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ABSTRACT: 

 

The use of drones to explore indoor spaces has gained attention and popularity for disaster management and indoor navigation 

applications. In this paper we present the operations and mapping techniques of two drones that are different in terms of size, the 

sensors deployed, and the positioning and mapping techniques used. The first drone is a low-cost commercial quadcopter microdrone, 

a Crazyflie, while the second drone is a relatively expensive research quadcopter macrodrone, called MAX. We investigated their 

feasibility in mapping areas where satellite positioning is not available, such as indoor spaces. We compared the point clouds obtained 

by a multi-ranger deck, a multi-layer LIDAR scanner and a stereo camera, and assessed each against ground truth obtained with a 

terrestrial laser scanner. Results showed that both drones are capable of mapping relatively cluttered indoor environments and can 

provide point clouds that are sufficient for a quick exploration. Furthermore, the LIDAR scanner-based system can handle a relatively 

large office environment with an accumulated drift less than 0.02% (1 cm) on the Z-axis and 0.77% (50 cm) on the X and Y axes over 

a length trajectory of about 65 m. Despite the limited features of the sensor configuration of the Crazyflie, its performance is promising 

for mapping indoor spaces, given the relatively low deviation from the ground truth: cloud-to-cloud distances measured were generally 

less than 20 cm.  

 

1. INTRODUCTION 

In recent years the scope of indoor mapping has widened to 

include important applications such as disaster management and 

indoor navigation. Available indoor mapping systems can be 

either ground-based or airborne. Some ground-based systems are 

static, such as terrestrial laser scanners (TLSs); others are trolley-

based, such as NavVis1 M6, hand-held (e.g., GeoSLAM ZEB 

Revo RT2) or backpack-based (Karam et al., 2021). The most 

popular airborne systems are drones, also called unmanned aerial 

vehicles (UAVs), which can be either autonomous or semi-

autonomous (Dowling et al., 2018).  

 

Drones are commonly used in outdoor applications where they 

can be autonomous (Colomina et al., 2014), while autonomous 

flight is more challenging in indoor environments. Therefore, 

indoor drones are often controlled remotely by an operator. Since 

drones do not require the operator to access the target area, it is 

safer to use them in indoor spaces that are inaccessible by the 

operator due to safety reasons, such as hazardous sites. Because 

of less space and more obstacles indoors, one of the key 

challenges of flying drones in indoor spaces is obstacle 

avoidance. Many drones are equipped with sensors to solve this 

problem. These work by warning the operator or the autonomous 

drone of nearby obstacles, preventing the drone from crashing 

(Lagmay et al., 2019; Greiff, 2017; Raja et al., 2021). In indoor 

areas global navigation satellite system (GNSS) signals are 

heavily attenuated or lost; thus, alternative navigational sensors 

and techniques are required for indoor positioning, such as 

inertial measurement units (IMUs) and simultaneous localization 
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and mapping (SLAM) algorithms (Wang et al., 2013; Dowling et 

al., 2018; Aznar et al., 2018). Additionally, UAVs are usually 

equipped with cameras that can capture indoor environments 

(Dowling et al., 2018; Wang et al., 2013), while some state-of-

the-art systems can also carry light detection and ranging 

(LIDAR) scanners (Ajay Kumar et al., 2017). While cameras can 

capture scene texture and they are often used in semantic scene 

understanding applications (Zhang et al., 2022, 2021), LIDAR 

can capture the geometry of the building interiors in low-light 

conditions or in texture-less environments as well (Karam et al., 

2019). 

 

In hazardous situations, such as buildings damaged by 

earthquakes, or situations of fire or toxic gas leaks, drones 

equipped with such sensors have the capacity to explore unknow 

indoor environments and to locate victims, making the work of 

first responders more efficient (Alotaibi et al., 2019; Kulkarni et 

al., 2020; Paliotta et al., 2021; Tulldahl et al., 2020). While a 

relatively large drone is needed for high payload capacity, 

confined or complex indoor environments make the use of these 

drones impractical. Small-size drones are advantageous to pass 

through small openings of damaged buildings and provide data 

for exploration purposes. The generated exploration maps need 

to quickly deliver the indoor space volumes and shapes to first 

responders to have a better awareness of the environment and 

plan swifter and safer rescue activities. 

 

The European Union has funded several research projects 

focusing on the development of solutions, such as UAVs, for 
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disaster management. For example, the Horizon 2020 

INGENIOUS project3, a European and Korean initiative that 

aims to equip first responders with technologies that can make 

their jobs safer and more effective. In this paper, we assess the 

performances of two of the main drones used indoors in this 

project. The first drone is a low-cost commercial quadcopter 

microdrone – the Bitcraze Crazyflie 2.1 –  and the second is a 

relatively expensive research quadcopter macrodrone – the 

Multi-purpose Autonomous eXploring drone (MAX), built by 

the Swedish Defense Research Agency (FOI) in Linköping, 

Sweden (Tulldahl et al., 2020). Both drones can be controlled 

remotely and provide results in real-time. Functions for 

autonomous MAX operation are being developed. We contrast 

the performance of both drones for mapping indoor spaces. We 

also assess the quality of the generated point clouds. This is based 

on the analysis of three datasets with comparative data, acquired 

by (i) the Crazyflie and the MAX, (ii) the Crazyflie and a TLS, 

and (iii) the MAX and a TLS. 

 

The next section of this paper, Section 2, presents a review of 

related works, while Sections 3 and 4 describe the Crazyflie and 

MAX drones, respectively. The datasets are explained in Section 

5. The experimental results and discussion are presented in 

Section 6. The paper ends with conclusions in Section 7. 

 

2. RELATED WORK 

An increasing number of studies shows the growing role drones 

can play in search and rescue activities in indoor environments, 

especially drones that are equipped with one or more sensors 

(Gao et al., 2019). Various research on indoor mapping with 

UAVs and LIDAR instruments has been undertaken in the last 

decade. Cui et al. (2015) integrated visual, LIDAR and inertial 

sensors in an indoor quadcopter drone. This drone depends on 

two onboard single-layer Hokuyo LIDAR scanners mounted 

orthogonally to each other. Their drone weighs 2900 g and has 

dimensions of 350 mm in height and 860 mm in diagonal width. 

Therefore, it requires a larger platform and a more powerful 

motor to fly than the Crazyflie. Using a similar sensor 

configuration, Ajay Kumar et al. (2017) proposed a LIDAR-

based UAV solution for indoor mapping. Fang et al. (2017) 

customized an aerial vehicle for autonomous navigation through 

shipboard environments in the event of an emergency. The 

vehicle was mounted by a depth camera (100 g), an optical flow 

camera (18 g), a range finder (69 g), a flight controller (38 g) and 

an embedded computer (70 g). The size of their drone was 

580x580x320 mm. Gao et al. (2019) developed a quadcopter 

UAV equipped with a multi-layer Velodyne scanner (830 g, 

103x72 mm) and an IMU for simultaneous localization and 

mapping. 

 

In contrast to these contributions adopting larger drones, some 

works used a Crazyflie platform (92x92x29 mm) that has low 

payload capacity (15 g). For example, Raja et al. (2021) 

developed a framework for performing localization of a Crazyflie 

microdrone in the region of flight while simultaneously mapping 

the region. They used a particle filter-based SLAM algorithm to 

build a 2D occupancy grid map of an indoor space, using groups 

of particles as hypothesis of the map generation. To reduce the 

number of particles, they used LIDAR observations and actuation 

commands to estimate the pose of the drone. Recent studies on 

Crazyflie applications used simulated environments, frameworks 

and platforms (Giernacki et al., 2017; Nithya et al., 2019; Silano 

 
3 https://ingenious-first-responders.eu/ 
4https://www.bitcraze.io/documentation/system/positioning/loco

-positioning-system/ 

et al., 2020; Raja et al., 2021; Duisterhof et al., 2021). Paliotta et 

al. (2021) utilized multiple microdrones (Crazyflie 2.1) to build 

a network to localize first responders indoors. These drones 

require a previously built map of the target area to operate. They 

are intended to be used with the Loco Positioning System4, which 

depends on anchors distributed to estimate the position of the 

drone in the interior area. The work presented in Giernacki et al. 

(2017) demonstrated the possibility of determining the 3D 

position of the Crazyflie drone using a marker attached to its 

body, a Kinect motion sensing device and a ground station for 

communication. For collision avoidance, Lagmay et al. (2019) 

used an infrared sensor to detect obstacles. When an obstacle was 

detected, their drone was programmed to perform several checks 

to find an alternative path. However, their framework required a 

pre-determined model of the area. Duisterhof et al. (2021) used a 

multi-ranger deck for obstacle detection and avoidance. Some 

recent works have applied deep learning algorithms to enable a 

drone to avoid obstacles (Kang et al., 2019; Krishnan et al., 

2019). However, these kinds of algorithms require large amounts 

of data (benchmarks) for training purposes. Having such data is 

not always possible, and it is difficult to cover all types of indoor 

environments. 

   

3. MICRODRONE (BITCRAZE CRAZYFLIE 2.1) 

Figure 1 shows the microdrone used in this work, a Bitcraze 

Crazyflie 2.15, which is a small (92x92x29 mm), lightweight (27 

g), low-cost (281 $) and open source experimental quadcopter 

released in 2013 by Eliasson et al. (2013). It supports real-time 

controlling from a ground station with the Crazyradio PA USB 

radio dongle (about 1 km radio range line-of-sight), and utilizes 

a small on-board LiPo battery that powers 7 minutes of flight. 

The Crazyflie is equipped with an IMU sensor and its payload 

weight is 15 g. For positioning and mapping purposes, we 

attached a Flow deck V2 and a multi-ranger deck, both sold by 

Bitcraze, to the Crazyflie drone. Both decks were positioned 

horizontally and can measure range up to 4 m. The Flow deck 

was mounted at the bottom of the platform, positioned toward the 

ground, while the multi-ranger deck was mounted on top of the 

drone, as shown in Figure 1. Details about the key components 

of the microdrone are shown in Table 1. The Flow deck provides 

positioning support. It is composed of two sensors, the VL53L1x 

time-of-flight (TOF) range finder, which measures the distance 

to the ground, and the PMW3901 optical flow sensor, a camera 

that measures movements in relation to the ground. The multi-

ranger deck consists of five range finders that provide distance 

measurements in five different directions with mm precision: 

front, back, left, right and up.  

 

Components 
Weight 

(g) 

Measures 

range up to 

Size 

(WxHxD) 

(mm) 

Cost 

($) 

Crazyflie 2.1 

(with motors) 

 

27.0 
Not 

applicable 
92x92x29 281 

Multi-ranger 

deck 
2.3 

4 m  

(5 directions) 

 

35x35x5 112 

Flow deck 

V2 
1.6 

4 m  

(one 

direction) 

21x28x4 62 

Table 1. The Bitcraze Crazyflie 2.1 microdrone with its key 

components 

 
5 https://www.bitcraze.io/products/crazyflie-2-1/ 
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Figure 1. Bitcraze Crazyflie 2.1 drone with attached Flow deck 

and multi-ranger deck 

 

3.1 Positioning and mapping 

For data collection in each test area, the Crazyflie was placed on 

the floor of the test area, pointing away from the controller (the 

computer keyboard) to facilitate the control task. We used the 

Crazyflie python library (cflib)6, an open-source application 

programming interface, to easily control and communicate with 

the Crazyflie. The Crazyflie first takes off and hovers at a height 

of 30 cm. 

 

The pose of the Crazyflie is estimated using an extended Kalman 

filter (EKF)-based state estimator developed by Bitcraze, based 

on Greiff (2017) and Mueller et al. (2017). This estimator utilizes 

the IMU observations of angular velocities and accelerations, in 

cooperation with the Flow deck, to estimate the state of the 

Crazyflie. Specifically, the observations of the TOF sensor in the 

Flow deck are exploited to estimate the translation along the Z-

axis, while the optical flow sensor captures the movements in the 

XY plane based on visual feature matching.  

 

As the purpose is mapping the indoor environments, we recorded 

the laser points measured by the multi-ranger deck and the Flow 

deck TOF sensor. The ground station displayed the recorded 

points over time. This enabled observation of the mapping 

process during flight. To cover the target area, we used a 

keyboard to remotely control and update the Crazyflie state. For 

example, we could rotate it around its vertical axis, or move it 

forward, backward, right and left. This was implemented through 

changing the linear or rotational velocity of the Crazyflie along 

the target direction by a specific factor. This change in the 

velocity was used for updating the pose parameters. 

 

The origin of the local coordinate system was assumed to be at 

the start point. At the end of data collection, the recorded points 

formed a point cloud described in this local system (see Figure 

7). The presented position and mapping system does not perform 

loop closure that can enable the drone to recognize a previously 

visited space and correct the drift. 

 
6 https://github.com/bitcraze/crazyflie-lib-python 

3.2 Obstacle avoidance 

The implemented obstacle avoidance technique does not need 

any external positioning system or additional sensor. The 

Crazyflie, using the Flow deck and multi-ranger deck, can 

measure distance in all directions and avoids any object within 

20 cm by applying a movement velocity along the opposite 

direction of the detected obstacle. The Crazyflie prevents 

movement in the direction of the obstacle, even if the operator 

sends a command to move in that direction. Instead, the Crazyflie 

sends the operator a warning message alerting them to the 

existing obstacle. Based on this alert and the up-to-date 

visualization map on the screen, the operator must search for an 

alternative path. As the goal of this study is to evaluate the use of 

the drone in indoor spaces, which sometimes are inaccessible, 

this avoidance technique enables the Crazyflie to avoid obstacles, 

even if the operator does not have a clear line of sight with the 

drone. 

4. MAX DRONE 

Figure 2 shows the MAX drone and the components used for on-

board positioning and mapping. It is a realisation of the system 

described in Tulldahl et al. (2020). The drone is currently under 

development within the INGENIOUS project. The MAX drone 

is a custom platform built to accommodate two independent 

positioning systems; the LIDAR-based system described in 

Section 4.1, and the camera-based system described in Section 

4.2. Both systems generate a 3D point cloud of the mapped 

environment. The configuration consists of a LIDAR with a 100 

m range (Ouster OS1-16), tilted and mounted on the top of the 

platform; a stereo camera with a 10 m range (Intel RealSense 

D435i); and a controller (3DR Pixhawk Mini) managed by a 

Raspberry Pi 4 Model B. Details about the main positioning 

components are shown in Table 2, where the size and weight of 

the entire drone (2700 g) includes computing modules, cables, 

etc. The Ouster scanner weighs 400 g and costs 3,500 $, while 

the stereo camera weighs 72 g and costs 320 $. The flight time 

for this setup is around 4 minutes. 

 

The MAX drone is intended to be used by first responders, to fly 

autonomously into buildings and send multi-sensor data back to 

a ground control station.  

 

 
Figure 2. The components on the MAX drone used for 

positioning and mapping. 

 

4.1 LIDAR-based Grape system 

The LIDAR based positioning system on-board the MAX drone, 

GRAph-based Precision lasEr (Grape), was first presented in 

Tulldahl et al. (2020). The system runs in real time on the  
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Compon

ent 

Weight 

(g) 

Maximum 

range (m) 

Size 

(WxHxD) 

(mm) 

Cost 

($) 

MAX 

drone  

(with 

battery) 

2700 
Not 

applicable 

420x210x43

0 

Not 

applicable 

Ouster 

OS1-16 

LIDAR 

400 100 
83x73x83 

(cylinder) 
3,500 

RealSen

se 

D435i 

72 10 90x25x25 320 

Table 2. The main components of the MAX drone. 

 

Raspberry Pi 4B using the robot operating system (ROS7) and 

Georgia Tech Smoothing and Mapping (GTSAM8) frameworks. 

The Ouster LIDAR has a 360° horizontal and 33.2° vertical field 

of view. It operates at a 10 Hz scanning frequency and records 

about 330,000 laser points per second. Features in the form of 

planes and edges are extracted from each LIDAR scan (Zhang 

and Singh, 2014). These features are then associated with the up-

to-date built map and fed into the graph-based SLAM algorithm 

incremental smoothing and mapping (iSAM2) (Kaess et al., 

2012), together with accelerometer and gyroscope data from the 

built-in IMU in the Pixhawk. Loop closure was not yet 

implemented which results in a reduced accuracy over longer 

time periods. A more detailed explanation of the system can be 

found in Tulldahl et al. (2020). The resulting 3D point cloud from 

the Grape system (MAX Grape cloud) is generated by 

transforming the LIDAR data into estimated position. This is 

completed onboard at 1 Hz because of the rate used by the high-

level planning algorithm. 

 

4.2  Camera-based Kiwi system 

The Kiwi system uses a stereo camera and an IMU for 

positioning and mapping. The position is computed using an EKF 

SLAM algorithm (Rydell and Bilock, 2015), which is popular in 

real-time navigation applications (Lin et al., 2021). The 

algorithm is based on tracking visual landmarks in consecutive 

images. The IMU aids the landmark tracking, while the 

accelerometer and gyroscope data are used to predict where 

landmarks are expected to appear in an image. It also provides 

positioning, although with reduced precision, during brief 

passages through dark or featureless environments. The Kiwi is 

based on previously published work on a series of positioning 

systems known as the Chameleon (Rydell and Bilock, 2012; 

2015). Its theoretical background is presented in more detail in 

Veth et al. (2007).  

 

Since the system does not recognize previously visited locations, 

the estimated position drifts over time (the error is typically about 

1% of the travelled distance). This can be corrected using 

methods for loop closure, but this was not yet implemented in the 

real-time system in this test. 

 

A map is created by merging transformed local point clouds from 

the depth-sensing stereo camera. Each point cloud is transformed 

according to the estimated position and orientation of the camera 

at the time the point cloud was acquired. Hence, the map is 

represented as a set of points (MAX Kiwi cloud).  

 

The algorithms run in real-time on an Nvidia Jetson Nano 

embedded computer onboard the MAX drone. The RealSense 

 
7 https://www.ros.org/  

stereo camera used by the system provides high-quality images 

in terms of geometric calibration and image noise, and uses a 

global shutter. The built-in IMU in this camera, however, is 

relatively simple, which limits the achievable performance in 

environments where landmarks are not always available. The 

horizontal field of view of the camera is approximately 90°. 

 

5. TEST AREAS 

Three datasets were used in this work. The first dataset, named 

Berrozi, was collected in one of the technical-tactical training 

facilities for the Basque police force (Ertzaintza) in Berrozi, 

Spain. Both Crazyflie and MAX drones mapped an indoor space 

in this facility. The mapped area was a room that contained a 

wooden wall and pillar of carton boxes in the middle, as well as 

several tables and chairs, resulting in a relatively cluttered indoor 

environment (Figure 3). These characteristics made the room a 

suitable area to rigorously test the capability of the presented 

drones and the employed obstacle avoidance technique in the 

Crazyflie. Additionally, this dataset was used to compare the 

performance of both drones. 

 

For the second dataset, named ITC, we scanned an area in the 

emergency exit staircase in the University of Twente, Faculty of 

Geo-Information Science and Earth Observation (ITC) building 

in Enschede, the Netherlands, with the Crazyflie. It is an 

environment with a variance in the height to the ceiling. This 

dataset was used to evaluate the performance of the Crazyflie in 

mapping indoor spaces, against ground truth obtained by a TLS 

for the same area. We used RIEGL TLS that provides scan data 

acquisition with 5 mm accuracy. 

 

The third dataset was captured indoors with the MAX drone in a 

larger office environment at FOI. This was also compared to a 

TLS used for ground truth of the area. The room consists of some 

concrete pillars, various furniture and equipment and is about 25 

m at the widest. For this dataset, a FARO TLS with an accuracy 

of less than 5 mm was used. This TLS provides color data for 

each 3D point. 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we first compare the obtained point clouds from 

both drones. Next, we present the results of each drone against 

ground truth data obtained by a TLS. The point clouds include 

some outlying points that were captured through glass. As these 

points will often not be present in both clouds, we excluded them 

from the comparison. 

 

6.1 Crazyflie & MAX comparison 

As both Crazyflie and MAX drones consider the start point to be 

the origin of the model coordinate system, each drone started at 

the same point on the floor. The Crazyflie was flown manually, 

while the MAX drone was carried around the room. Each drone 

scanned the room in Berrozi, and the generated cloud from the 

Crazyflie (Figure 4) was compared to the MAX Kiwi cloud 

(Figure 3) and the MAX Grape cloud (Figure 5).  

 

As the range finders on the Crazyflie perform 2D scanning, they 

do not generate 3D point clouds as do the 3D LIDAR and camera-

based systems onboard the MAX drone. Instead, the Crazyflie 

provides a 2D point cloud map consisting of points captured on 

the surrounding walls using the side range finders (Figure 4). 

Additionally, it provides points on the ceiling and floor, which 

8 https://gtsam.org/  
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correspond to the followed trajectory, using the vertical range 

finders (Figure 7). 

 

 For comparison purposes we segmented out MAX Kiwi points 

that corresponded to Crazyflie cloud in terms of the flight 

altitude. However, when we plotted clouds from both drones 

together, they were not precisely aligned with the same 

coordinate system, since they did not start in the same orientation. 

Therefore, we registered both clouds in the same coordinate 

system by means of coarse registration and the iterative closest 

point (ICP) algorithm included in the open-source free 

CloudCompare software. To quantify the deviation of Crazyflie 

cloud from the MAX Kiwi cloud, we computed the cloud-to-

cloud absolute distances (Figure 4). MAX Kiwi generated the 

point cloud using the SLAM algorithm presented in Section 4.2, 

while the Crazyflie uses the Flow deck and multi-ranger deck (≤
4 m) for mapping. Results showed that the Crazyflie 

performance is comparable to the MAX drone, as about 87% of 

the cloud-to-cloud distances between the corresponding clouds 

from both drones were within a range of less than 20 cm. 

 

However, Figure 3 shows sparse points on three different sides 

of the MAX Kiwi cloud, compared to almost linear points in the 

Crazyflie cloud (Figure 4). The main reason behind this 

discrepancy is related to the different sensor configuration and 

the flight height during mapping. Specifically, MAX was 

operating on a flight level (> 1 m) higher than the surfaces of the 

tables and chairs that were located near the walls in these three 

sides, while the Crazyflie flew at a height of 30 cm from the 

floor. Therefore, the wall, which was clearly visible for the 

Crazyflie, was heavily occluded by the tables and chairs for the 

MAX. The registered 3D point cloud and trajectory from the 

LIDAR-based Grape system onboard the MAX drone can be seen 

in Figure 5. The cloud was cleaned from clutter and compared to 

the Crazyflie point cloud. The cloud-to-cloud distances shown in 

Figure 6 demonstrate that over 96% of the distances were in a 

range of less than 20 cm. 

  
Figure 3. Top view of the MAX Kiwi map (3D point cloud)  for 

the Berrozi dataset. 

 
Figure 4. Crazyflie point cloud map, coloured based on point 

distance to the MAX Kiwi map, in the Berrozi dataset. 

When this dataset was collected, the drone moved along a closed 

loop, such that the start and end positions were identical. Since 

the Grape system did not perform loop closure correction at the 

end of the loop, it accumulated a drift of about 1.07% (15 cm) on 

the X and Y axes, and 0.07% (1 cm) in the Z-axis direction over 

a length trajectory of about 13-14 m. The significant drift 

introduced duplicate walls into the generated point cloud as 

shown in Figure 5.   

 

When repeating the experiment for a more reliable comparison 

of the drones, a clearly marked location and direction for each 

drone take-off should be used to reduce user error, and to ensure 

that the coordinate systems of comparison flights are aligned. 

Additionally, both drones should hover at the same height. 

 

 
Figure 5. Top view of the MAX Grape map (3D point cloud) and 

trajectory in the Berrozi dataset. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022 | © Author(s) 2022. CC BY 4.0 License.

 
207



Figure 6. Crazyflie point cloud map, coloured based on point 

distance to the MAX Grape map, in the Berrozi dataset. 

6.2 Crazyflie & TLS comparison 

To verify the internal quality and consistency of the Crazyflie 

point cloud, it was compared to a TLS map, which is considered 

to be internally properly aligned. First, we computed the 

deviation of the Crazyflie map to the TLS map used as ground 

truth (Figure 9). Second, we extracted geometric distance 

information (Figure 7) from each map for comparison purposes 

(Table 3).  

 

Similar to the previous comparison, the 2D point cloud map 

derived from the Crazyflie and the corresponding map from the 

TLS (Figure 8) were registered on the same coordinate system. 

Figure 9 shows that about 93% of the cloud-to-cloud distances 

were less than 20 cm. 

 

 
Figure 7. Slanted view of the Crazyflie 2D point cloud map 

with trajectory, ceiling and floor points and some height 

measurements for the ITC dataset 

The largest deviation was seen in the direction of movement, as 

points on the surfaces behind and in front of the Crazyflie had the 

highest cloud-to-cloud distances. This happened because the 

Crazyflie sometimes did not capture any motion and glided away 

because it was flying over a visually featureless floor. This also 

explains why the drone drifted at the end of the trajectory while 

turning around, which in turn led to double lines of points on the 

walls to the right and left of the moving direction (Figure 7). 

 

Since the vertical range finders on the Crazyflie support the 

estimation of translation along the Z-axis, the drift along this axis 

direction was smaller than the drift along other axes. This was 

evident through its ability to capture the change in the ceiling 

height with cm precision, as shown in Figure 7 and Table 3. 

 

Height Crazyflie (m) TLS (m) 

Height 1 3.27 3.29 

Height 2 2.40 2.41 

Table 3. Distances between the floor and the ceiling from the 

TLS and Crazyflie point cloud maps 

 
Figure 8. 2D point cloud, segmented out of the TLS point cloud 

at Crazyflie scanning height, for the ITC dataset 

Figure 9. Crazyflie 2D point cloud map, coloured based on point 

distance to the TLS map, for the ITC dataset. 
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6.3 MAX and TLS comparison 

To generate the third dataset, an office environment at FOI was 

captured by the MAX drone and a TLS. Also in this experiment, 

MAX was carried during data acquisition. Figure 10 shows the 

generated point clouds using the LIDAR-based Grape system and 

the TLS. The results of cloud-to-cloud matching showed that 

75% of the distances were below 20 cm (Figure 10), and the 

deviation between the start and end positions was below 0.02% 

(1 cm) in the Z-axis direction and less than 0.77% (50 cm) on the 

X and Y axes for a travelled distance of about 65 m.  

 

The TLS visualization and the corresponding point cloud from 

the camera-based Kiwi system can be seen in Figure 11. 

Matching these point clouds showed that 80% of the distances 

were below 30 cm, and 55% of the distances were less than 20 

cm. The start-end error of the trajectory was approximately 0.5 

m in both the horizontal and vertical directions. It should be noted 

that most of the furniture in the room was moved between the 

TLS and the Kiwi measurements. This may cause an 

overestimation of the point distances. Positioning from the Grape 

and Kiwi systems are fused onboard, a process that is not covered 

in this paper. Ongoing work on loop closure for both systems will 

improve performance in areas of current difficulties. 

 

 
Figure 10. Top view of the TLS point cloud map (the ceiling 

points are not shown in order to show the interior structure) and 

Grape point cloud (coloured based on point distance to the TLS 

map) for the FOI dataset. 

7. CONCLUSIONS AND FUTURE WORK 

This paper presents two drones, Crazyflie and MAX, with 

different configurations and capabilities. Experimental results 

show that both drones are capable of mapping indoor 

environments and can provide point clouds that are sufficient for 

exploration purposes. 

 

Although the Crazyflie has limited sensor abilities, it showed 

promising performance in mapping small indoor spaces. This is 

evident from the relatively low deviation of its point cloud in 

comparison to the MAX drone, and the TLS measurements that 

served as truth. In future work, we intend to integrate 

complementary sensors, such as a thermal camera, to increase the 

efficiency of the Crazyflie. Additionally, we will fly the drone at  

different heights to provide better coverage of the mapped space.  

 
Figure 11. Top view of the TLS point cloud map (the ceiling 

points are not shown in order to show the interior structure) and 

Kiwi point cloud (coloured based on point distance to the TLS 

map) for the FOI dataset.   

The LIDAR-based Grape system onboard the MAX drone did not 

perform well in the smaller Berrozi environment, but showed 

improved results in larger environments, such as the FOI office 

environment, where it benefits from its range and 360° view. The 

camera-based Kiwi system worked very well in the smaller 

Berrozi environments, but showed slightly larger errors in the 

larger FOI environment. As of now, the MAX drone does not 

have obstacle avoidance capability, but this is to be implemented 

in the near future. 
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