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Micro and macroscopic models of rock fracture
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S U M M A R Y
The anelastic deformation of solids is often treated using continuum damage mechanics. An al-
ternative approach to the brittle failure of a solid is provided by the discrete fibre-bundle model.
Here we show that the continuum damage model can give exactly the same solution for material
failure as the fibre-bundle model. We compare both models with laboratory experiments on the
time-dependent failure of chipboard and fibreglass. The power-law scaling obtained in both
models and in the experiments is consistent with the power-law seismic activation observed
prior to some earthquakes.

Key words: critical point, damage mechanics, fibre-bundle model, fracture, power-law
scaling.

1 I N T R O D U C T I O N

The brittle failure of a material is a complicated phenomenon. For
example, it can involve a single fracture propagating through a ho-
mogeneous solid. However, this is an idealized case that requires
a pre-existing crack or notch to concentrate the applied stress. The
propagation of the fracture is not fully understood because of the
complexities of the stress singularities at the crack tip (Freund 1990).
In general, the initiation of a fracture in a solid is a more complex
process. Even if the material appears to be homogeneous, there will
be a distribution of dislocations, flaws, and other heterogeneities
present. As the applied stress is increased, microcracks occur ran-
domly on the heterogeneities and are uncorrelated. As the density
of microcracks increases the stress fields of the microcracks interact
and the microcracks become correlated. The microcracks eventually
coalesce to form a through-going fracture. This irreversible process
is a part of damage mechanics.

Many experiments on the fracture of rocks and other brittle ma-
terials have been carried out. Mogi (1962) monitored the acoustic
emissions from the microcracks in rock and showed that they satis-
fied power-law frequency–magnitude statistics. He also showed that
there was a well-defined delay between the application of a constant
stress and the failure of the rock. Hirata et al. (1987) showed that the
acoustic emissions prior to the failure of a rock satisfied a power-
law (fractal) spatial distribution. Similar results were obtained by
Lockner (1993).

Many authors have studied the time delays associated with brit-
tle failure after a constant stress has been applied to a brittle solid.
Similar experiments were conducted by Zhurkov (1965) for brittle
fracture of a wide variety of materials. Otani et al. (1991) obtained
the statistical distribution of delay times for failure after the appli-

cation of a constant stress to carbon fibre–epoxy microcomposites.
Anifrani et al. (1995) and Johansen & Sornette (2000) studied the
rupture of spherical tanks of kevlar wrapped around thin metallic
linens and found a power-law increase of acoustic emissions prior
to rupture. Guarino et al. (1998, 1999) studied the failure of chip-
board and fibreglass panels. They also found a power-law increase
in acoustic emissions prior to failure and a systematic dependence
of failure times on the stress level.

In terms of the Earth’s crust, brittle failure generally occurs on pre-
existing faults, and the applicable process is assumed to be friction.
The fault fails when the applied shear stress exceeds that produced
by a static coefficient of friction. During rupture the stress on the
fault is given by the dynamic coefficient of friction. As long as the
dynamic coefficient of friction is less than the static coefficient of
friction, stick-slip behaviour results and there are earthquakes. Many
papers have considered the failure of one or more specific planar
faults in a homogeneous elastic medium (Ben-Zion & Rice 1995).
However, the Earth’s crust is made up of faults on all scales that
interact. One consequence of these interactions is the scale invariant
Gutenberg–Richter frequency–magnitude relation for earthquakes.
Evidently, the Earth’s crust is a self-organizing complex medium.

While there are important similarities between the fracture of
a pristine rock and an earthquake rupture, there are also impor-
tant differences. The fracture of a pristine rock is an irreversible
process. However, earthquake ruptures occur repetitively on pre-
existing faults and, between earthquakes, faults heal. If the Earth’s
crust, prior to a major earthquake, behaved as the fracture of a pris-
tine rock, there would be a systematic increase in regional seismicity
before a major earthquake. The rate of occurrence of small earth-
quakes in a seismogenic zone is nearly constant (Turcotte 1999).
However, there is accumulating evidence that there is an increase in
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Figure 1. A schematic illustration of the failure of a brittle rod. In region
I, linear elasticity is applicable. In region II, damage is occurring and there
is irreversible deformation of the rod.

the number of intermediate-sized earthquakes prior to a large earth-
quake (Rundle et al. 2000). The repetitive nature of earthquakes,
and their power-law scaling, have led some authors to argue that
seismicity is an example of self-organized criticality (Bak & Tang
1989). It is certainly reasonable to hypothesize that the Earth’s crust
is in a ‘damaged’ state. Evidence of this damage is the continu-
ous occurrence of small earthquakes that satisfy Gutenberg–Richter
frequency–magnitude scaling.

In this paper we will consider both microscopic and continuum
models of damage. We will compare both types of models with
laboratory experiments and will discuss the implications for earth-
quake physics. The behaviour of a rod of material under tension is
illustrated schematically in Fig. 1. Deviations from linear elasticity
and the existence of damage are shown schematically. The stress σ

in the rod is given as a function of the strain ε. In region I, linear
elasticity is applicable and we have

σ = E0 ε, (1.1)

where E0 is the Young modulus of the undamaged material, a con-
stant. In region II, where there is a deviation from linear elasticity,
microcracking is occurring. These microcracks weaken the material
and result in acoustic emissions. For a prescribed stress σ , the strain
ε is greater than the value given by eq. (1.1). Accordingly, we write

σ = Eeff ε, (1.2)

where E eff is the effective Young modulus—it is no longer assumed
to be a constant. This relation between σ and ε provides the definition
of E eff.

A continuum approach to this process is to introduce a damage
variable α so that (Kachanov 1986; Lemaitre & Chaboche 1990;
Lyakhovsky et al. 1993, 1997; Krajcinovic 1996)

Eeff = E0 (1 − α). (1.3)

The damage variable α quantifies the deviation from linear elasticity
and the distribution of microcracks in the 1-D problem. In general

0 ≤ α ≤ 1. When α = 0, linear elasticity is obtained with eq. (1.1)
valid, but when α = 1, failure occurs. For quasistatic (slow) rupture
it is appropriate to take the damage variable to be a function only
of the applied stress α(σ ). However, in most cases of interest the
development of damage in a material is a transient process so that
we have α[σ (t)]. As illustrated in Fig. 1, the failure of the brittle
material occurs at t = t f when σ (t f) = σ r (α = 1), the failure stress.
It should be emphasized that the dependence given in Fig. 1 is highly
idealized since the dependence on time is not illustrated.

Another approach to brittle failure is applicable to composite
materials. A composite material is made up of strong fibres embed-
ded in a relatively weak matrix. Failure of composite materials has
been treated by many authors using the concept of fibre-bundles
(Smith & Phoenix 1981; Curtin 1991; Newman & Phoenix 2001).
The failure statistics of the individual fibres that make up the fibre-
bundle are specified. The statistics can be either static or dynamic.
In the static case, the probability of the failure of a fibre is speci-
fied in terms of the stress on the fibre. Failure is assumed to occur
instantaneously. In the dynamic case, the statistical distribution of
times to failure for the fibres are specified in terms of the stresses
on the fibres (Coleman 1956, 1958). Experiments generally favour
the dynamic-failure, fibre-bundle models. When stress is applied
to a fibre-bundle, the fibres begin to fail. It is necessary to specify
how the stress on a failed fibre is redistributed to the remaining
sound fibres (Smith & Phoenix 1981). In the uniform load sharing
hypothesis, the stress from a failed fibre is redistributed equally to
the remaining fibres. This is a mean-field approximation. The alter-
native redistribution model is the local load sharing hypothesis. In
this case the load on the failed fibre is redistributed to neighbouring
fibres. Local load sharing is applicable to strongly bonded fibrous
(composite) materials, whereas equal load sharing is applicable to
weakly bonded fibrous materials.

The failure of a simple fibre-bundle under uniform load sharing
is illustrated in Fig. 2. Initially the load on the bundle F0 is carried
equally by the four fibres with F = 1

4 F0. The weakest fibre fails
and the load on that fibre is now carried by the surviving fibres with
F = 1

3 F0. The stress on each fibre increases from the original value
σ 0 to 4

3 σ0. The process of failure followed by stress redistribution
continues until all fibres fail and no load can be carried. The fibre-
bundle model can also be used as a simple model for friction where
the fibres represent the asperities on a surface.

F0 F0 F0 F0

(a) (b) (c) (d)

Figure 2. A schematic illustration of the failure of a fibre-bundle with
uniform load sharing. (a) Each of the fibres carries one-quarter of the load
F0. (b) One fibre has failed and each remaining fibre carries one-third of the
load F0. Two fibres have failed and each remaining fibre carries one-half of
the load F0. (d) All four fibres have failed and no load is carried.
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The primary purpose of this paper is to compare the microscopic
fibre-bundle model for failure with the macroscopic damage model
for failure in a simple geometry. We consider the two models for
the failure of a rod under tension. The dynamic fibre-bundle model
is considered assuming uniform load sharing. The rate of failure
of fibres under an initial stress σ 0 (per fibre) is specified. As fibres
fail, the stress on the remaining fibres increases leading to a catas-
trophic failure of the bundle. The fibre failures are equivalent to the
microcracks that occur in a uniform brittle material as it is stressed
to failure.

The second model we consider for the failure of a rod is the
continuum damage model. A damage variable α is introduced as in
eq. (1.3). Based on thermodynamic considerations, an expression is
introduced for the increase in the damage variable with time. When
α = 1, catastrophic failure of the rod occurs. This analysis was
previously carried out by Ben-Zion & Lyakhovsky (2002).

We obtain solutions for two initial-value problems. In the first
problem, a constant force F0 is applied instantaneously at t = 0. The
time to failure t f is determined. In the second problem we assume
that the applied force F(t) is increased linearly with time F(t) ∝ t
until failure occurs. We show that the two models can give identical
algebraic forms for the solutions of these problems. Moreover, these
solutions correspond to the constant applied force problem, when
the time variable is suitably scaled. The damage variable α is given
by the fraction of fibres that fail, namely α = 1 − N/N 0, where N 0

is the original number of fibres in the bundle and N is the number
of remaining fibres. A qualitative discussion of the relation between
the fibre-bundle model and the continuum damage model has been
given previously by Krajcinovic (1996).

A characteristic of material failure is the emergence of acoustic-
emission events. The acoustic-emission events are generated by mi-
crocracks as the material is damaged. The microscopic fibre-bundle
model can be used to obtain the predicted rate of acoustic-emission
events prior to material failure. The predictions are compared with
the experimental observations of Guarino et al. (1998, 1999). These
authors determined the rate of acoustic-emission events generated
during the failure of panels of chipboard and fibreglass. Their results
agree with the predictions of the microscopic fibre-bundle model.
We conclude by exploring the possible relevance of these models
to seismic activation, and discuss the broader implications of these
results.

2 F I B R E - B U N D L E M O D E L

We consider a rod that is made up of N 0 fibres. This rod can be
thought of as a frictionless, stranded cable made up of N 0 strands.
The standard approach to the dynamic time-dependent failure of
a fibre-bundle is to specify an expression for the rate of failure of
fibres (Coleman 1956, 1958; Newman & Phoenix 2001). The form
of this breakdown rule is given by

d N (t)

dt
= −ν(σf) N (t), (2.1)

where N (t) is the number of unbroken fibres at time t, and ν(σ f)
is known as the hazard rate, which is a function of the fibre stress
σ f(t).

First we consider the case in which a uniform strain ε0 is applied
to and maintained upon the fibre-bundle at time t = 0. In this case
the stress on each fibre has a constant value σ 0 given by eq. (1.1),
where E0 is the Young modulus of a fibre. Since the stress on the
fibres is constant, so is the hazard rate, yielding ν = ν0 independent
of time t. In this case eq. (2.1) can be integrated to give

N (t)

N0
= e−ν0 t , (2.2)

where the initial conditions N (0) = N 0 has been used. The total
force F(t) carried by the fibre-bundle at time t is given by

F(t) = N (t) σ0 a, (2.3)

where a is the area of a fibre. Substituting eqs (1.1) and (2.1) into
eq. (2.2) gives

F(t) = N0 a E0 ε0 e−ν0 t . (2.4)

The force on the fibre-bundle decreases as fibres fail and catastrophic
failure in a finite time does not occur.

We now consider the case in which a constant tensional force F0

is applied to the fibre-bundle at time t = 0. The initial stress on each
fibre at t = 0, σ 0, is given by

σ0 = F0

N0 a
. (2.5)

The applied tensional force F0 remains constant, so that when a fibre
fails the force carried by that fibre is redistributed to other fibres.
Thus the stress on surviving fibres increases with time. We make
the further assumption that the force on a failed fibre is redistributed
equally to the remaining fibres. This is uniform load sharing and is
a mean-field approximation. One implication of this assumption is
that all the remaining fibres have the same stress σ f(t). The stress
on the surviving fibres is related to the number of sound fibres N (t)
by

σf(t) = N0

N (t)
σ0. (2.6)

In order to complete the specification of the problem, it is neces-
sary to prescribe the dependence of the hazard rate ν on the stress
σ f. For engineering materials it is standard practice (Newman &
Phoenix 2001) to empirically assume the power-law relation

ν(t) = ν0

[
σf(t)

σ0

]ρ

, (2.7)

where ν0 is the hazard rate corresponding to the initial fibre stress
σ 0. It is found experimentally that values of ρ are in the range 2–5
for various fibrous materials.

Substitution of eqs (2.6) and (2.7) into eq. (2.1) gives

d N (t)

dt
= − ν0 N ρ

0

[N (t)]ρ−1
. (2.8)

Integration with the initial condition N (0) = N 0 gives

N (t) = N0(1 − ρ ν0 t)1/ρ . (2.9)

Failure of a fibre-bundle occurs when N (t f) = 0, the time to failure
t f is given by

tf = 1

ρ ν0
. (2.10)

The stress in each of the remaining fibres at time t is obtained by
substituting eq. (2.9) into eq. (2.6) with the result

σf(t) = σ0

(1 − ρ ν0 t)1/ρ
. (2.11)

Next we determine the strain on the fibre-bundle as failure occurs.
We make the assumption that each fibre satisfies linear elasticity
until it fails, thus we can write

εf(t) = σf(t)

E0
, (2.12)
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Figure 3. Dependence of the ratio of the effective Young modulus Eeff to
the Young modulus of the undamaged material E0 on the time to failure t/t f

for ρ = 2–4 from eq. (2.16). A constant force has been applied to the rod at
t = 0 and failure occurs at t = t f.

where E0 is the Young modulus applicable to all fibres up to failure.
We assume that a microcrack in a fibre results in its failure, i.e. there
is no ‘damage’ in a fibre prior to failure. Since the stresses in the
remaining fibres are equal with the value σ f(t), the strains are also
equal with the value εf(t).

Substitution of eq. (2.11) into eq. (2.12) gives the strain εf(t) of
each remaining fibre

εf(t) = σ0

E0

1

(1 − ρ ν0 t)1/ρ
. (2.13)

We define an effective Young modulus E eff(t) for the fibre-bundle
from eq. (1.2) according to

Eeff(t) = σ0

εf(t)
. (2.14)

This is the Young modulus of the bundle as a whole (including both
failed and sound fibres) treated as an equivalent rod failing under
tension. Substitution of eq. (2.13) into eq. (2.14) gives

Eeff(t) = E0(1 − ρ ν0 t)1/ρ . (2.15)

Using eq. (2.10) for the time to failure t f, we obtain

Eeff(t) = E0

(
1 − t

tf

)1/ρ

. (2.16)

The effective Young modulus E eff(t) decreases from its original
value of E eff(0) = E0 to E eff(t f) = 0 at failure. This dependence is
illustrated in Fig. 3 for ρ = 2–4.

Using eq. (2.9), one can also rewrite eq. (2.15) in the form

Eeff(t) = E0
N (t)

N0
. (2.17)

The effective Young modulus E eff(t) is linearly proportional to the
fraction of fibres that remain unbroken. We have obtained the time-
dependent failure of a fibre-bundle to which a constant force F0

was applied at t = 0. Next we obtain a solution to the same problem
using the damage model.

3 D A M A G E M O D E L

We have obtained a solution for the strain and effective Young mod-
ulus during the failure of a fibre-bundle under a constant applied

load. This was basically a microscopic model in a mean field. We
now obtain a solution to the same problem utilizing the macroscopic
damage model. Again we consider the failure of a rod under tension.
A constant tensional force F0 is applied to the rod at time t = 0.

The damage variable α has been defined in eq. (1.3). Equating
eqs (1.3) and (2.17) we obtain

α(t) = 1 − N (t)

N0
. (3.1)

This definition of damage has been used previously (Krajcinovic
1996). In our analogue with the fibre-bundle model, we can interpret
the macroscopic damage variable α(t) to be the fraction of fibres that
have failed. We now determine the time history of strain in a rod
using the damage model. We assume that σ 0 is the constant stress
applied to the rod at t = 0. For the undamaged material α = 0 and
E eff = E0, failure occurs when α(t f) = 1 and E eff(t f) = 0. Based on
thermodynamic considerations (Lyakhovsky et al. 1997), the time
evolution of the damage variable can be related to the strain ε(t) by

dα(t)

dt
= A ε2(t) (3.2)

where A is a constant for a constantly applied stress. It is assumed
that the rate of damage can be expanded in a power-series expansion
in ε. The first power in ε disappears since we assume that equilib-
rium is maintained in the thermodynamic basis for the stress-strain
relation. Thus, the power-series expansion has terms in ε2, ε3, ε4, . . .
where we require that the rate of damage must be positive for both
positive and negative strains. The ε2 term is the lowest-order term in
the power-series expansion and will dominate for small strains. For
large strains other terms may become important.

Substitution of eq. (1.3) into eq. (1.2) gives the strain ε(t) in the
damaged rod

ε(t) = σ0

E0[1 − α(t)]
. (3.3)

Combining eqs (3.2) and (3.3) we obtain

d

dt
[1 − α(t)] = − A σ 2

0

E2
0 [1 − α(t)]2

. (3.4)

Integrating with the initial condition α(0) = 0 we find

α(t) = 1 −
(

1 − 3A σ 2
0

E2
0

t

)1/3

. (3.5)

Substitution of eq. (3.5) into eq. (1.3) gives

Eeff(t) = E0

(
1 − 3A σ 2

0

E2
0

t

)1/3

. (3.6)

Failure occurs at time t f when E eff (t f) = 0, where α(t f) = 1; thus
we have

tf = E2
0

3A σ 2
0

. (3.7)

Substituting eq. (3.7) into eq. (3.5) we find

α(t) = 1 −
(

1 − t

tf

)1/3

. (3.8)

We obtain the time dependence of the effective Young modulus
E eff(t) by substituting eq. (3.7) into eq. (1.3) with the result

Eeff(t) = E0

(
1 − t

tf

)1/3

. (3.9)

A similar derivation of this result has been given by Ben-Zion &
Lyakhovsky (2002). This solution for the effective Young modulus
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E eff(t) using the damage model is identical to the solution for the ef-
fective Young modulus obtained using the fibre-bundle model given
in eq. (2.16) if we take ρ = 3 in the hazard rate scaling relation eq.
(2.7). The two totally independent approaches give identical results
when we take ρ = 3.

Assuming ρ = 3, we equate the time to failure t f given in
eq. (2.10) for the fibre-bundle model to the time to failure t f given
in eq. (3.7) for the damage model with the result

A = E2
0 ν0

σ 2
0

. (3.10)

The constant A in the damage rate equation (3.2) is related to the
hazard rate ν0 defined in eq. (2.7). With ρ = 3 we have ν0 ∝ σ 3

0

from eq. (2.7), thus we have A ∝ σ 0 from eq. (2.10).

4 G E N E R A L I Z E D D A M A G E M O D E L

In the previous section we showed that the equal load sharing fibre-
bundle model and the damage model have identical solutions if ρ =
3 in the hazard rate equation (2.7). Since the stress dependence of
the hazard rate is solely empirical, the value ρ = 3 has no particular
meaning. Significantly, ρ = 3 is typical of polycarbonate resins used
in the manufacture of composite materials for which the fibre-bundle
model was developed.

With ρ = 3, the damage variable α(t) is equal to the fraction of
failed fibres N f(t)/N 0 from eq. (3.1). This is not the case for other
values of ρ. We now introduce a generalized definition of damage
through the relation

Eeff(t) = E0[1 − α(t)]1/(ρ−2). (4.1)

When ρ = 3 this reduces to the standard definition of the vari-
able given in eq. (1.3). Since we are modelling 1-D behaviour on
a 3-D medium, we suggest that this generalization provides a phe-
nomenological device for capturing the role played by the transverse
dimensions.

An alternative generalization of the continuum damage theory has
been given by Krajcinovic (1996, p. 477). Instead of introducing an
arbitrary power into the basic definition of the damage variable as
we have done in eq. (4.1), this author introduces an arbitrary power
εm(t) into the rate eq. (3.2). We prefer the generalization of eq. (1.3)
as given in eq. (4.1) since we assume that the rate of damage is
proportional to an even power of the strain.

Again we consider the failure of a rod under tension. Substitution
of eq. (4.1) into eq. (1.2) gives the strain ε(t) in the damaged rod

ε(t) = σ0

E0[1 − α(t)]1/(ρ−2)
. (4.2)

Combining eqs (4.2) and (3.2) we find

d

dt
[1 − α(t)] = − A σ 2

0

E2
0 [1 − α(t)]2/(ρ−2)

. (4.3)

Integrating with the initial condition α(0) = 0, we obtain

α(t) = 1 −
[

1 − ρ A σ 2
0

(ρ − 2) E2
0

t

](ρ−2)/ρ

. (4.4)

Substitution of eq. (4.4) into eq. (4.1) gives

Eeff(t) = E0

[
1 − ρ A σ 2

0

(ρ − 2)E2
0

t

]1/ρ

. (4.5)

Failure occurs at time t f when E eff(t f) = 0 [α(t f) = 1], thus we have

tf = (ρ − 2) E2
0

ρ A σ 2
0

. (4.6)

Using eqs (4.6) and (4.4) we obtain

α(t) = 1 −
(

1 − t

tf

)(ρ−2)/ρ

. (4.7)

And the substitution of eq. (4.6) into eq. (4.5) gives eq. (2.16), the
result obtained for the fibre-bundle model. Equating the time to
failure given in eqs (2.10) and (4.6) we have

A = (ρ − 2) E2
0 ν0

σ 2
0

. (4.8)

Using the generalized damage definition given in eq. (4.1) we re-
cover the full fibre-bundle solution valid for arbitrary ρ.

Comparing eq. (2.17) with eq. (4.1), we obtain

α(t) = 1 −
[

N (t)

N0

]ρ−2

. (4.9)

When ρ = 3 this reduces to eq. (3.1). For other values of ρ, eq. (4.9)
gives the required dependence of α(t) on N/N 0. In the general case,
the damage variable α is not simply proportional to the number of
failed fibres as in eq. (3.1).

5 T I M E - D E P E N D E N T S T R E S S

In the above analysis we assumed that a force F0 was applied to a
rod instantaneously at t = 0. We showed that the fibre-bundle model
with ρ = 3 and the damage model gave identical result. In order to
test the generality of this correspondence further, we now consider
the case in which the applied stress σ is a linearly increasing function
of time

σ (t) = β t, (5.1)

where β is a constant.
First we consider the fibre-bundle model. Again assuming equal

load sharing so that eq. (2.6) is applicable, from eq. (5.1) the stress
σ f(t) in the remaining unbroken fibres is given by

σf(t) = N0

N (t)
β t. (5.2)

Again we assume that the hazard rate is given by

ν(t) = νf

[
σf(t)

σ (tf)

]ρ

, (5.3)

where νf is the hazard rate at the failure stress σ (t f), which is given,
from eq. (5.1), by

σ (tf) = β tf, (5.4)

where t f is again the failure time. Substitution of eq. (5.4) into
eq. (5.3) gives

ν(t) = νf

[
σf(t)

β tf

]ρ

. (5.5)

With this dependence of the hazard rate on stress there is a finite
probability for the failure of fibres at all stress levels. There is no
well-defined yield stress below which linear elasticity is applicable.

Combining eqs (2.1), (5.2) and (5.5) we have

d N (t)

dt
= −νf

(
t

tf

)ρ N ρ

0

[N (t)]ρ−1
. (5.6)

Integrating with the initial condition N (0) = 0, we find

N (t) = N0

[
1 − ρ νf tf

ρ + 1

(
t

tf

)ρ+1
]1/ρ

. (5.7)
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Failure of the fibre-bundle occurs at t = t f when N (t f) = 0, the time
to failure is given by

tf = ρ + 1

ρ νf
. (5.8)

Comparison of eq. (5.8) with eq. (2.10) shows that the time to failure
for a linearly increasing stress is ρ + 1 times the time to failure for
a constant stress. The hazard rates ν0 in eq. (2.10) and νf in eq. (5.8)
are equivalent since both apply at the time of failure.

Substitution of eq. (5.8) into eq. (5.7) gives

N (t) = N0

[
1 −

(
t

tf

)ρ+1
]1/ρ

. (5.9)

Combining eqs (5.2), (5.4) and (5.9) we obtain

σf(t) = σ (tf)
t/tf[

1 − (t/tf)
ρ+1]1/ρ

. (5.10)

Substitution of eq. (5.10) into eq. (2.12) gives the strain εf(t) of each
remaining fibre

εf(t) = σ (tf)
t/tf

E0

[
1 − (t/tf)

ρ+1]1/ρ
. (5.11)

And the effective Young modulus for the fibre-bundle is obtained
by substituting eqs (5.11) and (5.4) into eq. (2.14)

Eeff(t) = E0

[
1 −

(
t

tf

)ρ+1
]1/ρ

. (5.12)

Substitution of eq. (5.9) into eq. (5.12) again gives eq. (2.17). As
in eq. (2.16), the effective Young modulus E eff(t) decreases from
its original value of E eff(0) = E0 to E eff(0) = 0 at failure. This
dependence is illustrated in Fig. 4 for ρ = 2–4. A comparison with
Fig. 3 shows that damage develops much later when σ increases
linearly with time than when it is instantaneously applied.

We now consider the damage model with an applied stress that
increases linearly with time. From eqs (5.1) and (5.4) we have for
t ≤ t f

σ (t) = σ (tf)
t

tf
. (5.13)

For a constant applied stress σ 0 the damage parameter A defined
in eq. (3.2) is a constant. The dependence of A on the hazard rate

Figure 4. Dependence of the ratio of the effective Young modulus Eeff to
the Young modulus of the undamaged material E0 on the time to failure t/t f

for ρ = 2–4 from eq. (5.12). The force on the rod is a linearly increasing
function of time starting at t = 0, failure of the rod occurs at t = t f.

ν0 and σ 0 has been given in eq. (3.10). For an applied stress that
increases linearly with time we replace σ 0 in eq. (3.10) with σ (t) as
given by eq. (5.13). Furthermore, we replace ν0 in eq. (3.10) with
ν(t), which we obtain from eq. (5.3) taking ρ = 3 and assuming ν(t)
is the damage rate at stress σ (t). With these substitutions eq. (3.10)
becomes

A(t) = E2
0 ν(t)

σ 2(t)
= E2

0 νf

σ 2(t)

[
σ (t)

σ (tf)

]3

= E2
0 νf

σ 2(tf)

t

tf
. (5.14)

Substitution of eq. (5.14) into eq. (3.2) gives

dα(t)

dt
= νf E2

0

σ 2(tf)

t

tf
ε2(t). (5.15)

And the substitution of eq. (5.13) into eq. (3.3) gives

ε(t) = σ (tf) t

tf E0[1 − α(t)]
. (5.16)

Using eq. (5.16), we are able to rewrite eq. (5.15) as follows

dα(t)

dt
= νf

[1 − α(t)]2

(
t

tf

)3

. (5.17)

Integrating with the initial condition α(0) = 0 we obtain

α(t) = 1 −
(

1 − 3νf t4

4t3
f

)1/3

. (5.18)

Failure occurs when α(t f) = 1 so that

tf = 4

3νf
. (5.19)

Combining eqs (1.3), (5.18) and (5.19) we obtain

Eeff(t) = E0

[
1 −

(
t

tf

)4
]1/3

(5.20)

If we take ρ = 3 we find eq. (5.19) is identical to eq. (5.8) and that
eq. (5.20) is identical to eq. (5.12). Once again, we find that the
fibre-bundle model and the damage model give identical results if
ρ =3. Thus, we see that the time-dependent stress model is a rescaled
version of the constant stress model.

6 A C O U S T I C - E M I S S I O N E V E N T S

A characteristic of materials experiencing ‘damage’ are acoustic-
emission events. For a solid material stressed beyond its elastic limit
the acoustic-emission events are associated with microcracks. For
a fibrous material the acoustic-emission events are associated with
the failure of one or more fibres.

We now obtain an expression for the energy flux associated with
the acoustic-emission events from a fibre-bundle as fibres break
using the model considered above. In our fibre-bundle model we
assume that individual fibres satisfy linear elasticity until failure.
Thus the stored elastic energy in a single fibre ef(t) at the time of
failure is given by

ef(t) = 1

2
Vf E0 ε2

f (t), (6.1)

where V f is the volume of the fibre, E0 is the Young modulus of the
fibre, and εf is the strain in the fibre given by eq. (2.13). We assume
that when a fibre fails, a fraction ηa of the stored elastic energy
given by eq. (6.1) is the energy in the acoustic-emission event. The
efficiency ηa is analogous to the seismic efficiency ηs, the fraction
of the stored elastic energy lost during an earthquake that is radiated
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in the seismic waves generated by earthquake. In both earthquakes
and in acoustic-emission events from damaged materials, energy
is also used to rupture material and in some cases is dissipated in
frictional heating. We assume that the acoustic-emission efficiency
ηa is a constant.

The rate at which energy is lost by acoustic-emission events is
given by

defa(t)

dt
= −ηa ef(t)

d N (t)

dt
, (6.2)

where efa(t) is the energy associated with the acoustic-emission
event and ef(t) is the stored elastic energy in a fibre. Substituting
eq. (6.1) into eq. (6.2) we obtain

defa(t)

dt
= −1

2
ηa Vf E0 ε2

f (t)
d N (t)

dt
. (6.3)

Since the total volume of fibres is N 0V f, the rate of energy loss in
acoustic-emission events per unit volume of material ea(t) is given
by

dea(t)

dt
= −1

2
ηa

E0 ε2
f (t)

N0

d N (t)

dt
. (6.4)

From eq. (2.8), the rate at which fibres fail can be written

d N (t)

dt
= − ν0 N ρ

0

[N (t)]ρ−1
(6.5)

and, from eqs (2.9) and (2.13), we have the fibre strain at its time of
failure t

εf(t) = σ0

E0

N0

N (t)
. (6.6)

Using eqs (6.5) and (6.6), we can rewrite eq. (6.4) in the form

dea(t)

dt
= 1

2
ηa

ν0 σ 2
0

E0

[
N0

N (t)

]ρ+1

. (6.7)

Combining eqs(2.9), (2.10) and (6.7) we obtain

dea(t)

dt
= ηa ν0 σ 2

0

2E0

1

(1 − t/tf)
(ρ+1)/ρ

. (6.8)

This is the rate at which energy is radiated in acoustic-emission
events during the failure of a fibre-bundle.

While the rate at which energy is lost in acoustic-emission events
can be determined from the microscopic fibre-bundle model, this
is not the case for the macroscopic damage model. We now use
our analogue between the two models to determine a relationship
between the energy addition associated with damage and the loss
owing to acoustic-emission events.

We use the damage model to determine the rate at which work is
being done on a rod. Since the stress on the rod σ 0 is constant we
have

dw(t)

dt
= σ0

dε(t)

dt
, (6.9)

where w(t) is the work per unit volume done on the rod. Taking the
derivative of eq. (3.3) we obtain

dε(t)

dt
= σ0

E0[1 − α(t)]2

dα(t)

dt
. (6.10)

Substitution of eqs (3.2), (3.3) and (6.10) into eq. (6.9) gives

dw(t)

dt
= A σ 4

0

E3
0 [1 − α(t)]4

. (6.11)

Upon substitution of eqs (3.8) and (3.10) into eq. (6.11) we have

dw(t)

dt
= ν0 σ 2

0

E0

1

(1 − t/tf)
4/3 . (6.12)

This result was also obtained by Ben-Zion & Lyakhovsky (2002).
Comparing eq. (6.12) with eq. (6.8), noting that ρ = 3 in our ana-
logue, we find that

dea(t)

dt
= ηa

2

dw(t)

dt
. (6.13)

If the acoustic efficiency is ηa = 1, we find that one-half of the energy
that is added to the damaged medium is lost in acoustic-emission
events.

Next we determine the energy in acoustic-emission events when
the applied stress is increasing linearly with time as given by
eq. (5.1). Combining eqs (5.6) and (5.9), we obtain

d N (t)

dt
= − νf N0 (t/tf)

ρ[
1 − (t/tf)

ρ+1](ρ−1)/ρ
. (6.14)

Using eqs (5.11) and (6.14), we can rewrite eq. (6.4) in the form

dea(t)

dt
= ηa νf σ

2(tf)

2 E0

(t/tf)
ρ+2[

1 − (t/tf)
ρ+1](ρ+1)/ρ

. (6.15)

In the vicinity of a rupture we have t/t f = 1 − ε with ε � 1. Thus
we can write

[1 − (1 − ε)ρ+1](ρ+1)/ρ ≈ [1 − 1 + (ρ + 1)ε](ρ+1)/ρ

= [(ρ + 1)ε](ρ+1)/ρ

so that in this limit we obtain

dea(t)

dt
∝ 1

(1 − t/tf)
(ρ+1)/ρ

. (6.16)

Thus, the scaling in the vicinity of a rupture is the same as that
obtained for the constant pressure result given in eq. (6.8).

We now compare the predicted acoustic-emission associated with
material failure with experiments. Guarino et al. (1998, 1999) stud-
ied the failure of circular panels (220 mm diameter, 3–5 mm thick-
ness) of chipboard and fibreglass. A differential pressure was ap-
plied across the panels until they failed. Acoustic-emission events
were carefully monitored. For these relatively thin panels, bend-
ing stresses were negligible and the panels failed under tension (a
mode I fracture). The acoustic-emission events were used to locate
the associated microcracks. Initially, the microcracks appeared to
be randomly distributed across the panel. As the pressure differ-
ence was increased, the microcracks localized in the region where
the final rupture occurred. In the first series of experiments given
by Guarino et al. (1998) the applied pressure difference (differ-
ential stress) was increased linearly with time in accordance with
eq. (5.11).

These authors determined the cumulative energy associated with
acoustic-emission events prior to rupture. The observed dependence
of ea/etot on (1 − P/P f) = (1 − t/t f) is given in Fig. 5(a) where
ea is the cumulative acoustic energy at time t and etot is the total
acoustic energy at rupture (t = t f). Clear power-law behaviour is
observed for (1 − t/t f) less than approximately 0.1. The slope is
ea ∝ (1 − t/t f)−0.27±0.05. This is equivalent to having dea/dt ∝
(1 − t/t f)−1.27±0.05. This result is in agreement with the predicted
dependence given in eq. (6.16) if we take ρ = 3.7.

Guarino et al. (1998) also obtained a histogram for the frequency–
magnitude statistics of the acoustic-emission events. For the
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Figure 5. (a) Cumulative acoustic energy emissions ea(t) divided by the total acoustic energy emissions etot at the time of rupture (t = t f) as a function of
(P f − P)/P f where P is the applied pressure difference across the failing panel of chipboard and P f is the pressure difference when the board fails. The
applied pressure difference across the panel increased linearly with time in accordance with eq. (5.1). The straight-line correlation is with ea ∝ (1 − t/t f)−0.27.
(b) Cumulative acoustic energy emissions ea(t) at time t divided by the total acoustic energy emissions etot at the time of rupture (t = t f) as a function of (1 −
t/t f). A constant pressure difference was applied at t = 0. The straight-line correlation is with ea ∝ (1 − t/t f)−0.27 (Guarino et al. 1998, 1999).

chipboard panels they found that the number of events N events with
a given energy ea satisfies the relation

Nevents ∝ e−γ
a (6.17)

with γ = 1.51 ± 0.05 for chipboard and γ = 2.0 ± 0.1 for fibreglass.
For earthquakes, we have γ ≈ 5

3 . A similar power-law distribution
has also been found to be applicable for the fibre-bundles (Hemmer
& Hansen 1992; Kloster et al. 1997).

Guarino et al. (1999) carried out a second series of experiments in
which the applied pressure difference across the panel was increased
instantaneously to a prescribed value and was held at that value un-
til the circular panel failed. The cumulative energy associated with
acoustic-emission events prior to rupture was determined. The ob-
served dependence of ea/etot on (1 − t/t f) for these experiments is
given in Fig. 5(b). Again a clear power-law behaviour is observed
for (1 − t/t f) less than approximately 0.5. Again the slope is ea

∝ (1 − t/t f)−0.27, which is equivalent to dea/dt ∝ (1 − t/t f)−1.27.
This result is in agreement with the predicted dependence given in
eq. (6.8) taking ρ = 3.7. The experiments find the same power-
law behaviour for a constant applied pressure difference and for a
pressure difference that is increasing linearly with time. This cor-
respondence was also found in our analysis since the power-law
dependence in eq. (6.8) is the same as the power-law dependence in
eq. (6.16).

Although there is a scaling region in the acoustic-emission data
that is in accord with our analysis, there are some aspects of the data
that disagree with our analysis. The cumulative acoustic-emission
energy can be obtained by integrating eq. (6.8). This result is not in
agreement with the experimental data given in Fig. 5(b) for small
times. We attribute this disagreement to the transition from random
emission events at small times to self-organizing events as rupture is
approached. Our analysis correctly predicts the self-similar scaling
region near rupture.

7 S E I S M I C A C T I V A T I O N

Systematic increases in the intermediate level of seismicity prior to
large earthquakes have been proposed by several authors (Sykes &
Jaumé 1990; Knopoff et al. 1996; Jaumé & Sykes 1999). It has also
been observed that there is a power-law increase in seismic activity
prior to a major earthquake. This was first proposed by Bufe &

Varnes (1993). They considered the cumulative Benioff strain in a
region defined as

εB(t) =
N (t)∑
i=1

√
Ei , (7.1)

where Ei is the seismic energy release in the ith precursory earth-
quake and N (t) is the number of precursory earthquakes considered
up to time t. Bowman et al. (1998) carried out a systematic study of
the optimal spatial region and magnitude range to obtain power-law
activation. Four examples of their results are given in Fig. 6. In each
case εB (t) has been correlated with the relation

εB(t) = εBf − B

(
1 − t

tf

)s

, (7.2)

where εBf is the cumulative Benioff strain when the large earthquake
occurs, t f is the time since the previous large earthquake, and B is a
constant. For the four earthquakes illustrated in Fig. 6 it is found that
s = 0.30 (Kern County), s = 0.18 (Landers), s = 0.28 (Loma Prieta)
and s = 0.18 (Coalinga). Other examples of power-law seismic
activation have been given by Bufe et al. (1994), Varnes & Bufe
(1996), Brehm & Braile (1998, 1999), Robinson (2000) and Zöller
et al. (2001).

Next we extend our acoustic-emission analysis to determine
whether it is consistent with seismic activation. Using eq. (6.8),
the rate of the Benioff strain associated with the fibre-bundle model
is given by

dεB(t)

dt
=

√
dea(t)

dt
=

√
ηa ν0

2E0

σ0

(1 − t/tf)
(ρ+1)/2ρ

. (7.3)

The cumulative Benioff strain is given by

εB(t) = εBf −
∫ εBf

εB(t)
dε = εBf −

∫ tf

t

dεB(t)

dt
dt. (7.4)

Substituting eq. (7.3) into eq. (7.4) and integrating, we obtain

εB(t) = εBf − σ0(ρ − 1)

2ρ

√
ηa ν0

2E0

(
1 − t

tf

)(ρ−1)/2ρ

. (7.5)

Comparing eq. (7.5) with eq. (7.2), we see that the two equations are
identical. Rundle et al. (2000) found that the distribution of values
for the power-law exponent for 12 earthquakes was s = 0.26 ± 0.15.
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Figure 6. Power-law increase in the cumulative Benioff strain prior to four major earthquakes in California (Bowman et al. 1998). Each of the four examples
has been correlated (solid line) with the power-law relation given in eq. (7.2). The dashed straight lines represent a best-fit constant rate of seismicity.

Comparing eq. (7.5) with eq. (7.2), s = 0.26 corresponds to ρ =
2.1. For ρ = 3 we find s = 1

3 , this result was previously obtained by
Ben-Zion & Lyakhovsky (2002).

8 D I S C U S S I O N

Anelastic deformation of solids in engineering materials is often
treated using continuum damage mechanics models. At the same
time, statistical physicists have developed a variety of discrete mod-
els for material failure. In this paper, we show that two widely used
models, a continuum, macroscopic damage model and a discrete,
microscopic fibre-bundle model, yield identical solutions for a sim-
ple rupture problem.

The fibre-bundle model we consider is the dynamic time-to-
failure model with uniform load sharing. The hazard rate defined in
eq. (2.7) has a power-law dependence on stress σ (t) with exponent
ρ. We consider the failure of a rod of material under tension. We
consider two cases: (1) a constant tensional load is applied to the rod
instantaneously and (2) the load increases linearly with time from
zero. The solutions obtained using the continuum damage model are
identical to the solutions obtained using the discrete fibre-bundle
model if the stress exponent ρ = 3. We have generalized the dam-
age model so that solutions agree with the fibre-bundle model for
arbitrary values of ρ.

Guarino et al. (1998, 1999) studied the failure of circular panels
of chipboard and fibreglass. They found that the cumulative energy
associated with acoustic-emission events had a power-law depen-
dence on the time to failure. We have shown that this dependence is
in agreement with our solutions taking the power-law exponent ρ =
3.7. The power-law increase in acoustic emission is also consistent
with the power-law increase in cumulative Benioff strain that has
been recognized prior to a number of earthquakes (Bufe & Varnes
1993; Bowman et al. 1998).

The results given here raise a number of interesting questions
regarding earthquake physics. The damage and fibre-bundle mod-
els considered in this paper yield results that are very analogous

to a second-order phase change. The power-law scaling is a char-
acteristic of the approach to a phase change. However, material
failure is a catastrophic event and is certainly not reversible. Phase
changes involve a tuning parameter such as temperature or magnetic
field.

Statistical physicists have related brittle rupture to liquid–vapour
phase changes in a variety of ways. Buchel & Sethna (1997),
Zapperi et al. (1997) and Kun & Herrmann (1999) associated brit-
tle rupture with a first-order phase change. Alternatively, Andersen
et al. (1997), Sornette & Andersen (1998) and Gluzman & Sornette
(2001) argue that brittle rupture is analogous to a critical point
(a second-order phase change). Newman & Knopoff (1982, 1983,
1990) and Knopoff & Newman (1983) used the dynamic renormal-
ization group to explore how a hierarchy of failures—which they
referred to as ‘crack fusion events’—could explain the relationship
observed by Zhurkov (1965) relating the applied stress and the time
to brittle failure. A number of authors have considered brittle rup-
ture in analogue to spinodal nucleation (Selinger et al. 1991; Rundle
et al. 1996, 1999, 2000; Zapperi et al. 1999). They draw an analogue
between microcracking in a brittle solid and the nucleation of bub-
bles in a superheated liquid.

The relevance of the relatively simple models considered above
to seismicity can be questioned, but we argue that the underlying
physical processes are similar. In the models an increase in applied
stress leads to ‘damage’ that weakens the material. Stress transfer
is an important mechanism that leads to a power-law increase in
the rate of failure. In the Earth’s crust there is a near steady-state
rate of background seismicity, small earthquakes. These are equiv-
alent to the random distribution of acoustic emissions observed in
laboratory experiments. It is now widely accepted that there is an
acceleration of intermediate level of seismicity prior to a major
earthquake. This acceleration is also seen in the fibre-bundle model
and damage models. It is attributed to the redistribution of stress in
the material.

Time delays are inherent in both the fibre-bundle and damage
models. Time delays are also observed in the Earth’s crust. Stress
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transfer is associated with a major earthquake, there are regions
in which this stress transfer results in an increase in stress. Subse-
quently, aftershocks occur in these regions. The time delays before
aftershocks are analogous to the time delays in the models consid-
ered above.
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Zöller, G., Hainzl, S. & Kurths, J., 2001. Observation of growing correlation
length as an indicator for critical point behavior prior to large earthquakes,
J. geophys. Res., 106, 2167–2175.

C© 2003 RAS, GJI, 152, 718–728

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/3/718/692024 by guest on 20 August 2022


