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Introduction 

Vaccination is considered by many to be one of the most suc-

cessful public health interventions of the modern era.1 The 

advent and subsequent development of vaccines has led to 

a dramatic increase in worldwide life expectancy and has re-

sulted in the complete eradication of several diseases such 

as smallpox and polio.2 Current vaccine methodologies are 

largely protein-based and require direct administration of ei-

ther dead or attenuated bacteria/viruses, recombinant pro-

teins, or virus-like particles.3 These protein-based vaccines 

often fail to generate a complete immune response and typi-

cally only generate an antibody-mediated immune response, 

leading to incomplete immune protection, specifically from 

pathogens that replicate intracellularly (e.g. viruses).3 Further-

more, traditional vaccines suffer from limited stability, depen-

dency on ‘‘cold chain’’ storage and transport, and costly and 

time-consuming production,4,5 all of which limit the poten-

tial of traditional vaccines for rapid, widespread deployment, 

especially to underdeveloped regions where infectious dis-

eases remain prevalent. 

Unlike traditional protein-based vaccination, DNA vacci-

nation involves the delivery of plasmid DNA (pDNA) encod-

ing a pathogen-specific target antigen driven by a eukaryotic 
promoter resulting in the intracellular production and subse-

quent immune sampling of the target antigen.6 DNA-based 

vaccines are considered an attractive alternative to traditional 

vaccine strategies, as they can more closely mimic live infec-
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Abstract 

DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective im-

mune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpen-

sive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA 
vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to im-

mune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA repre-

sent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen 

presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release 

of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection ef-

ficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to 
increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional 

antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through ad-

ministration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can 

lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel bio-

material-based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their impli-

cations for generating immune responses. 
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tions and induce both antibody and cell-mediated immune 

responses.3 Furthermore, DNA vaccines eliminate the need for 

cold chain storage and transportation,7 can be quickly altered 

by manipulating the transgene sequence to adapt to new and 

fast-emerging diseases,8 and are considered safer than tradi-

tional vaccines as the pathogen is not involved in vaccine syn-

thesis. pDNA used in DNA vaccines can also be quickly and 

easily replicated and amplified in bacteria, allowing for accel-
erated production time frames, and the capability of large-

scale production.9 In addition, DNA vaccination is applicable 

to a range of viral,10 bacterial,11 and parasitic12 diseases. DNA 

vaccines are also uniquely suited for anticancer and antitumor 

therapies as their encoded antigen is produced intracellularly 

and introduced directly onto major histocompatibility com-

plex (MHC) class I for antigen presentation to CD8+ T cells, 

which are essential effector cells for cytolytic activity.13 The 

identification of the first human tumor-specific antigen rec-

ognized by CD8+ T cells introduced the possibility of cancer 

immunotherapy treatments,14 and has since led to the identi-

fication of numerous tumor antigens that offer promising tar-
gets for anticancer DNA vaccination strategies.15 

As with all vaccination strategies, the goal of DNA vacci-

nation is to induce robust, protective memory immune re-

sponses, which typically require the activation and interplay 

of all three arms of the immune system, including the hu-

moral and cellular arms of adaptive immunity, as well as the 

innate immune system.3 Adaptive immune responses are in-

duced by specialized immune cells including professional 

antigen presenting cells (APCs) and mediated by B- and T-

lymphocyte responses. APCs, such as dendritic cells (DCs) 

and macrophages, are responsible for the capture, uptake, 

and processing of antigen for display on MHC Class I and II 

molecules to activate and drive differentiation of CD8+ and 
CD4+ T-effector cells, respectively. CD8+ T cells have cyto-

toxic function and serve as an effector of cellular immunity, 
while CD4+ T cells activate B cells and facilitate their differen-

tiation into high affinity, antibody-secreting plasma cells, and 
memory B cells. APCs also express pattern recognition re-

ceptors (PRRs) which, when recognizing conserved microbe-

associated molecular patterns, initiate signaling events that 

activate APCs. Therefore, APCs act to coordinate both the in-

nate and adaptive arms of the immune response and are piv-

otal in generating complete immune protection. For effective 
immune protection, efficient delivery of DNA vaccines must 
occur in the appropriate target tissue and to the proper cell 

type. Developing strategies for controlled delivery of DNA 

vaccines that preferentially home to these sites and cells is 

essential for immune activation (Figure 1). 

To date, three DNA vaccines have been licensed for vet-

erinary use, and a fourth has been approved for use in pigs 

used in the food supply for human consumption. All four li-

censed DNA vaccines are administered as an intramuscular 

injection of naked pDNA,7 the simplest method of DNA vac-

cine delivery. While naked DNA vaccination elicited measur-

able levels of antigen-specific immunity when administered 
intramuscularly, in most cases, the immune responses were 

weak.3 Therefore, the use of biomaterials to develop deliv-

ery platforms that provide protection to pDNA and allow 

for controlled, cell-targeted, and site-specific release are the 
most promising strategies for improving the efficacy of DNA 
vaccination strategies. The formulation of DNA vaccines into 

micro- and nanoscale particles also has implications for the 

immunogenicity of the delivered vaccines. Particles ranging 

in size from 1 to 10 μm are the preferred platforms for tar-
geted delivery to APCs due to their preferential uptake by 

APCs over other cells, and the bulk size of microparticles 

creates depots of DNA that allow for sustained exposure to 

cells.16 In contrast, nanoparticles have the ability to directly 

reach the lymph nodes,3 have multiple routes of uptake, and 

often achieve an overall higher transfection efficiency when 
compared to microparticles.17 

In addition to the biomaterial delivery platform, another 

consideration in DNA vaccination efficacy is the route of ad-

ministration used. Delivery route can impact a vaccine’s abil-

ity to elicit the desired response by targeting various pro-

fessional APCs associated with different tissues, while also 
requiring different materials that adequately meet the re-

quirements of each route of delivery. Typical routes of ad-

ministration that have been investigated for DNA vaccines in-

clude parenteral routes (e.g. intramuscular, intradermal, and 

subcutaneous injection) and mucosal routes (e.g. oral, intra-

nasal, and vaginal). Delivery via the parenteral route can pro-

mote activation of tissue-specific APCs (e.g. Langerhans cells 
in the dermis in intradermal injection) to induce humoral and 

cellular immune responses. Recently, the mucosal route of 

vaccine administration has received much attention due to 

the ability to generate local immunity at body sites that serve 

as common routes of entry for many pathogens.18 In particu-

lar, the oral route allows for DNA vaccine delivery to the pro-

fessional APCs residing in the lamina propria underlying the 

intestinal epithelium.19 Delivery via the oral route can subse-

quently result in both mucosal and systemic immunity due to 

the highly vascularized nature of the intestinal epithelium.19 

Similarly, intranasal and vaginal routes deliver DNA vaccines 

to the underlying professional APCs lining the respiratory and 

urogenital epithelium, which then travel to draining lymph 

nodes to induce adaptive B- and T-cell immunity.20,21 This 

review highlights recent attempts at improving the efficacy 
of DNA vaccination though the development of novel bio-

material-based delivery platforms for use in various routes 

of administration, focusing on studies ranging from 2009 to 

the present, as well as focusing on parenteral administration 

and mucosal administration accomplished via oral delivery. 

Parenteral administration 

Parental administration of DNA vaccines, including intramus-

cular, subcutaneous, and transdermal routes, often involves 

the injection or otherwise direct administration of the deliv-

ery platform. Vaccines delivered via this route typically in-

duce systemic immune responses including humoral and cel-

lular responses. The following sections will discuss the use 

of various biomaterial delivery systems, including synthetic 

and natural polymeric systems, cationic lipid, and inorganic 

particles, as well microneedle-based platforms, for paren-

teral administration. 
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Synthetic polymers 

The use of polymeric delivery systems for the delivery of 

DNAs has been extensively investigated for a variety of ap-

plications including gene therapy, tissue engineering, and 

DNA vaccination. Polymeric delivery systems can complex or 

physically encapsulate DNA into nano- and microparticles to 

provide greater protection from nucleases, allow for tunable 

degradation and controlled release, and facilitate modifica-

tion to achieve cell-specific targeted delivery. Perhaps, the 
most widely studied polymer for DNA vaccine development is 

poly(lactide-co-glycolide) (PLGA). PLGA nano- and micropar-

ticles have been used to encapsulate and deliver DNA vac-

cines against a variety of diseases including cancer,22 swine 

influenza,23 parasitic infections,24 and hepatitis B.25 Encapsu-

lation of DNA vaccines into PLGA in these various studies in-

creased systemic antigen-specific antibody responses. In ad-

dition, PLGA microparticles encapsulating pDNA encoding an 

antigenic protein of the human papillomavirus (HPV) have 

been investigated in phase II clinical trials and were shown 

to increase T-cell responses to HPV epitopes.26 Although de-

livery of DNA using PLGA particles has been shown to induce 

immune responses, the encapsulation process can unfortu-

nately lead to DNA degradation and ultimately lower trans-

gene expression. 

In addition to utilizing PLGA for DNA encapsulation, DNA-

coated PLGA microparticles have been reported to facilitate 

increased DNA loading, reduce DNA degradation through-

out the formulation process, and enhance the delivery of 

DNA vaccines to APCs.27 Reddy et al.28 coated cationic PLGA 

microparticles with pDNA encoding the 1D gene of the foot 

and mouth disease virus (FMDV) and delivered intramus-

cularly to guinea pigs. The DNA-coated microparticles re-

sulted in higher FMDV-specific antibody and neutralizing an-

tibody titers, as well as increased lymphocyte proliferation 

compared to naked plasmid, for one year post vaccination 

in the guinea pig model of FMDV, highlighting the ability 

of microparticle-based delivery systems to induce long-last-

ing immune responses. While microparticles are an attrac-

tive delivery platform for DNA vaccines due to their ability 

to passively target APCs based on size exclusion, the micron 

size often leads to decreased transfection efficiencies. This 
is particularly true for PLGA microparticles, where the large 

size can lead to acidification of the microenvironment upon 

Figure 1. Micro- or nanoparticulates encapsulate plasmid DNA used for vaccine delivery. In one model, particulates can be taken up by muscle cells 

or epithelial cells and pathogen-derived antigens are then transcribed and translated from plasmid DNA and secreted into extracellular spaces where 

they can be taken up by B-cell receptor mediated endocytosis or by professional APCs such as macrophages or dendritic cells. (a) Alternatively, APCs 

can be directly transfected by uptake of particulate encapsulated DNA. (b) Professional APCs such as macrophages are important for uptake of larger 

microparticles by phagocytosis, while dendritic cells are more effective at uptake of nanoparticulates by macropinocytosis. Dendritic cells in the drain-

ing lymph nodes are especially important for presenting antigen to naïve T cells for activation and differentiation (b).
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degradation of the particles, DNA degradation, and lowered 

immunogenicity of vaccines. To overcome the limitation as-

sociated with PLGA microparticles, several teams have inves-

tigated PLGA nanoparticles as an alternative for DNA vac-

cine delivery. 

Lee et al.29 developed quantum dot-loaded PLGA nanopar-

ticles with a glycol chitosan shell for dual live cell tracking 

and DNA vaccine delivery.29 The cationic glycolchitosan shell 

allowed for electrostatic interaction with pDNA vaccines to 

increase loading and promote pH-dependent intracellular 

release. These particles were able to directly transfect Lang-

erhans cells, tissue-specific professional APCs residing in the 
dermis, with the enhanced green fluorescent reporter gene 
after transdermal administration. Transgene expression in the 

draining lymph nodes was increased following Langerhans 

cell migration, highlighting the ability of the PLGA nanoparti-

cles to activate APCs, and induce their migration to the drain-

ing lymph nodes, which is necessary for APC interaction with 

and activation of naïve B and T cells.29 In addition to PLGA 

nanoparticles, the use of other cationic polymeric materials 

to form polymer/DNA nanoparticles has also been investi-

gated for DNA vaccine delivery. 

Another synthetic polymer that has been widely used in 

DNA delivery, including DNA vaccines, is poly(ethylene im-

ine) (PEI). Although the use of PEI as a non-viral gene de-

livery vector is well documented, PEI/DNA complexes do 

suffer from toxicity issues as well as aggregation in the pres-

ence of serum proteins and rapid clearance from circulation, 

which combine to limit the efficiency of DNA vaccine deliv-

ery. Therefore, Shuaibu et al.30 developed PEI/pDNA com-

plexes coated with γ-polyglutamic acid (γ-PGA) for intrave-

nous delivery of malaria DNA vaccine. The addition of γ-PGA 

greatly reduced the surface charge of the particles, leading 

to decreased aggregation and greater stability in physiolog-

ical conditions. Furthermore, the addition of γ-PGA led to a 

Th2-dominant immune response, which is crucial for protec-

tion against parasitic infections.31 The addition of γ-PGA was 

hypothesized to act as an adjuvant by activating receptors of 

the innate immune response, as γ-PGA is produced by cer-

tain strains of bacilli.32 Thus, synthetic polymers for DNA vac-

cine delivery are capable of inducing immunogenicity, APC 

targeting, and potential PRR triggering, all of which are im-

portant for enhancing adaptive immune responses. Still, chal-

lenges remain in efficiently targeting APCs to trigger the ap-

propriate immune responses needed for protection against 

various infectious diseases. For example, the Th2 response in-

duced by γ-PGA was protective against a parasitic infection, 

but may not be effective against intracellular viral infections 
that rely on CD8+ cytotoxic T cells for complete clearance. 

Natural polymers 

Natural materials have long been investigated for many bi-

ological applications, including tissue engineering and drug 

and gene delivery, due to their inherent biocompatibility and 

biodegradability. In particular, chitosan, the partially deacet-

ylated form of chitin from crustacean and insect shells, has 

been extensively investigated for DNA vaccine delivery. Due 

to its positive charge, chitosan can form electrostatic inter-

actions with the phosphate groups of DNA, condensing and 

complexing it to form nanoscale complexes.33 Chitosan can 

also be ionically crosslinked into nanogels containing DNA 

through the use of a crosslinking anion such as sodium tri-

polyphosphate.34 Due to the presence of primary amines on 

the polymer backbone, chitosan is well suited for a variety of 

chemical modifications to increase DNA delivery such as en-

hanced intracellular dissociation of the DNA from the poly-

mer35 and cell-specific targeting.36–38 Moreover, chitosan has 

been shown to activate the NLRP3 inflammasome, a cytosolic 
PRR of the innate immune system responsible for enhancing 

proinflammatory cytokine production.39 Chitosan has been 

widely used as a delivery platform for DNA vaccines for a 

variety of pathogens including Leptospirosis,40 Coxsackievi-

rus B3,41 and influenza.42,43 Chitosan nanoparticles have also 

been formulated with pDNA encoding HPV-16 E7, a tumor-

specific antigen for immunotherapy against HPV-associated 
tumors. After intramuscular injection of the HPV-16 E7/chi-

tosan nanoparticles, the vaccine platform induced CD8+ T-

cell activation and proliferation, stimulated interferon (IFN)-γ 

and interleukin (IL)-4 production, and reduced tumor size in 

a mouse model.44 Similarly, chitosan nanoparticles encap-

sulating DNA encoding the swine flu hemagglutinin anti-
gen resulted in robust serum IgG titers for up to eight weeks 

and increased T-cell proliferation following intramuscular 

immunization.45 

Although chitosan-based nanoparticles show great prom-

ise as DNA vaccine delivery systems, these systems often 

suffer from low transfection efficiency and subsequent low 
immunogenicity. This low transfection efficiency can be at-
tributed to poor dissociation of pDNA from chitosan in the 

intracellular environment, limited stability in the presence of 

serum proteins due to the highly positive charge density, and, 

in the case of DNA vaccine delivery, poor cell specificity for 
targeting professional APCs. To overcome these barriers and 

increase the efficiency of chitosan-based delivery systems, 
a variety of modification techniques have been employed. 
Csaba et al.34 investigated the effects of poly(ethylene glycol) 
(PEG) conjugation on particle stability and transfection effi-

ciency. This team found that PEGylation increased the in vivo 

stability of chitosan/ DNA nanoparticles due to a reduction 

in surface charge and reduced interaction with serum pro-

teins.34 The most extensively investigated functionalization 

strategy for targeting chitosan to APCs is particle mannosyl-

ation to increase binding to the macrophage mannose re-

ceptor (MMR). C-type lectin receptors (such as the MMR) are 

one family of PRR that contain carbohydrate-recognition do-

mains that bind sugar moieties, including mannose. Mannose 

functionalization of chitosan increases nanoparticle associa-

tion with APCs and increases internalization via mannose re-

ceptor-mediated endocytosis.46–48 Layek et al.49 developed 

an L-phenylalanine-modified chitosan for increased adsorp-

tive endocytosis and intracellular dissociation of DNA, fur-

ther functionalized with mannose for APC-specific targeting 
(Man-CS-Phe/DNA). Following intradermal delivery of Man-
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CS-Phe/DNA complexes encoding hepatitis B surface anti-

gen (HBsAg) to mice, high anti-HBsAg titers were observed 

for up to six weeks, as well as increased lymphocyte prolifer-

ation and increased IL-4 and IFN-g production. 

Both natural and synthetic polymeric delivery platforms 

serve to increase immune activation in response to DNA vac-

cines through increased APC targeting and uptake. Despite 

increases in the immunogenicity of DNA vaccines due, in part, 

to targeting strategies and carrier modifications, there still re-

mains challenges in achieving the appropriate immune re-

sponse, specifically balanced Th1 and Th2 helper T-cell differ-
entiation to drive both T cell and antibody- based immunity. 

In addition to synthetic and natural polymeric DNA vaccine 

delivery platforms, non-polymeric delivery systems, including 

cationic lipid and inorganic particulates also hold potential for 

increasing the efficiency of DNA-based immune responses. 

Cationic lipids and inorganic nanoparticles 

Cationic lipids have been widely used as non-viral gene de-

livery platforms since first introduced by Felgner et al.50 The 

amphiphilic nature of cationic lipids allows for self-assembly 

into lipoplexes and liposomes. The use of cationic lipids for 

the delivery of DNA vaccines in particular has received much 

interest due to their abilities to control liposome size, func-

tionalize the carrier, and activate innate immune receptors 

such as PRR.51 Moreover, novel synthesis techniques for lipid-

based systems allow for APC targeting of lipoplex and lipo-

some DNA vaccine delivery platforms. Srinivas et al.52 devel-

oped cationic amphiphiles containing mannose-mimicking 

shikimic acid head groups to enhance the delivery of DNA 

vaccines to professional APCs via targeting of the MMR. The 

lipoplexes were able to mediate transgene expression in an 

MMR-dependent manner in a macrophage cell line and were 

also shown to transfect bone marrow-derived DCs. Further-

more, this delivery system was employed to deliver mela-

noma tumor-associated antigen and resulted in long-lasting 

protective immunity in mice.52 Similarly, Perche et al.53 devel-

oped a mannose-functionalized lipopolyplex delivery system 

to deliver antimelanoma antigen mRNA. The platform con-

sisted of PEGylated, histidylated polylysine/mRNA complexes 

further encapsulated in mannosylated liposomes. The func-

tionalized lipopolyplexes led to increased specific internal-
ization into DCs and suppressed tumor growth in vaccinated 

mice due to the pH-sensitive destabilization of endosomal 

membranes and cytosolic release of the mRNA vaccine.53 

Such RNA vaccines represent a promising approach to vac-

cination, as the mRNA payload can be translated into the an-

tigenic protein of interest within the cytosol. Importantly, this 

approach eliminates the need for nuclear import, which has 

been established as a major intracellular barrier to success-

ful gene delivery. The development of biomaterials able to 

protect RNA, which is highly susceptible to enzymatic deg-

radation, and target its delivery to APCs will be instrumental 

to successful immune protection. 

In addition to polymers and lipids, hybrid particles con-

sisting of inorganics combined with polymers have also been 

investigated for DNA vaccination delivery strategies. Ye et al. 

developed iron oxide nanoparticles coated with γ-glutamic 

acid and PEI for the delivery of pDNA encoding both IL-21 

and Mycobacterium tuberculosis (MTb) antigen for inducing 

protective immunity in mice. Intramuscular immunization 

with these nanoparticles resulted in co-expression of immu-

nostimulatory IL-21 and target antigen, leading to increased 

activation of T lymphocytes, and subsequent protection fol-

lowing MTb challenge. Wang et al.54 developed core-shell 

silicon oxide-layered double hydroxides (SiO2
 LDH), encap-

sulating pDNA encoding HBsAg. The SiO2
 LDH/DNA nano-

composites were effectively internalized by macrophages, 
leading to high reporter gene expression in vitro. Upon par-

enteral administration to mice, the SiO2LDH/pHBsAg leads 

to enhanced HBV antibodies and antigen-specific T-cell re-

sponses. Moreover, vaccination with the SiO2LDH/pHBVsAg 

nanoparticles activated macrophages and promoted Th1 dif-

ferentiation via activation of the NF-κB pathway. LDH-DNA 
particulates have also been investigated for enhancing the 

efficacy of melanoma tumor vaccines. Subcutaneous injec-

tion of the LDH-DNA particles led to increased antigen-spe-

cific Ig titers and significantly reduced tumor growth.55 In the 

case of tumor vaccine therapies, activated cytolytic CD8+ 

T cells are the main effector cells responsible for eliminat-
ing tumor cells; therefore, it is crucial to generate a type 1 

immune response for cytotoxic T-cell differentiation. Bio-

material-based DNA vaccine delivery systems allow for the 

targeted delivery of immunostimulatory cytokines (such as 

IL-12), either through encapsulation within the biomaterial 

matrix or via coexpression of an antigen/cytokine dual plas-

mid. The targeted delivery of such stimulatory molecules 

along with a specific antigen would be capable of inducing 
strong immune responses, while also limiting the negative 

effects often seen with systemic circulation of immunostim-

ulatory cytokines. 

Recently, the use of cationic solid lipid nanoparticles 

(cSLN) has been investigated for gene delivery applications 

due to their ability to increase DNA stability and loading as 

well as overcome some of toxicity concerns that are associ-

ated with lipoplex delivery systems. Doroud et al.56 devel-

oped cSLN containing a cocktail of DNA vaccines against 

Leishmania major, a protozoan parasite responsible for cu-

taneous leishmaniasis. These cSLN represent a unique de-

livery system for enhancing the immune response due to 

the presence of 1,2-dioleoyl-3-trimethylammonium-pro-

pane, a cationic surface-active lipid that has been shown to 

activate DCs and drive their maturation through binding of 

PRR,57 highlighting the adjuvant activity of some lipid delivery 

platforms. Upon subcutaneous footpad injection in mice, the 

cSLN delivery system was able to reduce the parasitic bur-

den in lymph nodes and induce high levels of IFN-γ and IL-

5, indicators of Th1 and Th2 immune responses, respectively. 

The above studies highlight the use of micro- and nanopar-

ticles consisting of polymeric and non-polymeric materials 

that often require direct injection to activate an immune re-

sponse, therefore requiring administration from medically 

trained personnel. Consequently, patient compliance is com-
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promised, and widespread, rapid deployment of DNA-based 

vaccines, especially to resource poor environments, is crip-

pled. To truly appreciate the translational potential of such 

systems, biomaterial-based delivery platforms must facilitate 

patient compliance and utilize delivery routes conducive to 

simple administration. One promising alternative to direct 

injection that still makes use of the parenteral route is the 

use of transdermal microneedle patches, which can also im-

prove both patient compliance and the immunogenicity of 

DNA vaccines.58–60 

Microneedles 

Delivery of vaccines transdermally has shown to increase vac-

cine immunogenicity, as well as serve a simple and safe de-

livery strategy.61 Microneedles consist of solid micron-scale 

needles that can be composed of biodegradable materials 

(e.g. PLGA, chitosan or polylactic acid) for sustained release 

of vaccines as well as non-degradable materials (e.g. stain-

less steel)62 that serve to penetrate the epidermis of the skin 

to deliver DNA vaccines to the resident APCs within the der-

mis, the Langerhans cells. Hu et al.63 developed mannosylated 

cell-penetrating peptide-conjugated PEI/DNA complexes en-

coding tumor antigen delivered via microneedles. The trans-

dermal delivery system was able to efficiently target skin DCs 
and induce strong Th1 differentiation and CD4+ and CD8+ 
cell infiltration into solid tumors. Moreover, microneedles 
present an ideal substrate for the use of polyelectrolyte mul-

tilayers to co-deliver DNA vaccines along with adjuvant ma-

terials. DeMuth et al.64 developed poly(L-lactide) micronee-

dles coated with alternating layers of pDNA/polyI:C adjuvant 

and biodegradable poly(β-amino-ester) (PBAE). The coated 
microneedles were able to sustain the release of pDNA and 

PBAE to form in situ polyplexes and mediate robust immune 

responses against a model HIV antigen. Microneedle arrays 

have also been coated with virus-like particles (VLP) encap-

sulating HPV antigen. VLPs are nonreplicating molecules that 

consist of an empty particle that has a structure similar to 

that of pathogenic viruses. The VLP vaccine-coated stainless 

steel microneedles elicited strong neutralizing antibodies as 

well as CD4+ and CD8+ T-cell activation upon transdermal 

administration.60 All of the above studies indicate the poten-

tial of parenterally administration of DNA vaccines to gen-

erate effective humoral and cellular-mediated immune re-

sponses; however, these routes of administration typically do 

not result in the generation of mucosal immunity, which will 

be discussed in the next section. 

Mucosal administration: Oral delivery 

Mucosal immunity is considered an important first line of 
defense against many pathogens; consequently, vaccines 

that generate both systemic and mucosal immunity are of 

great interest. DNA vaccines delivered via mucosal routes 

(i.e. oral, intranasal, and vaginal) offer the advantages of 
high patient compliance and the ability to generate both 

mucosal and systemic immunity. However, delivery via mu-

cosal routes introduces additional challenges to the suc-

cessful delivery of DNA vaccines and subsequent activation 

the immune system. Specifically, the delivery vehicle must 
penetrate the mucous layer and be transported across the 

epithelial layer while still specifically targeting the under-

Figure 2. Cross-sectional representation of the intestinal epithelium and underlying immune cells of the Lamina Propria. DNA encapsulated micro- 

and nanoparticulates delivered via the oral route can take advantage of multiple routes to transfect cells or APCs for antigen expression and immune 

activation. (a) Nanoparticles can be directly sampled from the intestinal lumen to transfect DCs. (b) DNA vaccine-loaded particulates can be taken up 

by intestinal epithelial cells which then produce and secrete the desired antigen for sampling by professional APCs. (c) DNA vaccine-loaded particu-

lates can undergo transcytosis across the intestinal epithelium by specialized M cells where they may transfect cells of the mucosa-associated lym-

phoid tissue (specifically Peyer’s Patches).
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lying APCs (Figure 2). The following sections discuss ap-

proaches in developing biomaterial-based DNA vaccine de-

livery systems that address some of these obstacles and also 

highlight challenges that must be overcome for successful 

mucosal administration. 

Inorganic particles, liposomes and virus-like particles 

Of all the possible routes for vaccine administration, the oral 

route is often considered preferable due to patient compli-

ance given the ease of administrating and dosing without 

medically trained personnel.19,65 For oral delivery of DNA vac-

cines, the intestinal epithelium represents a unique target due 

to its large cellular surface area, highly vascularized nature, 

and ability to generate mucosal immunity. One constituent of 

the intestinal mucosa, the lamina propria, is rich in APCs, in-

cluding macrophages and DC, which are able to sample an-

tigens directly from the intestinal lumen as well as antigens 

that have been transported across the intestinal epithelium.66 

These APCs are instrumental in generating B-cell and T-cell 

responses and providing protection against pathogens that 

enter via mucosal sites.67 Moreover, due to the highly vascu-

larized nature of the intestinal epithelium, oral DNA vaccines 

also have the potential to generate systemic immunity in ad-

dition to mucosal immunity.68 Oral delivery of DNA vaccines 

has been an area of interest for multiple research groups but 

has only seen limited success, mainly due to the degrada-

tion of DNA by endogenous nucleases and the harsh con-

ditions encountered in the gastric environment.66 Addition-

ally, the mucosal epithelium presents additional challenges 

such as a highly viscous mucus layer and specialized enzy-

matic processes that only specific biomaterials may be able 
to overcome. 

The use of liposomes for oral DNA vaccine delivery has 

been well documented. Wang et al.69 developed liposomal 

systems for delivery of DNA encoding MTb antigen and oral 

administration which generated antigen-specific mucosal 
and systemic humoral immunity against tuberculosis. More-

over, this platform produced efficient antigen expression by 
Microfold (M) cells, which are implicated in transporting an-

tigen across the intestinal epithelium for sampling by pro-

fessional APCs. In addition to traditional liposomes, non-

ionic surfactant-based vesicles (niosomes) have also been 

reported to possess strong adjuvant properties. Jain et al.70 

produced mannosylated niosomes encapsulating pDNA en-

coding HBsAg for oral mucosal vaccination. The mannan 

coating stabilized the niosomes throughout the gastroin-

testinal (GI) tract and targeted the mannose receptor pres-

ent on APCs. Oral vaccination of mice with the modified 
niosomes induced strong cellular and humoral immune re-

sponses, while also inducing the production of neutraliz-

ing secretory IgA, a key antibody produced during mucosal 

immune responses. While lipid-based systems can deliver 

DNA vaccines via the oral route, these platforms have lim-

ited stability in the GI tract and often undergo degradation 

due to enzymes and the presence of bile salts that serve to 

solubilize the lipids. 

Synthetic and natural polymers 

While the previous studies have described the use of lipid 

based systems for oral delivery, the most studied delivery 

platforms for oral vaccination consist of synthetic and natu-

ral polymer platforms due to their highly tunable nature and 

ability to be modified for enhanced biodegradability, 71,72 

controlled release,73 and cellular targeting.74–76 As previously 

mentioned, the natural polymer chitosan has been exten-

sively investigated for the delivery of DNA vaccines via intra-

muscular and peritoneal routes, but chitosan is also uniquely 

suited for mucosal delivery applications. Chitosan delivery 

systems have characteristics that make them an ideal choice 

for oral DNA delivery, including good biocompatibility and 

biodegradability, high affinity for DNA, and mucoadhesive 
properties,77,78 which allow an increased residence time in 

the intestinal mucosa and increased sampling by APCs in the 

underlying lamina propria. In addition, targeting of APCs is 

possible with ligand modification of the chitosan polymer.79,80 

While chitosan nanoparticles have been used orally to deliver 

DNA vaccines, including successes against Toxoplasma gon-

dii,67 Schistosoma mansoni,81 and Coxsackie B virus-induced 

myocarditis,82 the amount of transgene/antigen production 

can be low due to chitosan instability in the acidic gastric en-

vironment and DNA degradation by digestive enzymes. While 

these synthetic and natural polymeric delivery vehicles hold 

great promise for oral DNA vaccine delivery, the instability 

of many polymeric systems in the GI tract, coupled with the 

variability in the GI environments, emphasize the need for the 

development of hybrid delivery platforms that protect DNA 

vaccines through complete GI transit. 

Hybrid particles 

The use of multiple materials for developing oral delivery 

systems is considered an attractive strategy for overcom-

ing the challenges of complete DNA protection through GI 

tract transit, as well as the controlled delivery and target-

ing of the cargo to APCs in the lamina propria of the intes-

tinal epithelium. Dual material systems offer the advantage 
of selecting properties to match the requirements of each 

compartment of the GI tract, including protection from gas-

tric conditions and subsequent release in the intestinal envi-

ronment. Materials that can serve as a protective coating or 

form an encapsulating matrix around DNA complexes are of 

special interest. Bhavsar et al.83 developed an oral gene de-

livery platform consisting of gelatin/DNA nanoparticles en-

capsulated in poly(ε-caprolactone) (PCL) microspheres. En-

capsulation of the gelatin particles in the PCL matrix provided 

protection of the DNA from the gastric environment and in-

creased the delivery of intact gelatin/DNA nanoparticles in 

the intestine.83 However, the slow and potentially toxic degra-

dation of PCL and the use of harsh particle formulation meth-

ods can lead to undesired DNA release kinetics, toxicity, and 

DNA degradation during processing. To overcome some of 

these limitations, Bhowmik et al.84 developed a composite mi-

croparticle delivery platform consisting of synthetic and nat-
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ural polymers for the oral delivery of pDNA encoding HBsAg. 

The microparticles, containing chitosan as well as consisting 

of equal ratios of albumin, hydroxyproplymethylcellulose ace-

tate succinate, and eudragrit, were formed via a spray drying 

method. The combination of polymers served to enhance the 

oral stability of the microparticles, as well as impart muco-

adhesive properties to enhance delivery to cells in the intes-

tinal epithelium. The microparticles were further functional-

ized with the M-cell targeting ligand Aleuria Aurantia Lectin 

to enhance targeted delivery to APCs. Oral administration 

of the microparticles led to increased serum IgG and fecal 

IgA titers when compared to subcutaneous injection, indi-

cating the induction of both systemic and mucosal immune 

responses. Similarly, Channarong et al.85 investigated chito-

san/DNA-loaded liposomes, further modified with a chitosan 
coating, for improving targeting to Peyer’s patches. Chito-

san/DNA complexes were entrapped in liposomes consist-

ing of phosphatidylcholine and cholesterol using a thin film 
fabrication method. The chitosan coating increased the pro-

tective abilities of the chitosan/DNA-loaded liposomes and 

resulted in stable lipopolyplexes in both gastric and intesti-

nal fluid. In vivo studies with orally delivered chitosan/DNA-

loaded liposomes indicated transgene expression through-

out the upper and lower intestine, an observation attributed 

to the bioadhesive nature of chitosan, which allows for in-

creased residence time in the intestine. 

While these synthetic and lipid-based platforms highlight 

the advantages of using several materials in designing oral 

delivery systems, issues with toxicity and complete protec-

tion remain. Consequently, there is increasing interest in de-

signing systems that make use of only natural materials and 

processing conditions that do not affect DNA integrity. Re-

cently, Liu et al.86 developed an oral delivery system consist-

ing of alginate-coated chitosan/DNA nanoparticles to pro-

vide protection against breast cancer metastasis. The coating 

of alginate, a natural polymer derived from brown seaweed, 

provided protection to the chitosan/DNA nanoparticles in 

low pH conditions (i.e. gastric) and were taken up by macro-

phages and DCs in the intestinal Peyer’s patches upon oral 

administration to mice.86 Furthermore, this vaccination strat-

egy inhibited tumor growth and increased survival in an or-

thotopic 4T1 breast cancer model. 

Another natural biomaterial that has recently gained in-

terest for gene delivery applications is zein. Zein is the ma-

jor prolamine, or storage protein, from corn comprising 45–

60% of the total corn protein. The presence of polar and 

non-polar amino acids allows zein molecules to self-assem-

ble into a variety of structures including nano- and micropar-

ticles as well as uniform films87–89 and allows zein to interact 

with and encapsulate a variety of hydrophobic and hydro-

philic compounds including vitamins,90 essential oils,91 an-

tiparasitic drugs92 and in our previous work, DNA.93 Due to 

its inherent biocompatibility and biodegradability as well as 

its ability to self-assemble to form particles and coatings, 

zein has already been employed in pharmaceutical tablet-

ing, specifically for oral delivery applications. Recently, our 
group has developed an oral delivery system consisting of 

zein microparticles encapsulating chitosan/DNA nanoparti-

cle cores for enhanced delivery of DNA vaccines to APCs in 

the intestinal lamina propria. The zein microparticles, due to 

their resistance to aqueous acidic environments and gastric 

enzymes, were used to encapsulate and protect the chitosan/

DNA nanoparticles from dissolution and degradation in the 

gastric environment (data not shown). These particles dem-

onstrate that future design of biomaterials for oral DNA vac-

cine delivery will require much consideration for the various 

requirements of the different GI tract compartments. 

Conclusions 

Vaccination has led to great improvements in overall world 

health and has served to greatly reduce the prevalence of 

infectious diseases. However, vaccines for rapidly mutating 

and emerging diseases often fail to elicit complete protective 

immune responses. DNA-based vaccine strategies present 

several advantages over traditional protein-based vaccines. 

First, DNA vaccines result in the intracellular production of 

the target antigen and subsequent presentation to the im-

mune system. In turn, a more balanced T-and B-cell response 

is generated, which ultimately gives rise to populations of 

resident memory T cells important in fighting mutating vi-
ral infections. Second, DNA vaccines allow for rapid, large-

scale production of antigen-specific vaccines and eliminate 
the need for cold chain storage and transportation, making 

them suited for rapidly emerging, pandemic diseases. 

In order to realize the great potential of DNA vaccines 

and produce clinically relevant vaccine strategies, there re-

mains the need for development of proper delivery platforms 

combined with appropriate delivery routes that achieve effi-

cient transfection of immune cells. Biomaterial-based deliv-

ery systems based on micro- and nanoparticles that encapsu-

late and protect DNA vaccines represent the most promising 

strategy for DNA vaccination. Microparticulate delivery sys-

tems allow for passive targeting to APCs through size ex-

clusion and can promote sustained presentation of DNA to 

cells through degradation and release of encapsulated vac-

cines. Nanoparticles offer increased internalization, overall 
greater transfection efficiency, and the ability to increase up-

take across mucosal surfaces. Moreover, selection of the ap-

propriate biomaterial can lead to increased immune stimu-

lation and activation by triggering innate immune response 

receptors. Finally, selecting materials with the appropriate 

properties to achieve efficient delivery via administration 
routes that are not only conducive to high patient compli-

ance but also generate systemic and local, mucosal immu-

nity can lead to more effective protective humoral and cellu-

lar immune responses. With continued material development 

to increase delivery efficiency and immunogenicity, DNA vac-

cines will offer a promising alternative to traditional vaccina-

tion strategies. 
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