = ξ

[
2(1 − ν)

I1(ξR)

I0(ξR)
+ ξR

]
(9)

p3 = 1

R

I1(ξR)

I0(ξR)
− ξ (10)

p4 = −ξ

[
ξR

I1(ξR)

I0(ξR)
+ 1 − 2ν

]
(11)

a11 = −1 + ν

E

I1(ξR)

I0(ξR)
(12)

a12 = −1 + ν

E
ξR (13)

a21 = 1 + ν

E
(14)

a22 = 1 + ν

E

[
ξR

I1(ξR)

I0(ξR)
+ 4(1 − ν)

]
. (15)

Rewriting the unknown functions A1 and A2 by the unknown stresses at the surface from
eqs. 4 and 5 as

A1(ξ) = 1

�1

[
p4τ rz − p2σ r

]
(16)

A2(ξ) = − 1

�1

[
p3τ rz − p1σ r

]
(17)

with

�1 = p1p4 − p2p3. (18)

We obtain the following expressions for the displacements at the surface

ur = k1τ rz + k2σ r (19)

uz = k3τ rz + k4σ r, (20)
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where ki are listed as

k1 = [−a12p3 + a11p4]/�1 (21)

k2 = [a12p1 − a11p2]/�1 (22)

k3 = [−a22p3 + a21p4]/�1 (23)

k4 = [a22p1 − a21p2]/�1. (24)

Expressing the stresses at the surface along the contact interface (at r = R, |z| ≤ a) as

σr(z) =
∞∑

m=1

am

cos
[
(2m − 2) cos−1 z

a

]
√

a2 − z2
(25)

τrz(z) =
∞∑

n=1

bn

cos
[
(2n − 1) cos−1 z

a

]
√

a2 − z2
, (26)

where am and bn are unknown constants which are to be determined from the boundary
conditions. The surface is stress-free away from contact i.e. σr(z) = τrz(z) = 0 for |z| > a.
The above expressions in the fourier space become

σ r = (−1)m−1 am

2
J2m−2(ξa) (27)

τ rz = (−1)n
bn

2
J2n−1(ξa). (28)

Substituting above equations in to equations 19 and 20

ur(z) = 1

π

n=∞∑
n=1

bn(−1)nR1n(z) + 1

π

m=∞∑
m=1

am(−1)m−1R2m(z)

uz(z) = 1

π

n=∞∑
n=1

bn(−1)nR3n(z) + 1

π

m=∞∑
m=1

am(−1)m−1R4m(z), (29)

where

R1(3)n(z) =
∫ ∞

0
k1(3)J2n−1(ξa) cos(sin)(ξz)dξ (30)

R2(4)m(z) =
∫ ∞

0
k2(4)J2m−2(ξa) cos(sin)(ξz)dξ. (31)

The boundary conditions are:

• for |z| ≤ a, ur = −δ1 − δ2 cos(4π z
a
) and uz = 0 (full stick)

• for |z| ≥ a, σr = τrz = 0 (traction free).
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Figure 6. (a) Displacements and
stresses at r = R (solid line), r =
0·95R (dashed line), r = 0·9R
(dash-dot line). (b) Deformed pro-
files.

The traction free condition away from contact is already ensured. The displacements within
the contact is ensured by

1

π

n=∞∑
n=1

bn(−1)nR1n(z) + 1

π

m=∞∑
m=1

am(−1)m−1R2m(z) = −δ1 − δ2 cos
(

4π
z

a

)

1

π

n=∞∑
n=1

bn(−1)nR3n(z) + 1

π

m=∞∑
m=1

am(−1)m−1R4m(z) = 0. (32)

The above equations are solved using Schmidt method (Yau 1967). The stresses and the
displacements obtained for 2a = R, δ1 = 0·1R and δ2 = 0·1δ1 are plotted in figure 6a.



338 M Ramesh, Satish V Kailas and K R Y Simha

The deformed surface and subsurface profiles are also shown in figure 6b for R = 1, 2a =
R, δ1 = 0·1R, δ2 = 0·5δ1.

4. Conclusion

The contact of rough surfaces was studied at micro and macro scales. The results provided
better understanding of the contrasting nature of the rough contacts at different scales. Micro
contact mechanics provided a means for predicting potential sites for crack nucleation while
macro contact mechanics enabled predicting subsequent fracture and plasticity activity in the
near surface vicinity. The length scales differed by well over two orders of magnitude making
it important to study micro and macro contact mechanics separately before attempting unified
numerical evaluation.
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