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ABSTRACT 

 

 
The mechanical properties and reliability aspects of advanced transparent fine- 

and coarse-grained MgAl2O4 spinel have been characterized at ambient and high 

temperature. The studies were based on a combination of micro- and macro-mechanical 

methods to assess Young’s modulus, hardness, fracture toughness, strength and crack 

growth kinetics. The results and reliability aspects are discussed in terms of linear elastic 

fracture mechanics. Strength was analyzed using two- and three-parameter Weibull 

statistics. The experimental limits of Young’s modulus determination using standard ring-

on-ring testing are highlighted, and an approach is outlined to correct the measured 

apparent values. Experimentally obtained strength data as a function of loading rate are 

used to assess the potential effect of subcritical crack growth, yielding the failure time 

under static loading, via a strength/probability/time plot for a lifetime prediction. 

Furthermore, the Brinell indentation showed potential for local strength measurement and 

the data supported a strength-loaded area relationship that was based on the ring-on-ring 

test data. Novel experimental methods were implemented for fracture determination and 

strain detection. Particular attention was directed to the effect of defects and associated 

local strain fields, as assessed using polarized light in photoelastic measurements. 

Complementary fractography by optical, confocal and scanning electron microscopy 

provided a correlation between failure initiating defect size and fracture stress. 
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KURZFASSUNG 
 

 

Mechanische Eigenschaften und Zuverlässigkeitsaspekte fortschrittlicher 

transparenter  fein und grobkörniger MgAl2O4 Spinelmaterialien wurden bei 

Raumtemperatur und erhöhten Temperaturen untersucht. Die Untersuchungen basierten 

auf einer Kombination mikro- und makromechanischer Methoden zur Bestimmung von 

Young’s Modul, Härte, Risszähigkeit, Festigkeit und Risswachstumskinetik. Resultate 

und Zuverlässigkeit wurden unter Berücksichtigung der linear elastischen 

Bruchmechanik diskutiert. Die Analyse der Festigkeiten basierte auf Zwei- und 

Dreiparamter-Weibullstatistiken. Die experimentellen Grenzen der Young’s Modul 

Ermittlung im Fall eines Standard Doppelring-Biegetests werden hervorgehoben und eine 

Korrekturmethode der scheinbaren experimentellen Werte ist beschrieben. Experimentell 

als Funktion der Lastrate ermittelte Festigkeitsdaten wurden zur Beurteilung des 

potenziellen Effekts des unterkritischen Risswachstums verwendet und erlaubten eine 

Lebensdauervorhersage anhand von Festigkeits – Wahrscheinlichkeits – Zeit Graphen. 

Weiterhin wurde das Potential der Brinell Härteeindrucksmethode zur Messung der 

lokalen Festigkeit gezeigt und berechnete Daten stimmten mit einer auf 

Doppelringmessungen basierten Gleichung des Zusammenhangs Festigkeit – belastete 

Fläche überein. Neuartige experimentelle Methoden wurden zur Festigkeits- und 

Dehnungsdetektion eingesetzt. Besondere Aufmerksamkeit wurde auf den Effekt von 

Defekten und dem damit im Zusammenhang stehenden lokalen Dehnungsfeld gerichtet, 

wobei Untersuchungen auf photoelastischen Messungen beruhten. Komplementäre 

fraktographische Untersuchungen mittel optischer, konfokaler und Rasterelektronen – 

Mikroskopie ergaben einen klaren Zusammenhang zwischen versagensrelevanten 

Defekten und Bruchspannung. 
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1 INTRODUCTION 

 

Ceramics are increasingly utilized in a variety of technical applications, where 

either specific functional or structural properties (or both) are needed [1]. In particular, 

transparent ceramics have gained importance in technical window applications [2]. Spinel 

is a transparent oxide ceramic currently under consideration for such applications. One of 

the industrial development targets is to produce highly reliable transparent ceramics at 

low cost. Magnesia spinel (MgAl2O4) appears promising for attaining the envisioned 

goals by modifying materials and improving the fabrication process. In general, for such 

functional applications, the mechanical properties must be sufficient to warrant the 

structural integrity of the component. Therefore, in addition to detailed characterization 

of the mechanical properties (strength and hardness in particular), analyzing failure 

origins is a critical aspect. 

Results obtained from mechanical measurements and microstructural 

characterizations in this study are presented for the considered MgAl2O4 material. In 

addition, a main focus of this study is to evaluate different micro- and macro-mechanical 

characterization methods, particularly the utilization and verification of macroscopically 

non-destructive characterization approaches, and the correlation of results with 

microstructural features (i.e., grain size, defects). As a novel experimental approach, an 

indentation testing device developed in-house and permitted in-situ through thickness 

fracture observation and photoelastic measurements was used for this transparent material 

to obtain information on the variation of local stress fields. 

Elastic modulus, fracture toughness, and fracture strength as important basic 

materials properties have been characterized thoroughly. In addition, the effect of 

environmentally assisted subcritical crack growth and its implication on long-term 

reliability via a strength/probability/time plot was considered. 

Of equal importance to the statistical data for materials development and 

improvement is the knowledge of failure-relevant defects, particularly the effect of 

imperfections and associated local stress fields. Here, fractographic analysis based on the 
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combination of confocal and scanning electron microscopy with advanced software 

packages provides important information. 
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2 LITERATURE REVIEW 

 

2.1  Spinel materials 
The name “spinel” is used for the ternary oxide compound MgAl2O4 [3] and also 

as a name of a group of chemical compounds with an identical crystallographic structure 

and the general formula – AB2O4, where A is a divalent charged atom such as Mg+2, Fe+2, 

Mn+2, Zn+2, and B is a trivalent charged atom such as Al+3, Fe+3, Cr+3, Pb+3. Due to its 

chemical compatibility with alumina, zirconia and mullite, spinel is also considered to be 

an attractive matrix for ceramic matrix composites [4]. Some typical examples of the 

spinel group are aluminates (MgAl2O4), ferrites (MgFe2O4), chromites (FeCr2O4), 

franklinites (ZnFe2O4), gahnites (ZnAl2O4), magnetites (Fe3O4) and miniumes (Pb2PbO4). 

The physical and chemical properties of spinel are governed by the A and B compounds 

as well as by the distribution of cations located at the different crystallographic sites [5]. 

The fcc cubic spinel crystal structure (Fd3m) is a close-packed array of oxygen ions with 

the general formula AB2O4, in which Mg+2 cations occupy 8 of the 64 tetrahedral 

interstices and Al+3 cations occupy 16 of the 32 octahedral interstices [6,7] (Fig.  2). The 

lattice parameter Ao of stoichiometric spinel is 0.80832 nm [8].  

Property optimization motivates continuing efforts to produce new materials, 

extend phase fields and improve homogeneity [9,10,11]. This, in turn, provides the impulse 

to develop new synthesis and processing approaches. 

The basic procedures to produce spinel materials have been known since 1905 [12] 

and the system MgO·Al2O3 was defined in 1916 [13] and has essentially remained 

unchanged since then. Already since the 1930s, attempts have been made to apply 

magnesium aluminate spinels and use them instead of magnesia chromite products, even 

though the latter have a lower price and are simpler to manufacture. This is due to an 

increasing awareness of the toxicity of the Cr+6 formed by Cr2O3 under alkaline 

conditions, as well as stricter regulations for the use and waste disposals of refractories 
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containing chromium species [14]. The awareness of toxicity increased the industrial 

importance of aluminates (MgAl2O4) and ferrites (MgFe2O4).  

In the 1960’s, spinel was already recognized for its high hardness, strength and 

optical transparency [15,16]. Transparent polycrystalline spinel was initially developed as a 

transparent armor material in 1969 [17]. It was fabricated using classic ceramic 

technologies: preparing high purity ultrafine spinel powder, pressing the powder into 

pellets and finally sintering. 

Spinel still did not reach much commercial success until the middle 1980s, mainly 

due to its complex processing. Many studies exist on the effect of processing parameters 

on the properties of spinel and its composites, both stoichiometric and non-stoichiometric 

(magnesia or alumina rich compounds) [18]. At the beginning of the 1980s, 

polycrystalline spinel was produced by hot-pressing spinel powder, resulting in optical 

properties equivalent to that of single crystals [19]; starting around the same time, metal 

oxide spinels have been synthesized by various methods based on the mechanical oxide 

and/or salt mixtures calcination [20,21,22]. Recently, micron-grained and sub-micron-

grained spinels have been produced by means of extremely homogenous slip-casting with 

acceptable mechanical properties, as well as high transparency in the visible and infrared 

spectral range [23]. Currently, micron-, submicron- and nano-grained spinels ceramics are 

under development, and already show many processing and property advantages over 

conventional coarse-grained spinel [24]. In particular, many methods have been developed 

to synthesize high quality powders as ingot material [25,26]. However, the lack of suitable, 

well-developed and low-cost preparation methods still limits spinels’ application as high-

performance transparent ceramics.  

 

2.2 Application 
In general, spinel compounds are of interest since they exhibit a wide range of 

novel and adjustable properties, making the material useable for electronic, magnetic, 

catalytic, photonic and structural applications [27,28]. 

In particular, the high melting point of the magnesium aluminate spinel (2135 °C), 

high mechanical strength at ambient and elevated temperatures, good thermal shock 

resistance and chemical inertness are an important combination of properties, which has 
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already led to the application of magnesium aluminate spinels in metallurgy, 

electrochemistry and chemical industry [29,30,31], mainly: 

• Refractories 

The high melting point and excellent thermal and chemical resistance makes 

spinel, here as a major component in an alumina-or magnesia-rich matrix, useable for 

refractory applications. Due to large tensile hoop stresses, the thermal expansion 

mismatch between periclase and spinel phases in certain areas of phase diagram (20wt.%, 

see Fig.  1) leads to micro-crack development around the periclase grains in the spinel 

matrix if a certain grain size is exceeded. This decreases strength and stiffness, but also 

can reduce the probability of crack propagation in thermal shock loading [32]. The major 

application areas of spinel refractories are transition and burning zones of cement rotary 

kilns, sidewalls and bottoms of steel ladles, because they are resistant to corrosion by slag 

[33]. Ordinary ceramic refractory materials typically show a heterogeneous porous 

microstructure, which consists of large (max. grain size is typically 3 - 5 mm) and fine 

grains, which form the matrix. Although magnesium aluminate spinels are known to 

present an attractive combination of physical and mechanical properties, their 

technological application is, due to the difficulties in sintering and quality issues, still 

limited to magnesia clinkers used for the construction of furnaces [34]. 

• Optical Devices 

Sintered polycrystalline fine-grained spinel with its high refractive index, low 

scatter and random orientation of small crystallites, is optically completely isotropic. In 

the visible wavelength range (380 – 750 nm), it exhibits a similar optical transmission as 

the single crystalline material (> 80 %), with some differences at short ultraviolet (UV) 

wavelengths (230 – 400 nm). Transparent ceramics have attracted great attention for their 

use in a wide range of optical applications: high-power lasers, electro-optic devices and 

lenses. They also have been considered to be an optical material for infrared sensors 

[35,23]. UV-transparent materials also attract significant interest as laser lenses in the 

microelectronic chip industry [1]. Markets for portable digital devices have shown strong 

growth potential, requiring the use of compact lenses, light sensors and protective 

transparent shields. Frequently, a compact and small lens systems design is necessary for 

use in cell phones and cameras, and gives rise to the development of new transparent 
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materials with a high refractive index and high Abbé number, since this enables 

downsizing of optical systems [36]. In addition to the refractive index, dispersion value is 

also important for optical components. Particularly for camera lenses, low dispersion 

materials are preferred in the correction of chromatic aberration [37]. 

• Armor materials 

Transparent armor is a system of functionally-integrated transparent materials 

whose main role is to provide blast/ballistic protection of windshields and side windows, 

while retaining the structural integrity and optical transparency of the component [38]. 

Armor systems are traditionally laminates of soda-lime glass layers. A means to reduce 

weight and dimensions is the partial replacement of glass by transparent ceramics, since 

the ceramic has higher hardness, Young’s modulus and fracture toughness. Armor 

performance has not been successfully correlated to a single material property to date, 

due to the dynamic nature of the ballistic event. However, several fundamental material 

properties have been used to rank ceramics for screening purposes, with hardness 

appearing to be the main parameter.  

• Energy technology applications 

Highly porous magnesium aluminate spinel is considered a suitable inert substrate 

in some solid oxide fuel cell (SOFC) designs [39]. For employing spinel material as SOFC 

substrate, the material must be porous, to allow access of gases to the electrodes. Here, 

high strength (even in the porous state) and chemical inertness are important 

prerequisites. An additional advantage for this application is that its coefficient of thermal 

expansion can be varied by changing the amounts of the constituent phases, which limits 

thermally-induced stresses.  

• Other areas where spinel application is considered are: insulating material for 

fusion reactors and nuclear waste containers; dental implants; tribological applications; 

gas purging cones; ceramic gas nozzles for welding and plasma cutting; and refractory 

lances [1, 28, 40]. 

 



LITERATURE REVIEW 

 

7

2.3  The MgO·Al2O3 System 
Spinel (MgAl2O4) is a stable intermediate compound in the binary phase diagram 

MgO − Al2O3 [6]. The limits of the diagram are MgO and Al2O3, which have rather high 

melting temperatures of 2800 °C and 2020 °C, respectively (Fig.  1).  

The solid-state reaction between MgO and Al2O3 is governed by counter-diffusion 

of Al+3 and Mg+2 ions through the oxygen lattice of the spinel phase. The diffusion of 

three Mg+2 ions is compensated by two Al+3 ions in the opposite direction and, therefore, 

three moles of spinel are formed at the Al2O3 - MgAl2O4 interface for every mole formed 

at the MgO-MgAl2O4 interface [41,42]. As a result, if a stoichiometric initial composition 

of MgO and Al2O3 is used by slowly heating and cooling down, at the peritectic point a 

pure spinel is obtained. In many cases, the compound MgO-nAl2O3 is non-stoichiometric, 

i.e., n is not equal to 1 and can range  from 1 to 7.3, since excess Al+3 ions occupy 

tetrahedral sites, substituting Mg+2 ions. This causes a proportional decrease of the lattice 

parameter due to the smaller diameter of Al+3 [43]. Pure spinel has a volume expansion of 

5 – 7% [44] and melts at 2135 °C, with a eutectic point at 1995 °C. Maximum periclase 

solid solution was found to correspond to 9.5 wt % Al ions and the maximum spinel solid 

solution to 6 wt % Mg ions [45].  

The spinel divides the phase diagram into two eutectic systems MgO-MgAl2O4 

and MgAl2O4-Al2O4 (Fig.  1). Adjustment of sintering temperature and chemical 

composition can change the material from a solid solution to a two-phase structure, which 

improves strength, hardness and crack resistance [46]. However, low-purity magnesium 

aluminate spinel contains considerable amount of impurities like silica and soda. These 

impurities can form low-temperature eutectics, facilitate liquid-phase sintering and make 

the spinel structure less homogeneous, with considerable amount of clusters, voids and 

agglomerations. 

In general there are two types of spinel: normal and inverted (reverse). In normal 

spinels all A ions are located in tetrahedral sites and all B ions in octahedral coordination. 

When the structure is inverted, the divalent A ions and half of the trivalent B ions are 

located in the octahedral sites, while the remaining B ions have tetrahedral coordination. 

Both normal and inverted spinels have the same cubic Fd3m- structure [47]. For an 
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excellent review of the normal and inverted spinel structures and their mechanical 

properties see Shukla et al [48]. 

 

 
 

Fig.  1: MgO-Al2O3 binary phase diagram [49]. 

 

 
 
Fig.  2: Tetrahedral cubic MgAl2O4 spinel unit cell with Mg (blue), Al (green) and O 
(red) atoms. The unit cell is divided into eight subunits with Mg in tetrahedral (blue) and 
Al in octahedral (green) coordination in alternating sub-cells [48]. 
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2.4  Basic spinel processing 
Spinel components are usually fabricated starting from phase-pure spinel powder. 

In order to enhance sinterability, the powder must be very fine (less than 0.5 µm in 

diameter) and have high specific surface area, typically higher than 15 m2/g. Such very 

fine powders are difficult to process. They tend to have very low bulk density and are 

difficult to disperse in a liquid medium to facilitate forming processes [50].  

The first step in spinel powder processing is to spray the powder dry into a denser, 

more flowable powder containing organic processing aids. Very careful selection of 

organic additives and mixing methodology are required to successfully disperse a high 

quantity of powder while retaining sufficient fluidity of the resulting slurry.  

Following the spray drying, the powder is molded and pressed, typically using 

isostatic pressure. This fabrication method is suitable for small to moderate numbers of 

components ranging in size from small coupons to large plates, and geometries that can 

include tubes or even domes. Careful control of the process is required to provide 

sufficient densification in order to minimize shrinkage stresses occurring in later thermal 

processing [51]. 

Pressed parts must be prefired to remove the organic additives prior to sintering. 

When done incorrectly, this process can lead to the fracture of the pressed part. 

Consequently, this step of the process requires the longest cycle time of any spinel 

fabrication process steps. 

The sintering process step follows debinding, and the part is densified up to at 

least 95%. Despite removal of organics in the prior processing step, a relatively long 

cycle is still required for sintering in order to remove any residual organics, as well as any 

adsorbed water bound to the very high surface area particles [52]. 

Hot isostatic pressing (HIP) is used to pressurize the parts during a thermal cycle 

at temperatures similar to the sintering temperature. Under these conditions, the residual 

porosity is forced to shrink and ultimately removed as the material densifies further [50]. 
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2.5 Physical, chemical and mechanical properties 
The basic properties of spinel are governed by the types of atoms present, their 

bonds and their order. Magnesium aluminate spinel material is based on ionic bonds, and 

at room temperature fracture occurs without any plastic deformation, which is reflected in 

a limited tensile strength and toughness [53]. Pores and other imperfections can lead to 

stress concentrations, further decreasing strength and toughness. Due to the ionic 

bounding, dislocation slip generally does not occur at room temperature [54].  

Spinel’s optical properties are comparable to polycrystalline alumina and, since it 

has a cubic structure (i.e. no birefringence), it can transmit light with wavelengths from 

0.25 to 5.5 µm without optical distortion [55]. Light transmission through polycrystalline 

transparent ceramics is influenced by absorption, scattering by pores and additionally 

decreased by losses due to birefringent splitting of the beam at grain boundaries (Fig.  3). 

Transmission of light is attained by low porosities (< 0.05 %) along with rather small 

grain sizes (< 1 µm) [56]. In fact, only 0.1 % residual porosity can completely impair 

transparency, and large grains increase light scattering [57]. MgAl2O4 spinel is one of the 

cubic oxides where high transmission values can be obtained even at larger grain sizes 

due to the absence of birefringent scattering [23]. 

 

 
 

Fig.  3:  Light transmission through a polycrystalline translucent ceramic [23]. 
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Mechanical properties of transparent polycrystalline spinels have been reported at 

room temperature (hardness: 14 – 17 GPa - where applied loads are not always specified, 

Young’s Modulus: 260 – 280 GPa, flexural strength: 185 – 300 MPa and fracture 

toughness: 1.5 – 2.2 MPa·m0.5) [1,46,58,59,60,61]. Limited data exist for elevated temperature 

[62,63,64,65,66]. Fracture toughness and Young’s modulus of magnesium aluminate spinel as 

a function of temperature are depicted in Fig. 4. The reduction of elastic modulus and 

fracture toughness with increasing temperature is typical for many sintered ceramics, 

especially in cases where the behavior may be governed by a second-phase sintering aid 

[63,67]. Since for this group of materials such behavior typically coincides with softening 

of the grain boundaries, a monotonous decrease of mechanical properties with 

temperature can be expected. 

 

 
 
Fig.  4: Fracture toughness and Young’s modulus of MgAl2O4 spinel as a function of 
temperature [67]. 
 

Contrary to Young’s modulus and fracture toughness, the hardness of spinel (see 

section 4.4) is usually load-dependent. However, typically data are only reported for one 

particular (rather high) load value [68]. When a very low indentation load is used, the 

measured hardness is usually higher. With an increase in test load, the measured hardness 

decreases (Fig.  5); a behavior often observed for ceramic material, which is known as 
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indentation size effect (ISE) [69,70,71,72,73]. The ISE makes it difficult to define hardness 

by a single number. Many research works have been devoted to the origin of the ISE and 

several possible explanations have been proposed. In addition to explanations that 

concern experimental errors [74], elastic recovery work, hardening during indentation, 

dislocation and twin activities and (especially for ceramic materials), the onset of local 

damage have been considered [75]. 

 

 
Fig.  5: Knoop hardness-load data for some ceramic materials [76]. 

 

Many works have been devoted to improving the mechanical properties of 

transparent MgAl2O4 spinels [51,77,78,79]. Parameters such as non-stoichiometry 

coefficient n and powder composition, as well as the sintering and hot-isostatic pressing 

(HIP) parameters, significantly changed the mechanical behavior of sintered ceramics 

[46,80]. As illustrated in Fig. 6, the grain size increased from 290 nm (1150 °C) to 9.8 µm 

(1550 °C) with increasing sintering temperature, while at the same time the porosity 

slightly decreased. 
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A variation of the HIP conditions (Table 1) revealed that Young’s modulus and 

fracture toughness are rather insensitive to the grain size. However, increasing HIP 

temperature and pressure resulted in a decrease of the optical extinction [81]. 

 

 
Fig. 6: Dependence of grain size and porosity of MgAl2O4 spinel on the sintering 
temperature [80]. 
 

Table 1. Basic mechanical properties of MgAl2O4 spinel as a function of grain size 
obtained using different processing conditions [82]. 
 

 
 

 

Most mechanical properties of non-stoichiometric spinel appear to be superior 

compared to stoichiometric spinel. However, the flexural strength first increases at lower 

n and then decreases at higher n, whereas hardness and fracture toughness increase 

uniformly with increasing n (Fig. 7) [46]. 
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a 

 
b 

 
c 

 
Fig. 7: Mechanical properties of transparent spinel ceramics prepared from MgO-n-
Al2O3 powders as a function of non-stoichiometry n, (a) flexural strength, (b) hardness 
and (c) fracture toughness [46]. 
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The increase of strength might be attributed to better densification related to the 

enhanced sintering capability of non-stoichiometric ceramics, due to spinel lattice defects 

induced by deviation from stoichiometry of MgO·nAl2O4 powders grains and by 

corundum grains segregating from spinel grains during cooling. The corundum grains 

usually improve in strength due to their high elastic modulus and stronger bonding with 

spinel grains in comparison with the stoichiometric spinel grains [83,84]. Hardness 

increases with increasing n due to Al2O3 grain separation and the densification of spinel 

grains [85]. Toughening effects are supposed to be increased by dispersed rigid Al2O3 

particles and non-stoichiometric spinel grains. Rigid Al2O3 particles are furthermore able 

to resist crack expansion and consume energy, thereby improving toughness [46]. 

Furthermore, a clear effect of the porosity on the mechanical properties [39] has 

been verified (Table 2). 
 
Table 2. Effect of porosity on the mechanical properties of spinel 
 

 
 

(MMA is MgO + MgAl2O4) 

 

In comparison with other industrially used transparent ceramics, spinel can be 

ranked between sapphire and fused silica (Table 3) [86] with regard to its key mechanical 

properties. 
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2.6  Mechanical characterization 

2.6.1 Young’s Modulus 

2.6.1.1  Indentation  

In contrast to traditional hardness testing, instrumented depth sensitive indentation 

permits the measurement of the penetration depth of the indentation tip into the material h 

as a function of force P (Fig.  9). For indentation testing a Vickers tip is most commonly 

used. The Vickers indenter geometry corresponds to a square pyramid, with an angle of 

136° between the triangle faces. Indentation load-displacement curves can be used to 

determine mechanical characteristics, according to DIN 50359-1 [87] (Fig. 8). 

 

Fig. 8: Instrumented indentation: a) main parameters describing the impression, b) 
schematic representation of load - displacement curve obtained during indentation [88]. 
 

The reduced Young’s modulus can then be calculated from the indentation load-

displacement curve [88]: 

 

C
r A

SE ⋅=
2
πβ          Eq.  1 
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where β is a correction factor for the Vickers indenter (1.0124); S is the unloading slope 

dP/dh and Ac is the projected contact area predetermined via calibration of the indentation 

system. The indentation Young’s modulus can then be calculated as [88]: 

 

i
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−
=          Eq.  2 

 

where 
i

E  is Young’s modulus of the indenter, and ν and νi are Poisson’s ratios of the 

tested material and indenter, respectively. 

 

2.6.1.2  Bending test 

In the case of a bi-axial ring-on-ring bending test, the Young’s modulus is 

calculated from the linear part of the load-displacement curve after ASTM C1499-05 [89]: 
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where ν is Poisson’s ratio, ΔP is the difference in force, and Δf is the corresponding 

change in displacement, h is the specimen thickness, and r1, r2 and r3 are radii of load 

ring, support ring and specimen, respectively. 

 

2.6.1.3 Impulse excitation technique 

The impulse excitation technique (IET) is a non-destructive method to determine 

the Young’s modulus, with widespread use in science and industry. This method is based 

on an actuator that hits the surface of the sample, resulting in a free vibration with a 

material-specific and geometry-dependent resonance frequency. Since every sample has 

its own resonance frequency and the geometry is fixed, the resonance frequency is only 
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related to density and the Young’s modulus [90]. Often the entire oscillation waveform 

after excitation is recorded, as illustrated in Fig.  16. Afterwards, the fundamental 

frequency f  of the flexural resonance is extracted automatically. 

The Young’s modulus is often calculated from resonance frequency, using 

automatized software based on the relevant relationships for disc- and bar-shaped 

specimens given in ASTM E1876 – 01. 

This method’s advantage lies not only in the simplicity of the experimental setup, 

but also in high measurement accuracy. In fact, it has been verified for glass that the 

Young’s modulus measured by bending tests is usually ~7 % lower than that obtained 

using IET, due to system error and contact displacement [91]. IET results have excellent 

stability, while results of Vickers indentation show bigger scatter and are influenced by 

sample surface and inhomogeniety effects [91]. 

 

2.6.2 Hardness 

Additionally, the depth-sensitive indentation technique permits the determination 

of indentation hardness (HIT) by the ratio of maximum load to residual contact area [87]:  

 

C
IT A

P
H max=           Eq.  4 

 

whereas the Vickers hardness can be determined as: 

 

22 854,12
136sin2

d

P

d

P
HV ≈

°

=        Eq.  5 

 
where d is the arithmetic mean of the two diagonals.  
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2.6.3 Fracture toughness  

Fracture toughness (KIC) is the material resistance to instable crack growth. 

Fracture toughness can be tested by different methods, e.g., single edge notch bending, 

indentation and indentation-strength-in-bending tests [40], and by means of the Griffith 

criterion. The following sections give details on these methods. 

 

2.6.3.1 Indentation  

The local contact of a sharp tip with the surface of brittle materials can result in 

damage by crack formation at the edges of the indenter tip. The size of the impression 

and cracks is related to the elastic/plastic stress field under the indenter. If a material 

shows indentation cracking, the fracture toughness can be determined, defined here as the 

indentation toughness (KIND). Different relationships exist to determine indentation 

toughness, depending on the crack types generated during the impression. Evans and 

Charles [92],  Niihara et al. [93], Anstis et al. [94] and Lawn et al. [95] have been pioneers in 

determining fracture toughness by Vickers indentation. The fracture toughness is 

computed from the length of the indentation-induced cracks, taking into account applied 

load, hardness, Young’s modulus and calibration geometry factor [94,95,96]. Due to the 

small size of indents and cracks, this method is a macroscopically rather nondestructive 

characterization. However, the obtained values need careful interpretation. Mistakes in 

crack length observation and irregular fracture behavior can result in errors of up to 50 % 

[97]. The typical crack pattern after Vickers indentation is given in Fig.  9. 

 
Fig.  9: Radial crack system (right) after Vickers indentation (left) [98]. 
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In the present study, the widely used relationships for a half-penny crack system 

proposed by Lankford [99], Niihara [93] and Anstis [94] were applied for indentation 

toughness determination. 

 

Lankford equation [99]: 

(c/a > 2) 
( ) ( ) 56.15.152 ///0363.0 caaPHEKind ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=  Eq.  6

Niihara equation [93]: 

(c/a > 2.5) 
( ) ( ) 5.14.0 //067.0 −⋅⋅= acHEaHKind  Eq.  7

Anstis  equation [94]: 

(c ≥ 2a) 
( ) ⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=

5.15.0 //016.0 cPHEKind  Eq.  8

 

where: a – half of imprint’s diagonal length, c – crack length (measured from the end of 

imprint) and P – applied load. 

 

2.6.3.2 Indentation-Strength-Method 

An additional method of determining fracture toughness is the Indentation-

Strength-in-Bending method (ISM). This method is based on the fracture of pre-indented 

specimens. Consequently, well-defined defects are used to determine the fracture 

toughness from the fracture load obtained in a bending test. The fracture toughness (KISM) 

can be calculated using [96]: 
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During the bending experiment, the indentation induced residual stress field 

results in subcritical (stable) growth of the indentation-induced crack. This effect is 

considered by the geometrical constant A = 0.59 ± 0.12 [94,96], which is determined as 

( ) ( )[ ] 4
1

2
3

27/256 ϕπ ⋅Ω⋅⋅=A , where Ω  is a crack-geometry factor considering free-

surface effects (ellipticity and crack interaction) [96,100], and 004.0016.0 ±=ϕ  is a 
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material independent “calibration” constant for radial cracks at Vickers indents, which 

was obtained by averaging over the data for structured ceramics [94,95].  This calibration 

value is calculated from the ratio between the maximal crack length after stable crack 

growth cm (just before catastrophic specimen failure) and the initial indentation-induced 

crack length c0 which was Ω  ~ (cm/c0)3/8 = 1.12. The calibration value needs to be 

verified experimentally for any material and if necessary A needs to be re-calibrated. 

 

2.6.3.3  Single edge notch bending  

Fracture toughness of ceramics is often determined by SENB tests, according to 

ISO 13586 [101]. This method, based on a notched bending specimen, is one of the 

simplest and most reliable methods for determining fracture toughness [40].  

As illustrated in Fig. 10, an edge crack of depth c that is pre-introduced by cutting 

and sharpened with a razor blade, is extended from the tensile surface when a critical load 

is reached. In case of four-point bending of rectangular bar-shaped specimens, the critical 

stress intensity factor (fracture toughness) is then given by [102]: 
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where Pc is the critical fracture load, B is a thickness, W is a height, S2 inner and S1 outer 

roller span, and ГМ  is numerical factor:  
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where 5.0/ ≈= Waα  and αβ −= 1 . 
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Fig.  10: Four-point bending test with edge-notched specimen [40]. 

 

2.6.3.4  Griffith criterion 

In bending tests, failure will occur from pre-existing flaws. Therefore, fracture 

toughness determination is possible if these flaws are identified and their size is 

measured. If enough fracture energy is available, which is usually the case for finite-sized 

specimens in a bending test, fracture occurs when a critical applied tensile stress is 

exceeded. In this case the stress intensity factor exceeds the fracture toughness and 

unstable crack growth starts [103,104,105]. The major types of fracture-initiating defects in 

ceramics are machining flaws, microstructural inhomogeneities, inclusions and pores. 

Fracture toughness is related to the critical stress and defect size c via: 

 

( ) cZYK GriffithIC ⋅⋅= σ/.         Eq.  12 

 
where Y is a geometry factor dependent on the loading conditions, specimen shape and 

defect size, and Z is a shape factor for the defect. For flaws in a uniform stress field, Y is 

independent of c and given by: π=Y - for volume flaws, and π⋅= 12.1Y - for 

surface flaws. If the defect has a linear crack front, the shape factor is 1=Z , whereas for 

a circular or penny-shaped flaw, 
2
π

=Z  [98].  

Therefore, an estimation of fracture toughness is possible based on experimental 

observations of fracture origins using fractography. 
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2.6.4 Strength 

Fracture stress is determined in the case of ring-on-ring bending tests from the 

maximum load at failure P (see section 3.3.2), according to ASTM C1499-05 [89]: 
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where ν is Poisson’s ratio, h is the specimen thickness, and r1, r2 and r3 are radius of load 

ring, support ring, and specimen radius, respectively. 

Fracture stress of ceramics typically displays a considerable scatter that depends 

on the defect size distribution. Strength characterization is therefore usually performed 

using statistical approaches. In particular, Weibull statistics are widely used to assess the 

inherent scatter [106,107]. Based on the “weakest link hypothesis”, it is assumed that the 

most serious (largest) flaw controls the strength [108,109]. In general, the critical 

parameters for predicting the fracture strength of a component are the specific 

dimensions, characteristic strength, Weibull modulus and threshold strength. 

According to the Weibull statistics that are widely accepted for brittle materials 

[108], the cumulative failure probability of a component made of brittle material with 

specified dimension P(σ), subjected to stress σ, is given by: 
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where σ0 is the characteristic fracture strength, σu is the threshold stress, below which no 

failure will occur, and m is the Weibull modulus, being a measure of strength 

distribution.  

The characteristic strength corresponds to a failure probability of 63.2%, and 

therefore is only a weak criterion for assessing the reliability of brittle materials. Only the 

knowledge of characteristic strength, Weibull modulus and threshold strength permits 

complete characterization of a material for a given specimen dimension and an estimation 
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of the probability of failure for a particular stress level. Often σu is assumed to be zero, 

yielding a two-parameter relationship. In fact, numerical simulations and experimental 

data have verified that as long as sample data are limited in number (~ 30) and the 

threshold stress is not too large, a two-parameter Weibull distribution should be used 

[110,111]. It has also been demonstrated that when a two-parameter distribution is used, an 

underestimation is more likely than an overestimation. Hence, it can be considered the 

more conservative approach [112]. The statistical parameters of the Weibull distribution 

are most frequently assessed using linear regression (LR) or the maximum likelihood 

method (ML) [113]. In the present study, the LR method is used for simplicity, since it has 

been verified that the differences in the resulting parameters obtained using the different 

methods is rather small [114]. Obviously the Weibull parameters are subject to 

uncertainties and, for design purposes, it is necessary to give appropriate confidence 

intervals for example based on ASTM C1239 – 06A [115]. 

In the linear regression analysis (LR) the least-square fitting of a two-parameter 

Weibull distribution, which takes twice the double logarithm of Eq. 14, permits to 

determine m as the slope, and σ0 as the y-intercept: 
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Eq.  15 

 

where Pf is the failure probability. In the LR method, the stress values are ranked with 

respect to their individual probability according to [116]:  

 

( ) NiP
i

/5.0)( −=σ          Eq.  16 

 
Since the characteristic strength is a rather inappropriate parameter to assess the 

reliability of a brittle component (given the failure probability of 63.2%), usually fracture 

stresses for failure probabilities of 10-6 or 10-3 should not be exceeded to warrant 

structural integrity. Furthermore, the decrease of fracture stress due to larger deformed 

volumes in real application should be considered.  

In addition to the two-parameter distribution, a three-parameter Weibull 

distribution can also be used to analyze the data [117]. In order to carry out the linear 
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regression analysis, a threshold stress is chosen and the parameters are optimized based 

on the uncertainty of the regression slope. 

The standard deviation of Weibull modulus s (m) and characteristic strength s (σ0) 

can be estimated for a particular number of tests g via [118]: 
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Eq.  17 
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Eq.  18  

 

The statistical bias errors in the estimated Weibull parameters and calculation of 

confidence bounds have to be calculated from the available data set [119]. Depending on 

the number of specimens in a given batch, the estimate of Weibull modulus m may 

exhibit significant statistical bias. An unbiased estimate of the Weibull modulus mU is 

obtained by multiplying the biased estimate by an appropriate unbiasing factor (listed in 

ASTM C1239-06A). For this procedure, an unbiasing factor of 046958.1593145.11 −− N  

suggested in [116] can also be applied, yielding a negligible difference of ~ 2%, compared 

with the tabulated ASTM values for a data set of at least 10 specimens. 

The equations for the upper mUPP = mBIAS / m5 % and lower mLOW = mBIAS / m95 % 

confidence intervals, respectively, describe how the different limiting values are 

calculated for a 90% confidence level. The values for m5 % and m95 %  are listed in ASTM 

C1239-06A [115,120]. 

The strength values obtained using ring-on-ring specimens vary with test 

specimen size. Characteristic strength values can be scaled to other specimen geometries 

using the area relationship (Eq. 19). The effective area under tensile stress in a ring-on-

ring test is [121,122] 
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Comparison of Eq. 19 to numerical computations indicates that for m ≥ 5, ν ≥ 0.17 

and 5.0/ =
LS

DD , the error is less than 3% compared to a full integration of the stress 

field, but for 2.0/ =
LS

DD , the estimates are better than 5%. The use of Eq. 19 requires 

that fracture origins are clearly defined as surface defects [121].   

Since the strength of ceramics depends on the surface area or volume under stress, 

the characteristic strength needs to be rescaled from the size (effective area) of the test 

specimen to the actual component via [123]: 
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Similar relationships can be derived for volume defects. 

 

2.6.4.1 Local strength  

Hertzian (spherical) indentation of brittle materials is a feasible way to test the 

contact damage that may occur in application. An advantage of Hertzian indentation is 

that the material first responds linear-elastically before permanent contact damage 

(fracture) starts. Ring cracking is caused by the radial tensile stress occurring on the edge 

of the circular contact area, between the indenter and investigated material (Fig.  11). 

 
Fig.  11: Schematic diagram for Hertzian indentation and ring crack initiation [124]. 
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When a hard sphere (radius R and elastic constants E1, ν1) is pressed with a load P 

on to a flat substrate (elastic constants E2, ν2), the contact radius a  is given by [125]: 

 
3 3/4 ErkPa ⋅=          Eq.  21 

 

where 
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Considering the average stress criterion as a good indicator of material strength, 

the following relation has been proposed for calculating the local fracture strength [125]: 
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where 

c
a can be determined by Eq. 21 with 

c
PP = . 

The effective area (Aeff.Hertzian) is located at the specimen surface, where z = 0 and 

corresponds to the region where tensile surface stresses occur. This region is located 

outside the contact area. Aeff.Hertzian is derived for the conditions: r ≥ a and z = 0 [124] (see 

Fig.  11).  
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2.6.5 Statistical lifetime evaluation 

2.6.5.1 Slow crack growth and Strength-Probability-Time (SPT) prediction 

A ceramic component must be designed not only with respect to the applied load, 

but also to sustain a certain lifetime. For this reason, knowledge of the relationship 

between strength and operation time is necessary. Existing cracks may grow slowly, 

depending on the atmosphere, especially humidity. This behavior is known as subcritical 
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crack growth (SCG). If SCG is described quantitatively, the lifetime of the component 

can be predicted using a strength-probability-time (SPT) diagram. Accordingly, an SPT 

diagram is a link between strength, probability of failure, and lifetime. 

The experimental determination of an SPT diagram can be based on measurement 

of strength as a function of the loading rate, since a slower loading rate permits cracks to 

grow during loading, resulting in lower apparent strength. The fracture strength is in then 

correlated with the stress rate σ&  via [113]: 
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Eq.  25 

 
where n and D (in MPa/s) are the SCG parameters. 

To apply the SPT method, fracture stresses for a monotonous loading need to be 

known as a function of loading rate and these stresses are condensed to the equivalent 

stress 
s1

σ . The characteristic strength 
0

σ , measured at a certain stress rate of σ& , is in 

this case converted into an equivalent stress that would have caused the sample to fail in a 

time of 1s with a fracture probability of Pf  = 63.2 % [126,127]:  
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The combination of this stress and the failure probability of 63.2% results in a 

first data point on the SPT diagram. The 1s line crosses the σ1s data point and has a slope 

equal to the Weibull modulus m. The prediction of different lifetimes can be performed 

using the relation: 
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Therefore, a series of lines can be drawn, with spacing between the lines equal to 

(ln10)/n. In this case, each line represents a one-decade increase in lifetime. Eq. 2 can 
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then be used to assess failure probability as a function of stress for a given geometry. To 

analyze the influence of the specimen or component size on the allowable stress, Eq. 20 

should be used. 

The SPT diagram consists of a series of failure lines representing equivalent times 

of failure at different stresses. An example for yttria-stabilized zirconia (YSZ) is given in 

Fig.  12 [128]. 

  

 
 
Fig.  12: Strength-probability-time diagram for YSZ [128] 
 

It can be seen that for a given failure probability, YSZ survives for a longer period 

at lower stresses. For example, for a lifetime of 1s with a survival probability of 63.2%, 

the stress should not exceed ~ 1460 MPa, whereas for a lifetime of 10 years with the 

same survival probability, the applied stress should not exceed ~ 1030 MPa. 

It has to be emphasized that the SPT diagram is only valid for the actual 

environmental conditions under which the specimens are tested [129]. 
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2.6.6 Photoelasticity 

Photoelasticity is a non-destructive experimental method used primarily for two 

dimensional plain strain state analysis, which uses optical effects to determine strain 

distribution. Photoelastic analysis provides qualitative assessment of highly strained areas 

and peak strain at the surface and in the interior of the structure. It also distinguishes 

areas of low strain level where the material is less utilized. Almost all transparent 

isotropic materials (such as glass, polycrystalline ceramics, as well as many transparent 

synthetic resins and polymers) exhibit a double refracting effect on a beam of light, when 

they are subjected to strain [130]. 

When the material is strained and a ray of light enters along one of the directions 

of principal strain, the light splits into two component waves – each with its plane of 

polarization parallel to one of the remaining two principal planes (planes on which shear 

stress is zero). Furthermore, the light travels along these two paths with different 

velocities, which depend on the magnitudes of the remaining two principal strains in the 

material. The incident light is resolved into components having polarization planes 

parallel to the directions of the principal strains σ1 and σ2 (Fig. 13). Since these waves 

intersect the body with different velocities, the waves appear with a phase relationship, or 

relative retardation. Quantitative determination of the strain values is usually not possible 

and the method is used only qualitatively [131].  

 
 
Fig.  13: Birefringent effect [131]
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3 INVESTIGATED MATERIALS AND EXPERIMENTAL 

METHODS 

 

3.1  Material  

3.1.1 Processing 

The material was developed, produced and supplied by CeramTec-ETEC, 

Lohmar. A nano-sized MgAl2O4 spinel powder with a specific surface area BET of 30 

m²/g, average particle size 70 nm and purity of more than 99.9% was used as raw 

material. This powder was dispersed with a stirred media mill in water to form a slurry 

with 50 wt.-% solid material. Polyvinyl alcohol and Ammonium stearate were used as 

plasticifiers. The slurry was spray dried and then uniaxially pressed on a Herzog HP40 

laboratory press. Thereafter, the green samples were debindered, sintered in a 

Nabertherm HT40 furnace and afterwards hot isostatically pressed in an EPSI Hot 

Isostatic Pressing. A detailed description of the fine- and coarse-grained spinel 

production is given in Table 4. 

 

Table 4. Spinel production 
 

Fine-grained spinel Coarse-grained spinel 
Mixing water, powder (50 wt-%), 
dispersant, sintering aid 

Mixing water, powder (50 wt-%), 
dispersant, sintering aid 

Ball milling (2 h) Ball milling (2 h) 
Spray drying (100 – 200 µm) Freeze drying (100 – 200 µm) 
Molding Hot pressing (1700 °C, 1 h) 

Debindering (24 h / 800 °C) Hot isostatic pressing 
(1600 °C, 200 MPa, 2 h) 

Sintering (1600 °C / 2h)  
Hot isostatic pressing 
(1600 °C, 200 MPa, 2 h)  
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3.1.2 Specimens and surface preparation 

The transparent spinel was produced as 100 mm × 100 mm plates, with a 

thickness of 6.2 mm. Disk shaped specimens were cut out of the spinel plates by wire 

cutting (Fig.  14) for mechanical testing. 

 

 
 
Fig.  14: Disk shaped specimens 

 

Grinding conditions were chosen according to initial results of batches grinded 

under the different conditions: 54 µm diamond abrasive wheel (1 min), 18 µm diamond 

abrasive wheel (3 min) and final polishing using 6 µm diamond suspension (30 min). The 

optimal polishing condition (6 µm) was selected by CeramTec-ETEC to obtain the 

required optical properties, whereas the optimal grinding condition (18 µm) was chosen 

after macromechanical measurements (see section 4.7). These specimens were 

investigated by ring-on-ring bending and impulse excitation. The samples were polished 

(Minimet 1000) using diamond paste (1 µm) and silica slurry (0.2 – 0.5 µm) for 

microscopic analysis and indentation testing. 

The fine- and coarse-grained spinel specimens investigated by various methods at 

room (RT) and high temperature (HT) (see section 3.1.3) are given in Table 5. 
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Table 5. Spinel specimens tested in this work 
 

Fine-grained spinel 
(number of specimens) 

Coarse-grained spinel 
(number of specimens)  

Method 
 Room 

temperature 
High 

temperature
Room 

temperature 
High 

temperature
Fractography and 
microstructure observation 45 11 

(etched) 13 4 
(etched) 

Photoelasticity 16 2 
(annealed)   

In-situ fracture observation in 
light microscopy 1    

Determination of volume and 
agglomeration-size distribution 25    

X-ray analysis 1  1  
Ring-on-ring bending test 170  52  
Micro- and macro-indentation 
testing 17 3 

(annealed) 14 2 
(annealed) 

Impulse excitation testing 3 1 3 1 
Indentation (KIND) toughness 
evaluation 9  3  

Single edge notch bending 
(KSENB) toughness evaluation 5  3  

Indentation strength in bending 
(KISM) toughness evaluation 4    

 

3.1.3 Thermal treatment 

The heat treatments of specimens used for microscopic investigations are 

summarized in Table 6.  

 
Table 6. Application of the heat treatment regimes. 
 

Investigation Applied methods Heat treatment Samples 
Effect of annealing on  
local strains Photoelasticity annealing in air* 

(1000 °C, 60 min) 
disk-shaped, 

fragments 

Structural observation Light and scanning 
electron microscopy 

etching in air 
(1500 °C, 30-120 min) fragments 

Effect of annealing on 
mechanical properties Bending, indentation annealing in air* 

(1000 °C, 60 min) 
disk-shaped, 

fragments 
* heating rate 3 K/min, cooling rate 5 K/min. 
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Annealing conditions were chosen to retain transparency of fine- and coarse-

grained spinel samples. 

Thermal etching was carried out in order to examine the grain structure. Since 

sintering was carried out at a temperature of 1600 °C, a temperature 1500 °C was chosen 

for thermal etching as suggested by the manufacturer. The spinel structures showed 

different grain size-dependent etching rates. Therefore, exposure times of 30 and 120 min 

were used for the fine- and coarse-grained spinels, respectively. 

 

3.2  Microstructural observation 

3.2.1 X-ray diffractometry 

The phase composition was determined by X-ray diffraction using a Siemens 

D5000 diffractometer, equipped with an X-ray tube with copper anode (λ = 1.5418 Å), 

powered with an accelerating voltage of 40 kV and a current of 40 mA. 

 

3.2.2 Microscopy 

Microstructure investigations were performed by light microscopy (LM: Zeiss 

Axiomat), confocal laser scanning microscope (CM: Keyence VK-9500) and scanning 

electron microscopy (SEM: LEO 440) on polished, ceramographically prepared cross-

sections. Specimens were embedded in epoxy resin and ground on silicon carbide 

abrasive papers with stepwise decreasing size of abrasive particles (400 up to 4000 grit). 

For subsequent polishing, diamond pastes and suspensions with grain sizes from 3, 

through 1 to 1/4 μm were used. When visibility of the grain structure was required, the 

epoxy resin was removed and the polished ceramographic sections were thermally etched 

(Table 6).  

Image analysis (grain size, porosity and phase content estimation) was carried out 

using the “AnalySIS” software, provided by Olympus., Since thermal etching did not 

appear to influence the grain structure, grain size analysis was performed on thermally 

etched specimens (although a local influence on the phase composition could not be ruled 

out). The latter, however, is not critical for grain size analysis. Grain sizes were 
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determined from light and scanning electron micrographs. The planimetric method was 

applied involving automated measurement of the grain area for grain size determination, 

and was performed by the AnalySIS software. The results were then recalculated into the 

diameter of a circle with an identical area as the measured grain, and are given in the 

following as an equivalent circular diameter (ECD). The average grain size of the 

samples was calculated, assuming spherical grains, from the linear intercept on a two-

dimensional cross-section using the following relation [132]: 

 
156.1 DD ⋅=           Eq.  28 

 
where D is the corrected grain size and D1 is the average grain size obtained from 

the linear intercept method. 

A light microscope (Leica DMLM) with a magnification of 63 was used at 

CeramTec-ETEC for analyzing intrinsic agglomerates, as well as providing agglomerate 

dimensions and distribution. In order to determine sizes and volume of the particles (Fig.  

45), an automatical recalculation into white/black images was obtained by digital images 

taken from the center of the specimen (~ 200 mm2), as well as carried out by single-

purpose software.  

To reveal fracture mode and crack shape of the fine- and coarse-grained spinels, a 

line of Vickers indents was introduced into the surfaces of some samples under a load of 

49 N, with a distance of ~20 µm between the radial crack tips. Subsequently, the 

specimen was manually broken and observed via light microscopy. 

Fractographic analysis was performed on specimens fractured in bending tests. 

Fracture origins were identified by a stereo-zoom microscope (Olympus SZH10) and 

SEM (LEO 440), as well as by a confocal laser-scanning microscope (Keyence VK-

9500). The SEM in combination with Energy Dispersive X-ray spectroscopy (EDX) at 

high resolution (1 µm) permitted to analyze the elemental composition. 

Transmission electron microscopy (TEM: Philips CM 200 and JEOL 200CX) was 

conducted on thin foils prepared by Ga+ - focused ion beam technique (FIB: Zeiss Neon 

40EsB CrossBeam). Critical microstructural details were investigated by means of high-

resolution TEM.  
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The photoelastic observation was carried out with the aid of a circular polariscope 

in dark field configuration (Zeiss Axioskop 40 Pol). The set-up consists of a light source, 

a polarizer, a quarter-wave plate oriented at 45º with respect to the polarizer, the 

specimen, a second quarter-wave plate, and an analyzer (Fig.  15). 

 

 
 

Fig.  15: Working scheme of circular polariscope (dark field) [131] 

 

3.3  Mechanical characterization 
Various testing methods were applied to obtain mechanical properties of the 

MgAl2O4 spinel. In particular, bending tests were used to determine fracture strength and 

Young’s modulus, which was additionally determined using a resonance-based method 

and depth-sensitive indentation. Fracture strength data were statistically evaluated; 

fractured specimens were used to assess the failure origin. The depth-sensitive 

indentation method was also used to measure the hardness of the material. Fracture 

toughness was evaluated by three methods: the length of indentation cracks, the 

indentation strength method and from a direct measurement of the defect size in 

combination with the Griffith criterion.  
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3.3.1 Impulse-excitation technique 

The measurements at room temperature were carried out on disk-shaped 

specimens with a 27 mm diameter and thicknesses between 1.3 and 2.8 mm (see section 

3.1.2), using a commercial resonance system (GrindoSonic, Lemmens KG, Belgium) 

(Fig.  16a) based on ASTM E1876-01 [133]. However, for high temperature measurement 

the use of rectangular bars was required by the test setup (25 mm × 6 mm × 2 mm); the 

bars were wire cut out of disk shaped specimens.  

 

a b 
 
Fig.  16: a) Set-up for impulse excitation tests in air; b) typical resonance signal of the 
specimen induced by push rod. 
 

3.3.2 Bending test 

Bending experiments were carried out using the electromechanical testing 

machine Instron 1362 (Fig.  17a). Specimens for strength characterization were 

investigated in a ring-on-ring configuration, which avoids edge effects, and failure 

initiates within the loading ring. A limited number of specimens have been machined to 

carry out the single edge notch bending (SENB) test after ISO 13586 (see section 3.5.3) 

to assess the fracture toughness. 
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a b 

 
Fig.  17: a) Ring-on-ring testing set-up; b) Schematic sketch of load and support ring 
with specimen. 
 

Biaxial ring-on-ring bending test, according to the procedure given in ISO 1288 

[134], permits a simultaneous assessment of Young’s modulus and fracture stress for thin 

plates. The specimens were mounted between a loading (top) and support ring (bottom), 

both made of alumina. Alumina ceramics were also used for the upper pushing rod and 

the lower tubular support piston. The arrangement provided high temperature stability, 

stiffness, and good alignment of the load train. The displacement was measured in the 

center of the specimen with a ceramic extension rod attached to a linear variable 

differential transformer (Sangamo, LVDT, range ± 1 mm, precision 1.25 µm). The load 

was determined with a 10 kN load cell (Interface 1210 ACK). The temperature was 

monitored during the test close to the outer specimen surface with a thermocouple. All 

tests were carried out with support and load ring diameters of Ds = 19 mm and DL = 9.4 

mm, respectively. Young’s modulus was measured at specimens with thicknesses ranging 

from 0.5 mm to 3 mm. In order to determine fracture stress, 3 mm thick specimens were 

used. 

To determine inert strength, a loading rate of 100 N/min was chosen in order to 

minimize slow crack growth effects. Ten tests per rate at stress rates of 3.6·10-2, 3.6·10-1, 

and 19 tests at 3.6 MPa/s were performed to analyze slow crack growth.  

Limitations for the use of the ring-on-ring test are provided in the literature 

[89,121]. The linear theory is valid as long as the deflection of the specimen does not 

exceed a certain value, which depends on the diameter ratio of the loading and the 

supporting ring, and is ~1/2 of the specimen thickness for a ratio of 2/1  and ~3 for a ratio 
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of 5/1  [135,136,137]. In order to avoid non-linearity in the load-stress curve related with 

large deflection, the thickness has to be: 

 

Ert 3/8
2

1
⋅≥ σ          Eq.  29 

 
Since the largest measured fracture stress was ~240 MPa, the calculated value ≥t  

230 µm was well below the thickness of the specimens (for strength measurement 0.5 – 

2.8 mm). Specimen diameter, as well as thickness, also may affect the overall stress state. 

The stress state on the tensile surface inside the loading ring is, in theory, equibiaxial and 

constant. In practice, contact stresses are present under the loading ring. For round 

samples with tD
s

/ between 10 and 30, and ( ) tDD
s

/−  between 1 and 6, (where D and 

Ds are diameters of the sample and support ring, respectively) the stresses within the 

loading ring are estimated to be constant within 2% [138]. According to DIN 51105 [139], 

the ratio 
SL

DD / should be between 0.2 and 0.5 (where DL is a diameter of loading ring). 

Taking the thickness range of the investigated spinel plates and the geometry of the 

bending set-up, following allowable ratios can be determined: 6.8 < tD
s

/  < 38; 2.9 < 

( ) tDD
s

/−  < 16; 
SL

DD / = 0.5. Both criteria are fulfilled (Fig.  18) for a thickness 

between 1.35 and 1.9. 

 

 
 
Fig.  18: The suitable thickness range of the specimens (in blue) for the ring-on-ring 
bending test. 
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The load–displacement curves were corrected for the compliance-related 

deformation of the set-up. To consider the machine compliance, a 25 mm-thick alumina 

specimen was subjected to loading using the configuration described above; up to the 

maximum force was used in the fracture tests of spinel specimens. 

The actual machine deformation for a particular load was subtracted from the 

deformation obtained in the bending tests of the spinels in order to obtain an unbiased 

Young’s modulus. 

 

3.4 Indentation test 

3.4.1 Macroindentation 

Loads of 9.8, 49 and 98 N were applied for macrohardness determination (see 

sections 2.6.2, 4.4) by means of the hardness tester Buehler Met 10. 

 

3.4.2 Depth-sensitive indentation 

Experiments were carried out using both a Fischer HC100 indentation system and 

a combined nano-micro indentation set-up (CSM). Indentations were performed using 

loads between 0.1 and 20 N. Surface and cross-sections of the specimens were indented 

at low loads with the number of indents ~25, whereas for higher loads a sufficient 

statistical analysis could be obtained from 5 measurements. The available optical 

microscope system permits evaluation of the microstructural changes, as well as the crack 

lengths, for calculation of indentation fracture toughness (see section 2.6.3.1). 

 

3.4.3 Hertzian indentation 

Based on the Hertzian indentation method (see section 2.6.4.1), the local strength 

was estimated for the fine-grained material using spherical indenters with a radius of 0.5 

and 2.5 mm, respectively. Impressions were made in the load range from 30 to 245 N, 

with load steps of 49 N. The critical load for the formation of cone cracks was estimated 

visually after the impression using an optical microscope. 
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3.5 Fracture toughness  

3.5.1 Indentation  

Using a macroindenter Buehler Met 10 and a microindenter Fischer HC100, the 

impressions were introduced into the spinel surface under different loads, ranging from 3 

to 98 N (see section 2.6.3.1). 

 

3.5.2 Indentation-Strength-Method 

For ISM testing, typically up to four impressions were placed with an identical 

load (9.8 N) at the tensile specimen surface inside the loading ring area. This permits a 

clear determination of crack origin and an estimate of crack extension during the bending 

test before failure since fracture will typically only occur by crack extension starting from 

one of the pre-indentations. It was verified fractographically on every sample that failure 

in the subsequently carried out ring-on-ring bending test (see section 2.6.3.2) always 

occurred from one of the impression cracks. 

 

3.5.3 Single edge notch bending  

The measurements were carried out using an electromechanical testing machine 

(Instron 1362). The bending supports had an inner span of S2 = 7.5 mm, and an outer 

span of S1 = 15 mm. Due to limited availability of materials, only a small number of tests 

could be carried out with a specimen geometry of 4 × 5 × 25 mm and 1.7 × 3 × 25 mm 

for fine- and coarse-grained spinel specimens, respectively (see Table 5). Prior to the 

tests, the bar-shaped specimens were pre-notched following ASTM C1421 [140]. 

 

3.6 In-situ fracture observation  
In addition to fracture mode and crack shape estimation, which are critical 

parameters for fracture toughness determination (KIND), it is necessary to know if 

indentation cracks and delaminations form during loading or unloading. Therefore, an 

indentation device with in-situ observation has been developed and applied (Fig.  19). 
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Fig.  19: Indentation device for in-situ fracture observation. 
 

The specimen to be tested is fixed between a clamp ring and enclosure in order to 

avoid displacement of the specimen during loading. The gradual rotation of a screw collar 

moves the Vickers indenter to the contact surface, introducing the indentation mark and 

associated local fracture. A light microscope, Zeiss Axiomat, positioned above the 

specimen, permitted to observe the indentation process. 
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4 RESULTS AND DISCUSSION 

 

4.1 Microstructure  
The etched fine-grained and coarse-grained spinels were investigated via light 

microscope. Following the procedure outlined above (see section 3.2.2), the grain size 

was determined for both spinels, yielding an average grain size of ~ 5 µm varying from 

0.2 µm to up to 50 µm for fine-grained transparent spinel (Fig.  20a), and an average 

grain size 60 µm, with a size variety from 5 µm up to 170 µm for the coarse-grained 

transparent spinel. The microstructure of both spinels is inhomogeneous, and partially 

consists of zones with relatively coarse and fine grains (Fig.  20). 

 

A b 
Fig.  20: Thermally etched structures of fine-grained (a) and coarse-grained (b) spinel. 
 

In addition, a thin lamella was extracted by FIB from the fine-grained material 

and then characterized by TEM, confirming the existence of nanometer-sized grains and 

well-defined grain boundaries (Fig.  21a). A complementary EDX element analysis 

verified that the material consists locally only of aluminum, magnesium and oxygen (Fig.  

21b). The presence of copper and carbon in the spectrum is caused by the material of the 

specimen holder and the carbon coating deposited to enhance electrical conductivity, 

respectively. 
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TEM investigation was applied for analyzing the element composition between 

fine- and coarse-grained areas in fine-grained spinel. 

 

  
a 
 

 
b 

 
Fig.  21: Fine-grained spinel lamella investigated via (a) TEM and (b) EDX.  

 
 

4.2 X-ray analysis 
An X-ray phase analysis confirmed that there are no evident impurities in the 

fine-grained and coarse-grained transparent spinels, proving fcc cubic spinel crystal 

structure (Fig.  22, Fig.  23). The obtained lattice parameter, 0.808 nm, coincides with 

literature findings (see section 2.1). Therefore, XRD and EDX element analyses 
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confirmed the purity of the magnesium aluminate spinel, permitting the comparison of 

the mechanical data to the literature values of this material. 

 

 
 

Fig.  22: XRD diagram of the fine-grained transparent magnesium aluminate spinel 
 
 

 
Fig.  23: XRD diagram of the coarse-grained transparent magnesium aluminate spinel 
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4.3 Young’s modulus 
Young’s modulus was determined using bending, impulse excitation and 

indentation testing (see sections 2.6.1.1, 2.6.1.2, 2.6.1.3). The value for fine-grained 

spinel derived from the ring-on-ring bending tests without compliance correction 

decreases significantly, with increasing specimen thickness from 270 GPa down to ~ 160 

GPa (~ 45 %) (Fig.  24). 

The circle-shaped data points in Fig.  25 represent Young’s Moduli from ring-on-

ring bending tests after compliance correction, as outlined in section 3.3.2. The 

deformation of the experimental setup used for compliance calibration (see section 3.3.2) 

was ~3.5 µm in the load range 550 - 650 N, whereas for fine-grained spinel the deflection 

of the specimens was ~20 µm at the same load range. Assuming an uncertainty in the 

compliance calibration of 1 µm leads to an uncertainty in the experimentally determined 

modulus of ~7% for fine-grained spinel. The value measured for the thinnest specimens 

is ~270 GPa, whereas for larger thicknesses the modulus decreases by ~10% (Fig.  25). 

Therefore, this effect is close to the limits of uncertainty.  

 

 
 
Fig.  24: Apparent Young’s modulus (not corrected for compliance) of fine-grained 
spinel as a function of the specimen thickness.  
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Fig.  25: Apparent Young’s modulus as a function of specimen thickness. Results are 
derived from compliance-corrected load–displacement curves obtained in ring-on-ring 
bending tests for fine-grained spinel specimens.  
 

The value of ~270 GPa determined for thin specimens (~1 mm) coincides with the 

average modulus determined using the impulse excitation technique (~270 ± 5 GPa), 

whereas the depth-sensitive indentation technique yielded a 20% lower value (~210 ± 10 

GPa, for loads from 0.5 to 1 N) (Fig.  25). The low Young’s Modulus obtained by 

indentation can be explained by surface effects [141].  

The same bending test procedure was also used for the coarse-grained spinel. 

However, specimens were only available with a thickness of around 2 mm. After 

compliance correction, the ring-on-ring bending tests yielded EROR values of 242 ± 13 

GPa, whereas impulse excitation and indentation tests resulted in Young’s moduli of 

~270 ± 5 and ~225 ± 10 GPa, respectively. 

Overall, the data for fine- and coarse-grained material coincide only for impulse 

excitation. The bending tests yield lower values, which might be biased by morphological 

effects, e.g., the grain size and local defects (Fig.  20, Fig.  54). Indentation tests reveal 

~5% higher values for the coarse-grained spinel, compared to the fine-grained material. 

This difference might be related to the number and amount of the coarse-grained areas 

with higher local Young’s modulus in the fine-grained material (see section 4.4). The 
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nearly identical value of ~270 GPa determined by impulse excitation technique for both 

spinel variants reflects the low sensitivity of this technique to local structural 

inhomogeneities. The result obtained using this method represents the integral property of 

the entire specimen volume. 

The local indentations into grains (see section 4.4) were analyzed in more detail to 

obtain insight into the origins of the differences between indentation moduli and the 

global values obtained from bending and impulse excitation tests. The microindentation 

into the thermally-etched grain structure (see section 3.1.3) verified that (for fine-grained 

spinel in particular), the modulus is also affected by the local structure of the material. 

For instance, fine-structured spinel areas (grain size 0.5 – 5 µm) lead to a large scatter 

from 140 to 240 GPa, whereas coarse-structured spinel areas in the fine-grained material 

(grain size 20 – 60 µm) revealed data with less deviation (from 190 – 230 GPa). 

Although thermal etching appeared to increase the average Young’s modulus by ~10% 

(~5% for the hardness), it can be concluded that the average of the local properties is not 

equal to the global properties determined by bending and impulse excitation, due to the 

different integral effect of grain boundaries and defects. A similar behavior could not be 

confirmed for the coarse-grained spinel (see section 4.4). Consequently, these data 

revealed less scatter in comparison with fine-grained spinel, due to different morphology 

of the material (big single grains and grain boundaries of relatively fine grains between 

them yield ranges of 170 – 190 GPa and 210 – 230 GPa, respectively). 

In addition, the temperature dependency of the Young’s modulus (up to 1000 °C) 

was determined for the fine- and coarse-grained spinels using bar-shaped specimens by 

impulse-excitation testing in air. Plates could not be tested at high temperature using the 

available experimental setup. The temperature dependency corresponds with the decrease 

of 1 % per 100 K quoted in literature for ceramic materials [106] (Fig. 26). Since the 

temperature dependence of the Young’s modulus is an intrinsic materials behavior, it 

might considered to be representative also for the coarse-grained batch. Indeed, for both 

spinels Young’s modulus linearly decreases with temperature increasing. Only one 

measurement was carried out for each of both spinels and the respective Young’s 

modulus shows a difference of ~ 5 % over the entire temperature interval. However, 
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Young’s modulus of the coarse-grained spinel decreases at a slightly stronger rate with 

increasing temperature. 

 

 
 
Fig. 26: Normalized Young’s Modulus of the fine- and coarse-grained spinels as a 
function of temperature determined by impulse excitation (EIE). 
 
 

4.4 Hardness  
Impression tests were carried out for a load range from 1 to 98 N in the specimen 

surface using micro- and macro-indentation (see sections 3.4.1, 3.4.2). Three impressions 

were applied at loads of 1, 3, 9.8, 49 and 98 N each. Fig.  27 illustrates the load-

dependency of hardness, which is less pronounced for the fine-grained spinel. The 

hardness becomes almost load-independent above 1 N for the fine-grained spinel, 

whereas for the coarse-grained spinel the hardness is still load-dependent even at 96 N.  
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Fig.  27: Vickers hardness - indentation load dependency of the fine-grained and coarse-
grained spinel (surface). 
 

 
 

Fig.  28: Indentation size effect for fine-grained and coarse-grained spinel materials. 
 

Such load dependencies of indentation hardness were often reported for ceramics 

[e.g. 142] and are usually referred to as indentation size effects. A clearer representation of 
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the effect can be obtained from a log-log plot of the data (Fig.  28), yielding rather linear 

dependencies. A larger slope is obtained for the coarse-grained material. Literature has 

suggested that a larger slope indicates that the material that is less prone to impact 

damage [143,144]. 

Note that a load of 1 N yielded an average indentation hardness of 16 ± 2 GPa for 

both materials for impressions carried out in surface and cross-section. 

 

 
Fine-grained spinel structure 

 
Single large spinel grains 

 
Grain boundary influence 

 
Fig.  29: Typical hardness impressions in the fine grained spinel surface (P =1 N) 
 

Additional indentation tests were carried out to determine if a correlation of 

microstructure and local hardness exists. Before indentation, the fine-grained and coarse-

grained specimens were thermally etched as described in the experimental section. The 
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negligible increase of the average hardness of 5% after etching verifies that the etched 

specimens are comparable to the initial condition. 

As indicated in Fig.  29, impressions in the larger grains (20 – 60 µm) yield 

hardness values of 16 – 18 GPa (P = 1 N). The impressions into nano/micro-grained 

spinel areas lead to larger hardness variations, with values in the range of 13 to 19 GPa 

that might be attributed to the effect of structural inhomogeneities, such as grain 

boundaries, twin boundaries, inclusions or precipitates. 

 

 
Relative fine-grained spinel structure 

 
Single large spinel grains 

 
Grain boundary influence 

 
Fig.  30: Typical hardness impressions in the coarse-grained spinel surface (P = 1 N) 
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For the coarse-grained material, a hardness range from ~ 12 to 17 GPa was 

obtained for all local grain sizes (Fig.  30). Overall, the data do not lead to conclusions 

regarding grain size effect. 

 

4.5 Fracture toughness 

4.5.1 Indentation  

The calculation of indentation fracture toughness requires first a determination of 

the crack shape. An accurate way to determine the indentation crack shape is to break up 

a specimen after applying a line of indents (here load 49 N, distance between indents 

~500 µm). After manual breakage, it could be confirmed that the cracks have a half-

penny shape for both spinels (Fig.  31), an important prerequisite for choosing the 

relevant geometric factor in the fracture toughness relationship (see section 2.6.3.4), 

which was here (Y / Z) ~ 1.27. 

 

a b 
 
Fig.  31: Half-penny shaped crack starting at a Vickers indent (P = 49 N): a) fine-
grained and b) coarse-grained spinel.  
 

However, crack growth appears also to be influenced by the local stress field. In 

indentation testing, the radial cracks in fine-grained spinel are formed in a mixed trans- 

and inter-granular fracture mode (Fig. 32a), whereas the central region beneath the 

Vickers impression (which is under compressive stress), reveals an intergranular fracture 

(crushing) (Fig. 32b). Since for coarse-grained spinel the use of higher loads lead to 
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chipping of the indented areas, whereas no radial cracks could be obtained at low loads, 

the fracture mode could not be characterized for this material. But it does not appear 

farfetched to assume that the transgranular fracture prevails during the indentation for 

both regions of the impression. 

 

a b 
 
Fig.  32: Fracture path in the fine-grained material a) after bending test (σ = 135 MPa) 
and b) central region under the indentation (P = 49 N). 
 

The device, developed in-house and built to observe hardness impression tests in-

situ (see section 3.6), allowed further analysis of indentation crack formation in 

transparent ceramics. The fine-grained spinels revealed radial crack formation (Fig.  33a) 

during loading, whereas a test carried out for comparative purposes at silica glass showed 

cone crack formation (Fig.  33b). 

Despite the clear images obtained using the optical microscope, the very narrow 

crack tips are not clearly visible in reflecting light images (Fig. 34a). In Fig. 34b, the 

same impression depicted via transmitted light microscope shows a sharper contour and 

the length of the lateral, as well as of the radial cracks, which can be measured more 

accurately. The difference between the results obtained using reflected and transmitted 

light is ~ 10 %. Hence, the use of transmitted light is recommended. 
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a 

 
b 

 
Fig.  33: In-situ fracture observation and schematic crack morphology at indentations in 
a) fine-grained spinel and b) silica glass. 
 

 

a b 
 

Fig. 34: Vickers impression in fine-grained spinel (P = 9.8 N), analyzed using a) 
reflected and b) transmitted light microscopy. 
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To determine the indentation fracture toughness, the relationships by Lankford et 

al. [99], Niihara et al. [93] and Anstis et al. [94] were selected in accordance with the 

observed crack shape (see section 2.6.3.1). The obtained fracture toughness values 

remained unchained, independent of the applied loads in the load range from 3 to 98 N 

for the fine-grained spinel (Fig. 35 and Table 7). However, high loads lead to large 

delamination and spallation for coarse-grained spinel (Fig.  38b). Therefore, all further 

investigations were performed with a load of 3 N (Fig.  36), which resulted in well-

defined radial cracks (Table 7). 

 

a b 
 
Fig. 35: Vickers impressions in fine-grained spinel for loads of a) 9.8 N and b) 49 N. 
 
 

 
 

Fig.  36: Vickers impression in etched coarse-grained spinel for a load of 3 N. 
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Table 7. Indentation fracture toughness (KIND) as a function of load 
 

 KIND,(MPa·m0.5) for 
fine-grained spinel 

KIND,(MPa·m0.5) for 
coarse-grained spinel 

KIND (Lankford et al. 
[99], c/a > 2) 

  

loads   3 N  2.2 
5 N 2  

9.8 N 2.1  
49 N 1.9  
98 N 2.1  

KIND (Niihara et al.  [93], 
c/a > 2.5) 

  

loads   3 N  1.2 
5 N 2  

9.8 N 1.9  
49 N 1.8  
98 N 2  

KIND (Anstis et al. [94], 
c ≥ 2a) 

  

loads   3 N  0.8 
5 N 1.2  

9.8 N 1.3  
49 N 1.2  
98 N 1.3  

* for all obtained values the uncertainty is ~ 0.05 

 

The KIND values for fine-grained spinel reveal a slight difference of ~5% between 

the results obtained using the equation by Lankford et al. [99] and Niihara et al. [93], 

whereas in case of the coarse-grained spinel the difference is ~45%. The calculated KIND 

value based on the equation by Anstis et al. [94] results in the lowest fracture toughness 

value of ~1.3 MPa·m0.5 for the fine- and ~0.8 MPa·m0.5 for the coarse-grained spinel. Note 

that all equations consider a half-penny shaped crack. The difference between these 

equations is the adjustment of a calibrated geometrical factor based on industrial ceramics 

experiments (see section 2.6.3.1) [94,145]. Based on the results obtained in the current 

study using ISM and SENB methods, as well as the Griffith criterion (see sections 

2.6.3.2, 2.6.3.3, 2.6.3.4), it is suggested that the relationships suggested by Lankford et al. 
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[99] and Niihara et al. [93] are most appropriate for evaluating the fracture toughness of the 

fine-grained spinel material currently studied. 

 

4.5.2 Indentation-Strength-Method 

Fracture loads obtained in ring-on-ring bending tests for pre-indented specimens 

(ISM, see sections 2.6.3.2, 3.5.2) [40] were also used to determine the fracture toughness 

(KISM) of coarse- and fine-grained spinels. Before the ISM test, typically up to four 

impressions are placed at the tensile loaded ring-on-ring bending specimen surface. It 

was verified fractographically for every tested specimen that failure occurred from only 

one of the impression cracks. The reduction of average fracture stress due to the pre-

indentation cracks of c0 = 67 µm was ~35% compared to material without indentation 

cracks, verifying again that indentation cracks were the failure origins in these bending 

tests. The indentation cracks grow subcritically during the bending test, until one of them 

results in fracture (Fig.  37). The validity of the ISM also depends on the subcritical crack 

extension before failure, since this parameter enters the calculation via the calibration 

factor A (Eq. 9).  

 

a b 
 
Fig.  37: Indentation cracks in fine-grained spinel after indentation loading 9.8 N. a) 
before and b) after bending test  
 

Therefore, the indentation crack size was measured before and after the test, and 

the crack length after stable crack growth cm was estimated from the three impressions 

that did not lead to failure. This yielded a value of 130 ± 10 µm, which was twice the 
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initial crack length. Since the calibration factor is proportional to the ratio of the crack 

length to the power of (3/8), a 16% larger A factor had to be used in Eq. 9. Finally, a 

value of KISM ~ 1.9 MPa·m0.5 was obtained, which is similar to the KIND results, further 

verifying the methodology used. However, the use of the ISM test for coarse-grained 

spinel was not possible, since starting from 5 N the radial cracks and the associated 

intergranular fracture lead to delamination of grains (Fig.  38). Note that defined crack 

extension during bending is one of the main conditions, which must be satisfied for the 

ISM. 

 

  
a b 

 

Fig.  38: Vickers impressions (P = 49 N) into a) fine-grained spinel and b) coarse-
grained spinel (P = 49 N). 
 

4.5.3 Single edge notch bending  

The KSENB was determined for fine- and coarse-grained spinels from four-point 

bending tests (see section 2.6.3.3) following ASTM C 1421. The fine-grained spinel 

shows higher single edge notch bending toughness 1.8 ± 0.2 MPa·√m compared with 

coarse-grained spinel 1 ± 0.4 MPa·√m. The lower KSENB of coarse-grained spinel and its 

higher scatter might be partially attributed to the existence of weak grain boundaries 

(inherent defects), (see section 4.8), but also the limited number of available specimens 

(see section 3.1.2). 
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4.5.4 Griffith criterion 

This method requires fractographic analysis of the broken specimens and 

localization of the fracture origin. The size of the defect originating the crack and the 

fracture stress determined in the ring-on-ring bending test can then be used to calculate 

fracture toughness using Eq. 12. Fractography yielded defect sizes from 200 µm to 

almost 1 mm (Fig.  51, Fig.  53), yielding fracture toughness values of ~ 1.6 ± 0.2 

MPa·√m, coinciding with the data obtained by the other two methods (see Table 8). 

 

Table 8. Fracture toughness obtained by different methods 
 

Method Fine-grained spinel Coarse-grained spinel 

Lankford 

2 ± 0.1 2.2 ± 0.1 

Niihara 

1.9 ± 0.1 1.2 ± 0.05 

Anstis 

KIND, MPa·√m 

1.3 ± 0.05 0.8 ± 0.05 

KISM, MPa·√m 1.9 ± 0.2 --- 

KSENB, MPa·√m 1.8 ± 0.2 1 ± 0.4 

KIC (Griffith), 

MPa·√m 
1.6 ± 0.2 --- 

 

The SENB test suggests that in the case of indentation, the Niihara equation [93] is 

the most appropriate for estimating the fracture toughness of both spinels. 

 

4.6 Photoelasticity 
The photoelastic effect (see section 2.6.6) can be used for a qualitative analysis of 

local strains that might be associated with structural inhomogeneities and defects [130,131]. 

The strain field induced by Vickers indentations and secondary cracks in a spinel 

fragment after bending was studied. Observation via a polarization microscope revealed 
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two main areas of higher light intensities, one close to the center of the impression and at 

the end of a radial crack tip, and the other at the end of a secondary crack tip that 

remained after bending tests (Fig. 39a, b), respectively. The light intensity close to the 

center of the impression could be related to lateral cracking and associated interference 

effects, and therefore was an artifact unrelated to residual strains. However, closer 

observation also revealed higher intensities near the radial crack tips, induced by 

indentation, which coincided with observations made at secondary crack tips in the 

fractured bending specimens. 

 

a b 
 
Fig. 39: Light intensities of strained zones: a) at crack tips (marked white) initiated by 
indentation (P = 49 N); b) at a crack in a spinel fragment after bending (σ = 147 MPa). 
 
 

a b 
 
Fig.  40: Strained zones at one impression (P = 9.8 N) a) before and b) after heat 
treatment. 
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Subsequent annealing at (1000 °C, 1h) in air appeared to relax deformations and 

strains, particularly the size of the local strain field surrounding the crack tip (Fig.  40).  

 

4.7 Fracture strength 
In initial experiments, the effect of polishing conditions on fracture strength of 

fine-grained spinel was tested for three different surface states (see section 3.1.2) in order 

to optimize the preparation process. The Young’s Modulus was, as expected, independent 

of the polishing procedure, whereas the strength increased (from ~ 130 MPa up to ~ 160 MPa) 

when the roughness was decreased from low to medium quality, and remained constant at 

high-quality polishing. The lower Weibull modulus of the high quality polished batch can 

be explained by remaining local scratches after machining. As expected, the surface 

condition has an influence on the fracture strength for large roughness values (Table 9), 

and therefore the average polishing procedure was used for further experimental work 

(see section 3.1.2). 

 

Table 9. Effect of three different polishing qualities on the mechanical properties of fine-
grained spinel 
 

Roughness, Ra 
σf, 

MPa 
EROR, 
GPa m 

2.34 132 ± 21 233 ± 6 8 ± 2 

1.3 165 ± 32 240 ± 8 6 ± 2 

0.83 – 1.26 162 ± 46 234 ± 6 4 ± 1 

 

The fracture stress measurements yielded a fracture strength of σf = 155 ± 38 MPa 

for all fine-grained spinel batches of average and high quality polishing (~150 

specimens), which is slightly lower than the values determined for individual batches of 

~30 specimens (see Table 9). Contrary to the Young’s modulus (see section 4.3), the 

fracture stresses did not show a dependency on specimen thickness (1.3 – 2.8 mm) within 

the limits of experimental uncertainty. Hence, in agreement with ASTM C1499, the 

fracture stress and therefore strength, is less sensitive to thickness variations. From the 

Weibull representation of the results (Fig. 41), a characteristic strength of σ0 = 169 ± 3 MPa 
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was derived for fine-grained spinel. The Weibull modulus reflecting the scatter of the results 

is rather low with m ~ 5 ± 2. The confidence interval is 4.4 < 5 < 5.5 (see section 2.6.4).  

 
 

Fig. 41: Two-parameter Weibull plot of the fracture stress data of fine-grained spinel. 
 

 
Fig. 42: Three-parameter Weibull plot of the fracture stress data for the fine-grained 
spinel. 
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Utilizing a three-parameter Weibull distribution leads to a better description of the 

data and therefore to a higher correlation coefficient R2 (~0.92 for the two- and ~0.98 for 

the three-parameter Weibull distribution). The threshold stress σu was obtained by 

optimization of R2 to σu = 67 MPa. The three-parameter Weibull distribution yields a 

characteristic strength σ0 = 166 ± 3 MPa for fine-grained spinel. The lower Weibull 

modulus of m = 2.6 ± 0.3 (Fig. 42) is typical for the description of data with a three-

parameter distribution [146]. 

Due to the limited number of ~30 specimens the data obtained for the coarse-

grained materials were only described by a two-parameter distribution since an amount of 

~100 specimens is required for three-parameter Weibull distribution [147,148]. The average 

fracture stress is σf = 73 ± 9 MPa, the characteristic strength σ0 = 77 ± 1 MPa and the 

Weibull modulus m = 10 ± 2 (Fig.  43). Therefore, the coarse-grained spinel has a lower 

strength, but a higher Weibull modulus than the fine-grained material. From this, it can 

be concluded that defects in the coarse-grained spinel are larger but distributed more 

uniformly. For coarse-grained spinel, the confidence interval is 7.7 < 10.2 < 12.4.  

 

 
 
Fig.  43: Two-parameter Weibull plot of the fracture stress data of the coarse-grained 
spinel 
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4.7.1 Weibull modulus uncertainties 

The accuracy of statistical evaluation mostly depends on the number of available 

specimens N and the Weibull modulus m. In addition, a program compilation via 

JavaScript software permitted to partially evaluate the available data sets. 

A procedure assesses the effect of dataset selection on the uncertainty of statistical 

strength evaluation of the fine-grained spinel. From the entire set, 30 fracture stress 

values were selected 10 times randomly, and the maximum and minimum Weibull 

modulus was calculated. The number of selections of the 30 data values was increased in 

subsequent calculations to 30, 60 and 90, in order to determine whether there is any effect 

on the resulting maximum and minimum values. The range of uncertainty of the Weibull 

modulus increases from 4.2 < m < 6.3 for 10 loops to 4 < m < 6.7 for 90 loops (Fig.  44). 

This compares quite well to the standard deviation of s (m = 5) = 1 and confidence 

interval of 4.4 < 5 < 5.5 (see section 2.6.4). The influence of the number of cycles on the 

Weibull modulus seems to be negligible, since the Weibull modulus only was changed by 

~5%. 

 

 
 
Fig.  44: Relation between number of calculation cycles and obtained Weibull moduli  
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4.7.2 Particle-size distribution 

Fine-grained spinel contained relatively large agglomerates that affected the 

transparency. As a result, one question to be answered concerned whether these 

agglomerates also affect the strength (Fig.  45, Fig. 46).  

 
Fig.  45: Fracture stress as a function of the maximum size of agglomerates. 
 

        
 
Fig.  46: Fracture stress as a function of the specific volume of agglomerates. 
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Maximum size and volume of agglomerates were provided for selected fine-

grained specimens by the project partner CeramTec-ETEC, as obtained by light 

microscopy and subsequent quantitative image analysis (see section 3.2.2). Maximum 

size and volume of agglomerates for the characterized 25 fine-grained spinel specimens 

were within the interval 210 – 2530 µm and 0.17 – 4.9 %, respectively. The specimens 

were fractured in ring-on-ring bending tests. Fig.  45 and Fig. 46, which display the 

fracture stress values versus maximum defect size and volume, respectively, illustrate 

that there is no correlation of fracture stress with either of these parameters. As a result, 

such visible defects are not failure-relevant for this material. 

 

4.7.3 Local strain field  

Although a macromechanical effect of optically visible agglomerates can be ruled 

out, the micromechanical effect still requires assessment. Therefore, in an extension of 

the photoelastic analysis of the strain at hardness impressions (see section 4.6), the 

photoelastic method was also used to qualitatively determine the local strain field at 

optically visible agglomerates. Fig.  47 clearly verifies the existence of a residual strain 

field around these agglomerates. After an additional heat treatment T = 1000 °C for 1 h 

(Fig.  47b) (see section 3.1.3), the local strains appear to be slightly lower due to 

relaxation. In an attempt to assess whether heat treatment affects fracture stress, three 

specimens were subsequently fractured in ring-on-ring bending tests. The average 

fracture stress 137 ± 9 MPa and Young’s modulus of 235 ± 5 GPa were obtained for heat 

treated fine-grained specimens, which corresponds with the as-received state. However, 

the Young’s modulus determined using indentation (24 indents in the surface) increased 

from 205 ± 12 to 232 ± 9 GPa, and hardness from 17.2 ± 1 to 17.7 ± 1 GPa compared to 

the same specimen in the as-received state. This slight effect, especially on the Young’s 

modulus, might be related to oxygen diffusion or reactions in the surface areas that do not 

affect the global properties obtained in a bending test [149,150].  
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a b 

 
Fig.  47: Photoelastically determined residual stress field around agglomerates a) before 
and b) after heat-treatment. 
 

Also tested was whether the local agglomerates influence crack growth. A cross-

section through a coarse-grained spinel agglomeration was loaded by a wedge after an 

additional notch had been introduced. Polarization microscopy revealed that the 

agglomerate was surrounded by a local residual strain field (Fig.  48a). In the subsequent 

wedge test, the crack bypassed the agglomerate shown in the SEM image in Fig.  48b. 

Even subsequently introduced indentations did not lead to a fracture path through the 

particle, suggesting the existence of a local compressive strain field surrounding the 

particle. Therefore, even though a direct correlation of the macromechanical properties 

with the agglomerates was not possible, the micromechanical tests revealed that crack 

growth is affected by these inhomogeneities of microstructure and in fact, suggests that 

the optically visible agglomerates enhance the micromechanical properties. The absence 

of any effect in the macromechanical test might be related to the limited number of 

specimens, or that the majority of the optically visible agglomerates are not related to 

local strain fields. 
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a b 
 
Fig.  48: Influence of a coarse-grained agglomerate on fracture path. a) Sketch of the 
implemented measurements (the agglomerate is indicated by an arrow); b) SEM image of 
the agglomerate after indentation. 
 

4.8 Fractography  
After ring-on-ring bending testing, specimens were investigated with respect to 

their fracture modes. As shown in Fig. 49a, a mixture of inter- and transgranular fracture 

paths is typical for fine-grained spinels. A transgranular fracture path is visible in local 

structures with grain sizes larger than 1 µm, whereas intergranular fracture was observed 

in the nano-grained regions (0.2 – 1 µm). The coarse-grained spinel failed only in an 

intergranular fracture mode (Fig. 49b). 

However, the stresses field at large-grained agglomerates in fine-grained spinel 

also appears to influence the fracture mode. Indentation testing leads to radial cracks in a 

mixed mode, whereas the central region beneath a Vickers impression (which mainly 

undergoes compressive stresses) reveals intergranular fracture (crushing) (Fig. 32b). 

In general, the number of fractured pieces in the biaxial ring-on-ring tests 

appeared to scale with the fracture stress (Fig.  50); i.e., more pieces were obtained for a 

specimen that fractured at high stress. This study observed similar fracture patterns to 

ones reported by Quinn [151]. Characteristic positions (kinks and crack undulations) in 
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selected specimens that failed at low fracture stresses (corresponding to the largest 

defects) were chosen for subsequent fractographic analysis. 

 

a b 
 
Fig. 49: a) Mixed trans- and inter-granular fracture in fine-grained spinel and b) 
intergranular fracture in coarse-grained spinel.  
 
 
 
 

 
 

Fig.  50: Specimens after fracture tests illustrating the correlation of fracture stress and 
number of fractured pieces. The measured fracture stress values are indicated. 

 
Optical micrographs and SEM images suggest that coarse-grained agglomerates 

and associated local microcracks are the failure origin for the fine-grained material (Fig.  53). 

In fact, these results confirm a strong influence of surface preparation and surface 

condition (see sections 3.1.2 and 4.7) on strength, since crack-like features surrounding 

the large grains are not observed in fracture surfaces. Hence, the inherent local 

microcracks in the vicinity of coarse-grained agglomerates might have already existed in 

the raw material and then extended during the grinding and polishing. The correlation of 
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individual fracture stresses with defect sizes was also used to estimate fracture toughness 

(see section 4.5.4). Initial defect sizes measured at fracture surfaces ranged from 150 µm 

up to ~1 mm (Fig.  51, Fig. 52, Fig.  53). This correlation is illustrated in Fig.  51, which 

shows an agglomerate of large grains (size ~ 1 mm) and associated microcracks before 

and after a bending test, and clearly identifies this agglomerate as failure origin.  

 

 
 

Fig.  51: A typical surface defect as fracture origin in a fine-grained spinel specimen. a) 
agglomerate and associated microcrack before the test, b) reassembled specimen after 
the test, confirming the failure origin and c) fracture surface confirming the extent of the 
coarse-grained zone. 
 

SEM/EDX analysis of a similar coarse-grained area verified that the chemical 

composition of fine-grained structures and coarse-grained agglomerates are identical 

(Fig. 52b). 
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a 
 

           
b 

 
 
Fig. 52: SEM/EDX analysis of fine-grained structures and coarse-grained agglomerates.  
 

Other typical failure origins in fine-grained spinel specimens, shown in Fig.  53, 

confirm the correlation of crack origin and coarse-grained agglomerates. Typical fracture 

originating agglomerates with sizes from 200 to 450 µm have been detected. Note that 

overall the agglomerates appear to be related to failure, and act as failure origin. Optically 

visible agglomerates do not appear to be responsible for failure, suggesting that different 

kinds of agglomerates exist in the material. Furthermore, micromechanical tests suggest a 

compressive stress field around the agglomerates, which should be balanced by tensile 
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stresses in the agglomerates – another possible reason for microcracks, which could be 

initiated and enhanced by polishing. 

 

 

a (σ = 83 MPa) 

 

b (σ = 89 MPa) 

 

c (σ = 67 MPa) 
 

Fig.  53: Fracture origin determination after ring-on-ring bending tests. 
 

Weak grain boundaries and pores appear to be more pronounced for coarse-

grained spinel, and seem to be characteristic crack initiating defects (Fig.  54). The length 
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of weak boundaries can reach 200 µm and therefore might be considered as fracture 

origins. 

 

a b 
 
Fig.  54: Inherent porosity (a) and weak grain boundaries (b) as possible fracture origins 
for the coarse-grained spinel. 
 

4.9 Statistical analysis 

4.9.1 Area effect on fracture strength 

 The area effect on fracture strength was calculated (Fig. 55) using statistical 

analysis (see section 2.6.5) in order to estimate the properties of life-size components. 

The representations are based on data from ring-on-ring bending (characteristic strength 

σ0 = 169 and 77 MPa for fine-grained and coarse-grained spinel, respectively). The figure 

illustrates how strength decreases with increasing area at a given thickness of ~2 mm. 

Note that the coarse-grained spinel is less sensitive to the area effect due to its higher 

Weibull modulus (see section 4.7), but generally yields a lower strength. 

Based on the Hertzian theory (see section 2.6.4.1), the local strength was 

estimated for the fine-grained material using two spherical indenters of different radii 

(0.5 and 2.5 mm, respectively). Impressions were made in the load range from 30 to 245 

N, with load steps of 49 N. The critical load for the formation of cone cracks was 

estimated visually after the impression, using an optical microscope. The estimated 

critical load Pc was used to calculate contact areas by Eq. 24 and local strengths by Eq. 23. 

The results for the fine-grained spinel are given in Table 10 and depicted in Fig. 56. 
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Although the estimate of critical load includes a rather large uncertainty of ~40% due to 

the discrete loading steps 49 N of the used machine, it can be seen that the data agree 

with an extrapolation of the results from ring-on-ring bending tests to lower deformed 

areas (see Fig. 56). 

 

 
 
Fig. 55: Area effect on fracture strength for fine- and coarse-grained spinels. The 
experimental strength value is marked by red color. 
 

 

Table 10. Obtained results for fine-grained spinel after Brinell indentation. 
 
 

R, mm Pc, N Aeff.Hertzian , mm2 σHertzian , MPa 

0.5 98 1.4 470 

2.5 196 6.6 287 

 
The effective area deformed under tensile stress in bending was calculated 

according to Eq. 19 and according to Eq. 24 for spherical indentation. The stress gradient 

in the surface has been considered in these equations. 



RESULTS AND DISCUSSION 

 

77

 
 
Fig. 56: Area effect on fracture strength in bending (black trend calculated from the 
experimental value (red) and Eq. 20) and from Brinell indentation (green triangles) for 
fine-grained spinel. 

 

4.9.2 Slow crack growth behavior 

An assessment of the effect of slow crack growth sensitivity of MgAl2O4 can be 

carried out using the strength values measured as a function of the loading rate (see also 

section 2.6.5). Graphical representations of data for the fine- and coarse-grained material 

are given in Fig.  57 and Fig.  58, respectively. The data were mathematically described 

using Eq. 25. 

The derived SCG parameters for the fine-grained transparent MgAl2O4 are n ~ 50 

and D ~ 140 MPa. For the coarse-grained spinel n ~ 23 and D ~ 71 MPa (Fig.  58) are 

obtained. 

RT values of n ~ 8 to 22 have been reported for soda lime glass and n ~ 37–50 for 

Al2O3 [152]. Contrary to the SCG-sensitive soda lime glass, the high n value of especially 

the fine-grained MgAl2O4 spinel, which is similar to that of Al2O3, indicates little 

influence of SCG at room temperature on the crack growth under standard environmental 

laboratory conditions. 
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Fig.  57: Fracture strength as a function of the loading rate for the fine-grained spinel 
(the standard deviation for all data points is 4%) 
 

 
 

Fig.  58: Fracture strength as a function of the loading rate for the coarse-grained spinel 
(the standard deviations for all data points is 3%) 
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4.9.3 Strength-probability-time behavior 

Based on the SPT diagram, the design stress for an acceptable failure probability 

can be estimated. The plots are constructed using strength, Weibull modulus and SCG 

parameters, as outlined in sections 2.6.4 and 2.6.5. As an example, Fig. 59 reveals that 

the maximum stress for a lifetime of 40 years should not exceed 56 MPa in order to 

warrant a failure probability of 1% for the fine-grained spinel. Based on statistical 

evaluation of the coarse-grained spinel data, the respective SPT diagram (Fig.  60) yields 

a lower maximum stress of 25 MPa for a lifetime of 40 years, warranting a failure 

probability of 1%. 

 

 
 

Fig.  59: Strength–probability–time plot for the fine-grained MgAl2O4 spinel 
 

The SCG parameters n and fracture stresses determined from the SPT plot for a 

lifetime of 1000 h are compared in Table 11 with literature data [153] for other MgAl2O4 

spinels.  

The SPT calculations were made for the ring-on-ring specimens, according to Fig.  12. 

It should be noted that strength further decreases for larger component sizes, which have 

to be considered as outlined in section 4.9.1. 
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Fig.  60: Strength–probability–time plot for the coarse-grained MgAl2O4 spinel 
 
 
 
Table 11. SCG parameter of spinels with different grain sizes from the present study 
(grey) and the literature (white) [153]. 
 

Grain size, µm 300 110 60 25 5 

SCG, n 21 28 23 39 51 

σ0 , MPa (for 1000h)* 31 35 44 52 106 

* characteristic strength σ0 for 1000h was calculated based on an SPT diagram. 
 

The graphical presentation of these data in Fig. 61 clearly verifies that strength 

and slow crack growth parameters consistently decrease with increasing grain size. In 

fact, the grain size effect appears to be stronger for characteristic strength than for n. 

However, other production-related effects (different defect size distribution) might also 

influence the results.  
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Fig. 61: Grain size dependency of SCG parameter and characteristic strength for 1000 h 
lifetime. Filled and unfilled circles are literature values and statistically calculated data 
from the present work, respectively. 
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5 CONCLUSION 

 

A combination of different mechanical testing methods has been used to 

characterize fine- and coarse-grained spinel materials. All obtained characteristics are 

summarized in Table 12. 

The X-ray phase analysis revealed no differences in phase composition between 

both spinels, displaying face centered cubic crystalline structure with lattice parameter a 

= 0.808 nm. Average grain sizes of ~5 µm and ~60 µm were obtained for the fine- and 

coarse-grained spinel, respectively, on the basis of light and electron microscopic 

investigations. However, X-ray and EDX analysis confirmed that even though the grain 

size differs and coarse-grained agglomerates (~200 – 2000 µm) exist in the fine-grained 

spinel, the lattice parameter and phase composition were identical, making a direct 

comparison of both spinels possible. 

The macro-indentation testing (which was carried out for a load range from 9.8 to 

98 N), revealed a hardness decrease from 17 to 13 GPa for the fine-grained spinel, 

whereas hardness decreases even stronger for the coarse-grained material – from 16 to 9 GPa. 

However, micro-indentation yielded almost identical hardness values of 16 ± 2 GPa for 

both spinels, in a load ranging from 0.5 to 3 N. Nevertheless, based on analysis presented 

in literature, it can be suggested that the coarse-grained spinel is less prone to impact 

damage due to the stronger indentation size effect (ISE). A detailed correlation of the 

measured hardness with the local microstructure of the specimens revealed that the 

coarse-grained material has hardness values ranging from ~12 to 17 GPa for the entire 

range of existing grain sizes, a data range that seems to be more narrow than for the fine-

grained spinel, and, furthermore, exhibits lower average hardness values. 

The fracture toughness for both spinels has been measured in a comparative 

approach by four different methods in order to obtain an accurate representation of the 

materials’ behavior and to select the most appropriate and convenient method. The 

indentation fracture toughness (KIND) appears to be less reliable than the other methods 
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used, since specific materials’ conditions (the minimum load necessary, strong local 

differences in grain structure and chipping at high loads) complicate the evaluation. 

Nevertheless, among the relationships used, the equations suggested by Lankford et al. 

and Niihara et al. appear to be the most accurate, which reveal a value of KIND = 2.0 ± 0.1 

and 1.9 ± 0.1 MPa·m0.5 for the fine-grained spinel, respectively. The values obtained by 

the other methods (KISM = 1.9 ± 0.2 MPa·m0.5, KSENB = 1.8 ± 0.2 MPa·m0.5 and KIC (Griffith) 

= 1.6 ± 0.2 MPa·m0.5) correspond well with the indentation fracture toughness and data 

presented in the literature. For the coarse-grained spinel, only KIND and KSENB values have 

been evaluated. In contrast to fine-grained spinel, only the indentation fracture toughness 

based on the Niihara equation KIND = 1.2 ± 0.05 MPa·m0.5 corresponds with the value 

obtained by the single-edge notch bending test KSENB = 1 ± 0.4 MPa·m0.5. In conclusion, 

for both spinels the indentation fracture toughness (KIND) based on the Niihara equation 

can be applied as simplified and more rapid method for fracture toughness evaluation. 

Young’s modulus was also determined by several methods: indentation, bending 

tests and impulse-excitation (IE). Impulse-excitation tests resulted in identical values at 

room temperature for both materials of EIE = 270 ± 5 GPa. At elevated temperatures (> 1000 °C) 

the value decreases by ~10%. Despite careful compliance correction, the bending tests 

yielded ~5% and ~20% lower values for the fine- and coarse-grained spinel, respectively. 

The lowest values were obtained by indentation testing (~25% lower). Overall, the IE and 

bending methods were recognized as most reliable and the data corresponded well with 

literature [1,58-61]. 

Surface quality, effective area, inherent defects and structure of the material 

strongly influence the fracture strength. In the ring-on-ring bending test, characteristic 

strengths of σ0 = 169 ± 3 MPa and σ0 = 77 ± 1 MPa were obtained for fine- and coarse-

grained spinel, respectively. Subsequent fractographic analysis showed mixed trans- and 

intercrystalline fracture in fine- and pure intergranular fracture in the coarse-grained 

spinel. Due to the presence of coarse-grained agglomerates in the fine-grained spinel, 

crack growth is affected by these inhomogeneities. However, there is no correlation of 

fracture stress with size and volume content of the agglomerates. Furthermore, Hertzian 

indentation has proven to be a non-destructive characterization approach, capable of 

estimating the local strength.  
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The experimentally obtained mechanical parameters were statistically analyzed 

using a Weibull distribution, a subcritical crack growth approach and strength-

probability-time prediction for long-term reliability assessment. In fact, the obtained 

characteristic strength σ0 and slow crack growth exponent n are almost a factor of 2.5 

times higher for fine-grained spinel, whereas the Weibull modulus is a factor of 2 lower, 

compared to the coarse-grained spinel. 

Overall, it can be concluded that the fine-grained spinel has a moderate strength 

but a lower sensitivy to slow crack growth, whereas the strength is less sensitive to the 

specimen size for the coarse-grained spinel, is less prone to impact damage, and has a 

higher Weibull modulus. 
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