
Micro-architectural Analysis of OLAP: Limitations and
Opportunities

Utku Sirin
EPFL

utku.sirin@epfl.ch

Anastasia Ailamaki
EPFL, RAW Labs SA

anastasia.ailamaki@epfl.ch

ABSTRACT

Understanding micro-architectural behavior is important for
efficiently using hardware resources. Recent work has shown
that in-memory online transaction processing (OLTP) sys-
tems severely underutilize their core micro-architecture re-
sources [29]. Whereas, online analytical processing (OLAP)
workloads exhibit a completely different computing pattern.
OLAP workloads are read-only, bandwidth-intensive, and
include various data access patterns. With the rise of column-
stores, they run on high-performance engines that are tightly
optimized for modern hardware. Consequently, micro-archi-
tectural behavior of modern OLAP systems remains unclear.

This work presents a micro-architectural analysis of a set
of OLAP systems. The results show that traditional com-
mercial OLAP systems suffer from their long instruction
footprint, which results in high response times. High-perfor-
mance columnstores execute tight instruction streams; how-
ever, they spend 25 to 82% of their CPU cycles on stalls both
for sequential- and random-access-heavy workloads. Con-
current query execution can improve the utilization, but it
creates interference in the shared resources, which results in
sub-optimal performance.

PVLDB Reference Format:

Utku Sirin and Anastasia Ailamaki. Micro-architectural Analysis
of OLAP: Limitations and Opportunities. PVLDB, 13(6): 840-
853, 2020.
DOI: https://doi.org/10.14778/3380750.3380755

1. INTRODUCTION
Online analytical processing (OLAP) is an ever-growing,

multi-billion dollar industry. To extract valuable informa-
tion from their data, many industrial and community organi-
zations rely on fast and efficient analytical processing. Mic-
ro-architectural behavior reveals the limitations of and op-
portunities for efficiently using modern hardware resources,
hence enables the delivery of high performance. Research
has shown that OLAP systems can improve performance by

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 6
ISSN 21508097.
DOI: https://doi.org/10.14778/3380750.3380755

orders of magnitude by more efficiently using the modern
hardware resources [23].

Micro-architectural behavior of online transaction process-
ing (OLTP) workloads has been studied extensively. Re-
cent work has shown that, despite being aggressively op-
timized for modern hardware, in-memory OLTP systems
spend the majority of their time in instruction and/or data
cache misses [29]. Whereas, OLAP workloads exhibit a
completely different computing pattern. Unlike the update-
heavy OLTP workloads, OLAP workloads are read-only.
Therefore, they do not require a concurrency control and
logging mechanism or a complex buffer pool for synchro-
nizing the modified pages on disk. OLAP workloads are
arithmetic-operation- and bandwidth-intensive. They pro-
cess large amounts of data with various data access patterns
including both sequential and random data accesses.

With the rise of columnstores [1, 9], researchers proposed
a diverse set of query processing paradigms (vectorized [5,
24] vs. compiled query processing [17]), and system pro-
totypes (Proteus [16], Typer, and Tectorwise [18]). Many
database systems, such as SQL Server, Oracle, and DB2,
support a columnstore extension [19, 20, 28]. Columnstores
operate only on the columns that are necessary for the query,
thus utilize memory bandwidth more efficiently. They pro-
cess columns in tight, hardware-friendly execution loops that
are optimized for the efficient use of the CPU cycles.

The micro-architectural behavior of modern OLAP sys-
tems is unclear. In this paper, we perform a detailed micro-
architectural analysis of OLAP workloads running on mod-
ern hardware. We profile six systems that vary from a tradi-
tional commercial row-store to high-performance execution
engines. We evaluate the breakdown of the CPU cycles,
memory bandwidth utilization, and normalized end-to-end
response time. We examine how well each OLAP system
uses the hardware resources and, in terms of delivering high
performance, what the limitations and opportunities are. In
this paper, we show the following:

• Unlike the traditional commercial OLTP systems, tra-
ditional commercial OLAP systems and their column-
store extensions do not suffer from instruction cache
misses. Nevertheless, they carry high instruction over-
heads and deliver performance orders of magnitude
lower than state-of-the-art columnstores.

• State-of-the-art columnstores use numerous optimiza-
tion techniques such as SIMD, predication and bloom
filters. However, they spend 25 to 82% of their CPU
cycles to stalls. Scan-intensive queries suffer from ba-

840

ndwidth-bounded data cache stalls, while join-inten-
sive queries suffer from latency-bounded data cache
stalls.

• Scan-intensive queries on the state-of-the-art column-
stores saturate the memory bandwidth before satu-
rating the cores. Join-intensive queries saturate the
cores before saturating the memory bandwidth. Con-
currently executing scan- and join-intensive queries en-
ables the saturation of both the cores and bandwidth.
However, this creates interference in the shared mem-
ory bandwidth, hence results in sub-optimal perfor-
mance.

The paper is organized as follows. In Section 2, we present
the experimental setup and methodology. In Section 3, 4
and 5, we present the projection, selection and join mi-
crobenchmark analyses. In Section 6, we present the analy-
sis of TPC-H queries. In Section 7, we present mixed query
workload analysis. In Section 8, 9, 10 and 11, we present
the analyses of predication, SIMD, hardware prefetchers and
hyper-threading/turbo-boost. In Section 12, we summarize
the lessons learned. Lastly, In Section 13 and 14, we present
the related work and conclusion.

2. SETUP & METHODOLOGY
In this section, we present the experimental setup and

methodology.
Benchmarks: We use microbenchmarks and TPC-H qu-
eries [35]. We use projection, selection, and join microbench-
marks as they constitute the basic SQL operators. All the
systems use the hash join algorithm when running the join
microbenchmark.

All the microbenchmarks use the TPC-H schema. The
projection microbenchmark does a single SUM() over a set
of columns from the lineitem table. We vary the num-
ber of columns from one to four. We use l extendedprice,
l discount, l tax and l quantity columns. We add the pro-
jected columns inside the SUM(). We call the projection
microbenchmark that does a SUM() over n columns a pro-
jection query with the degree of n.

The selection microbenchmark extends the projection qu-
ery with the degree of four with a WHERE clause of three
predicates over three columns of the lineitem table: l ship-
date, l commitdate and l receiptdate. It varies the selectivity
of each individual predicate from 10% to 50% and 90%. The
join microbenchmark does a join over two tables, followed
by a projection. The small-sized join microbenchmark joins
the supplier and nation tables, it and does a SUM() over
the addition of s acctbal and s suppkey. The medium-sized
join joins the partsupplier and supplier tables, and it does
a SUM() over the addition of ps availqty and ps supplycost.
The large-sized join joins the lineitem and orders table, and
it does a SUM() over the addition of the four columns that
the projection query with the degree of four uses.

We profile a large subset of TPC-H queries on DBMS V.
We chose DBMS V for this purpose, as DBMS V is the high-
est performing real-life system we use. We categorize the
TPC-H queries based on their micro-architectural behavior.
We then choose six representative queries and continue with
the cross-system analysis. Our selection of the queries cor-
roborates with the queries used by [18].
Hardware: We conduct our experiments on an Intel Broad-
well server. Table 1 presents the server parameters. As the

Table 1: Broadwell server parameters.

Processor
Intel(R) Xeon(R) CPU
E5-2680 v4 (Broadwell)

#sockets 2
#cores per socket 14
Hyper-threading Off
Turbo-boost Off
Clock speed 2.40GHz

Per-core bandwidth
12GB/s (sequential)
7GB/s (random)

Per-socket bandwidth
66GB/s (sequential)
60GB/s (random)

L1I / L1D (per core)
32KB / 32KB

16-cycle miss latency

L2 (per core)
256KB

26-cycle miss latency

L3 (shared)
(inclusive) 35MB

160-cycle miss latency
Memory 256GB

Broadwell micro-architecture does not support AVX-512 in-
structions, we conduct the SIMD experiments on a separate
Skylake server. The Skylake server has a similar execution
engine but a different memory hierarchy from the Broadwell
server. The Skylake server has a significantly larger L2 cache
(1 MB), a smaller non-inclusive L3 cache (16MB), a smaller
per-core (10 GB/s) and a larger per-socket (87 GB/s) se-
quential access bandwidth. It has a similar per-core and
per-socket random access bandwidth.

We use Intel’s Memory Latency Checker (MLC) [11] to
measure cache access-latencies and maximum single/multi-
core and random/sequential-access bandwidth.
OLAP systems: We examine (i) a commercial row-store,
DBMS R, (ii) the columnstore extension of the commercial
row-store, DBMS C, (iii) an open-source, full-fledged OLAP
system, Quickstep [24], (iv) a popular, high-performance,
commercial columnstore based on vectorized query process-
ing, DBMS V, (v) an open-source OLAP engine based on
vectorized query processing, Tectorwise [18], and (vi) an
open-source OLAP engine based on data-centric code gener-
ation, i.e., compiled, query processing, Typer [18]. We chose
these six systems as each represents a different category of
a system and execution model.
OS & Compiler: We use Ubuntu 16.04.6 LTS and gcc
5.4.0 on the Broadwell server, and Ubuntu 18.04.2 LTS and
gcc 7.4.0 on the Skylake server.
VTune: We use Intel VTune 2018 on the Broadwell server,
and VTune 2019 on the Skylake server. We use VTune’s
built-in general-exploration (uarch-exploration on VTune 20-
19) analysis for the breakdown of the CPU cycles. We
use VTune’s built-in memory-access analysis to measure the
consumed memory bandwidth. As we numa-localize our ex-
periments on a single socket, we report average bandwidth
per-socket values. We use VTune’s built-in hotspots and
advanced-hotspots analyses to perform function call trace
breakdown.
Background: VTune’s general-exploration provides the br-
eakdown of the CPU cycles [30, 36]. Each CPU cycle can
be categorized into one of two classes: retiring and stalling.
A retiring cycle is a cycle where the processor finishes the
execution of an instruction, i.e., retires an instruction. A

841

0%

20%

40%

60%

80%

100%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

C
P

U
 c

yc
le

s
(%

)

Projectivity degree

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 1: Breakdowns of the CPU cycles for projec-
tion microbenchmark for single-threaded execution.

stalling cycle is a cycle where the processor has to wait, i.e.,
stall, (e.g., to perform a read from the caches). In an ideal
scenario, all CPU cycles would be retiring.

Stalling cycles can be further decomposed into five compo-
nents: (i) branch mispredictions, (ii) Icache, (iii) decoding,
(iv) Dcache and (v) resource/dependency. Branch mispre-
dictions define the cost for mispredicted branch instructions.
Today’s processors use a hardware unit called branch predic-
tor; it predicts the outcome of a branch instruction (i.e., an
if() statement) and continues executing the instructions
as if the branch was correctly predicted. If the processor
then realizes the prediction is not correct, it undoes what-
ever it has been doing and starts executing the correct set
of instructions. This cost is defined as the branch mispre-
dictions and can be very costly, as it requires canceling a
large amount of work. Icache defines the cost of instruc-
tion cache misses. Decoding defines the cost of sub-optimal
micro-architectural implementation of the instruction de-
coding unit. Dcache defines the cost of data-cache misses.
Resource/dependency defines the cost of executing instruc-
tion that has resource and/or data dependencies.
Measurements: For every experiment, we first populate
the database. We use a one-minute warmup period, fol-
lowed by a three-minute VTune profiling period. We disable
hyper-threading (HT) and turbo-boost (TB), as they jeop-
ardize VTune counter values [12]. We examine HT and TB
separately, in Section 11.

We numa-localize every experiment by using Linux’s nu-
mactl command. We do single- and multi-threaded experi-
ments. For the multi-threaded experiments, we use the num-
ber of threads that provides the lowest response time. We
choose a scaling factor of 70 (the database of 70GB) for all
the experiments as it makes 5GB/core to process; this is
large enough for out-of-cache experiments.

We generate statistics before profiling each database. For
a more fair comparison, we disable compression for all the
systems. We test the compression on DBMS V when it runs
the TPC-H benchmark, and we see that it increases the
response time for 18 of the 22 queries. For the remaining 4
queries, it decreases the response time less than 15%.

We do hardware prefetcher experiments in Section 10 by
modifying the relevant model-specific register (msr) of the
processor [10].

0%

20%

40%

60%

80%

100%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

C
P

U
 c

yc
le

s
(%

)

Projectivity degree

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 2: Breakdowns of the CPU cycles for projec-
tion microbenchmark for multi-threaded execution.

3. PROJECTION
We present the projection microbenchmark. Figure 1 and

2 show the breakdowns of the CPU cycles, Table 2 presents
normalized response times, and Table 3 presents consumed
memory bandwidth values for single- and multi-threaded ex-
ecutions.
DBMS R & C spend the majority of the CPU cycles retir-
ing instructions without any Icache stalls. This shows that,
unlike commercial OLTP systems that suffer mostly from
Icache stalls; commercial OLAP systems do not suffer from
Icache stalls [29]. Table 2 shows, however, that DBMS R
and C are 10 to 56 times slower than the state-of-the-art
columnstore DBMS V. As the number of retiring cycles is
proportional to the number of retired instructions, DBMS R
and C, nevertheless, suffer mainly from their large instruc-
tion footprints.
Quickstep spends the majority of the CPU cycles retir-
ing instructions. Quickstep is 1.7 to 2.8 times slower than
DBMS V. This shows that Quickstep carries instruction
overhead. We examine Quickstep’s function-call trace for
the projection query of degree four. Quickstep spends 50%
of its time in getUntypedValue() and 8.1% of its time in
next() function. It spends the remaining time inside a func-
tor that performs aggregation. getUntypedValue() function
performs null/boundary checking, whereas next() is used to
increment the processed tuple ID.

Quickstep relies on aggressive function inlining, where at
every iteration of the aggregation it makes inlined function
calls of getUntypedValue() and next() per tuple. Although
inlined function calls are not as expensive as regular or vir-
tual function calls, they require extra work. getUntypedVa-
lue() makes five further inlined function calls, which re-
quires even more work, hence making the aggregation 1.7 to
2.8 times slower than DBMS V.
DBMS V is twice as slow as Tectorwise at the projectivity
of degree one for single-threaded execution. As DBMS V
and Tectorwise implement a similar execution model, the
difference highlights the overhead that a full-fledged, real-
life system should pay off. Quickstep’s overhead examined
in the previous paragraph are examples of this.
Tectorwise & Typer have the same performance at the
projectivity of degree one. As the projectivity increases,
Typer outperforms Tectorwise at single-threaded execution.
This is because, as the projectivity increases, Tectorwise
suffers more from the materialization overhead. Whereas,

842

Table 2: Normalized response times for projection
microbenchmark for single- and multi-threaded ex-
ecutions.

Single-threaded Multi-threaded
p1 p2 p3 p4 p1 p2 p3 p4

R 56 39.3 35.5 32.8 43 30.1 24.5 22
C 13.6 14.4 15.4 15.3 9 10.1 10.3 10
Qs 2.7 2.7 2.7 2.8 1.7 1.8 1.7 1.8
V 1 1 1 1 1 1 1 1
Tw 0.5 0.6 0.7 0.8 0.6 0.7 0.7 0.7
Ty 0.5 0.4 0.5 0.5 0.6 0.7 0.7 0.7

0%

20%

40%

60%

80%

100%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

C
P

U
 c

yc
le

s
(%

)

Selelctivity

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

/DepFigure 3: Breakdowns of the CPU cycles for selec-
tion microbenchmark for single-threaded execution.

Typer follows a compiled execution model that does not
suffer from the materialization overhead.

Typer’s and Tectorwise’s relative performances are the
same at the multi-threaded execution, as they are both mem-
ory-bandwidth bound. Table 3 shows that both Tectorwise
and Typer saturate the memory bandwidth at the multi-
threaded execution. We also examine Typer’s and Tector-
wise’s function-call traces. They both spend almost 100%
of their time inside the aggregation function.
Single vs. Multi-threaded Execution: DBMS C and
Quickstep have the same breakdowns of the CPU cycles for
the single- and multi-threaded executions. Table 3 shows
that DBMS C has very low single- and multi-threaded band-
width consumption, which explains the similar micro-archi-
tectural behavior. Quickstep has a low single-threaded, yet
significant multi-threaded bandwidth consumption. Never-
theless, its bandwidth stress is not sufficiently high to change
the micro-architectural behavior.

DBMS V’s, Tectorwise’s and Typer’s have high Dcache
stalls. DBMS V consumes a large fraction of the memory
bandwidth, which results in higher Dcache stalls. Whereas,
Tectorwise and Typer fully consume the memory bandwidth,
which results in highly pronounced Dcache stalls.

4. SELECTION
We present the selection microbenchmark. Figure 3 and 4

show the breakdowns of the CPU cycles, Table 4 shows nor-
malized response times, and Table 5 shows consumed mem-
ory bandwidths for single- and multi-threaded executions.
We use the highest performing version of the branched vs.
branch-free implementations for Tectorwise and Typer. This

Table 3: Consumed bandwidth in GB/s for projec-
tion microbenchmark for single- and multi-threaded
executions.

Single-threaded Multi-threaded
p1 p2 p3 p4 p1 p2 p3 p4

R 0 0 0 0 44.6 34.7 27.3 23.6
C 0 0 0 0 0.9 0.6 0.3 0.3
Qs 0 0.1 0.9 0.7 21.6 23.5 24 24.2
V 2.8 2.6 2.4 2.2 38.6 43.2 43.8 45.6
Tw 7 6.8 5 4.9 62.9 62.4 61.5 61.1
Ty 8.6 10.5 9.6 10.1 62.8 63 62.9 62.8

0%

20%

40%

60%

80%

100%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

1
0

%

5
0

%

9
0

%

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer
C

P
U

 c
yc

le
s

(%
)

Selelctivity

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 4: Breakdowns of the CPU cycles for selec-
tion microbenchmark for multi-threaded execution.

version is the branched version for Typer at 10% selectivity
and the branch-free version for all the other cases.
DBMS R is 13.1 to 33.1 times slower than DBMS V. It
spends 50% of its CPU cycles retiring instructions, which
highlights its instruction overhead.
DBMS C is 40% faster than DBMS V and consumes a large
amount of memory bandwidth at 10% selectivity. As the
selectivity increases, DBMS C becomes significantly slower
and consumes increasingly less bandwidth.

DBMS C keeps its columns in 1MBs of blocks together
with some metadata information per block such as min.,
max. and count values. In the case of low selectivities, it
simply scans the metadata and skips the blocks that are
not necessary. Hence, it provides high performance. We
confirm our hypothesis by using microbenchmarks that use
only metadata information and by obtaining similar results.
Quickstep is 3.4 to 5.5 times slower than DBMS V. It
spends 40% of its CPU cycles retiring instructions, and
20% for Dcache stalls. This highlights its instruction and
data overhead. To understand the instruction overhead, we
examine Quickstep’s function-call trace. Quickstep spends
40.8% of its time in BitVector::firstOne(), and 15.5%
in BitVector::setBit(). Quickstep uses these two func-
tions to avoid processing the tuples that are already fil-
tered out by the previous predicates in a conjunctive con-
dition. BitVector::firstOne() relies also on a C++ con-
struct builtin clz() to count leading zero bits of an in-
teger. As the predicate evaluation, by itself, is a simple
condition-check operation, a library function-call, together
with bitvector manipulations, takes a large fraction of Quick-
step’s time on selection processing.

843

Table 4: Normalized response times for selection
microbenchmark for single- and multi-threaded ex-
ecutions.

Single-threaded Multi-threaded
10% 50% 90% 10% 50% 90%

R 33.1 18.9 18.5 21.1 13.1 14.6
C 0.6 3.9 10.9 0.7 2.6 8.2
Qs 7.1 5.5 6.4 3.4 3.4 4.4
V 1 1 1 1 1 1
Tw 0.7 0.7 0.7 0.4 0.7 0.7
Ty 0.8 0.7 0.4 0.4 0.9 0.7

0%

20%

40%

60%

80%

100%

S
m

.

M
d

.

Lr
.

S
m

.

M
d

.

Lr
.

S
m

.

M
d

.

Lr
.

S
m

.

M
d

.

Lr
.

S
m

.

M
d

.

Lr
.

S
m

.

M
d

.

Lr
.

DBMS R DBMS C Quickstep DBMS V Tectorwise Typer

C
P

U
 c

yc
le

s
(%

)

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

ep.
Figure 5: Breakdowns of the CPU cycles for join
microbenchmark for single-threaded execution.

Tectorwise uses selection vectors to avoid processing al-
ready filtered tuples. A selection vector keeps the IDs of
the tuples that should be evaluated for the second and on-
wards predicates. As selection vectors require a single cache-
resident lookup, they are likely to be more efficient than
bitvectors. Quickstep could benefit from it.

The breakdown of Dcache stalls shows that ∼70% of the
stalls are due to 4K Aliasing that comes from DateLit:<

operator, which is used for date comparison. 4K Aliasing
occurs when the memory addresses of successive load and
store operations are aliased by 4K. In this case, hardware
fails to perform the store-to-load forwarding optimization.
This causes a five-cycle penalty and can be significant if it
happens frequently. 4K Aliasing can be solved by aligning
the data blocks to 32 bytes, or by changing offsets between
input and output buffers [13].
DBMS V & Tectorwise have a 30% performance gap,
except for 10% selectivity at the multi-threaded execution.
DBMS V scales the worst at 10% selectivity. This is likely
due to the scalability limitations of the exchange operator
that DBMS V relies on. The exchange operator statically
creates a number of producer and consumer threads and, in
the case of uneven distribution of the tuples, suffers from
load imbalance. As, at lower selectivities, the uneven load
is likely higher, DBMS V scales worse at lower selectivities.
Tectorwise uses morsel-driven parallelism that scales better
under uneven loads [21].

We also examine Typer’s and Tectorwise’s function-call
traces. They both spend almost 100% of their time inside
the filter and aggregation functions. Their codebases are
efficiently implemented, without any instruction overhead.

Table 5: Consumed bandwidth in GB/s for selec-
tion microbenchmark for single- and multi-threaded
executions.

Single-threaded Multi-threaded
10% 50% 90% 10% 50% 90%

R 0.7 0 0 46 36.4 23.2
C 3 0 0 34 12.8 2.6
Qs 0 0 0 9.2 18.3 10.8
V 0.6 1.9 1.9 12.6 44.6 39.7
Tw 3 6.8 4.7 50.4 62.7 58.7
Ty 3 9 8.4 51.7 62.8 62.8

Table 6: Normalized response times for join mi-
crobenchmark for single- and multi-threaded exe-
cutions.

Single-threaded Multi-threaded
Sm. Md. Lr. Sm. Md. Lr.

R 7.2 6.8 6.1 2.0 5.3 4
C 7.8 3.8 4.8 2.1 4.5 3.5
Qs 1.9 1.7 1.1 0.4 1.3 0.8
V 1 1 1 1 1 1
Tw 0.2 0.7 0.6 0.1 0.4 0.5
Ty 0.3 0.7 0.6 0.1 0.5 0.5

Single vs. Multi-threaded Execution: At 10% selec-
tivity, DBMS C has high Dcache stalls and bandwidth con-
sumption, due to its fast meta-data processing technique.
Quickstep’s micro-architectural behavior is the same for sin-
gle- and multi-threaded executions, as its instruction over-
head prevents it from stressing the memory bandwidth. Due
to their high bandwidth stress, DBMS V, Tectorwise, and
Typer all significantly suffer from Dcache stalls at the multi-
threaded execution for all the selectivities.

5. JOIN
We present the join microbenchmark. Figure 5 shows the

breakdowns of the CPU cycles for single-threaded execu-
tion. Table 6 shows normalized response times, and Table 7
shows consumed memory bandwidths for single- and multi-
threaded executions. We omit the breakdowns of the CPU
cycles for multi-threaded execution as it is the same as that
of single-threaded. All systems use the hash join algorithm.
DBMS R & C are 2 to 7.2 times slower than DBMS V.
They spend the majority of the CPU cycles retiring cycles,
which points to their instruction overhead.
Quickstep is 10% slower and 20% faster than DBMS V
for single- and multi-threaded executions for the large-sized
join. The reason is that Quickstep converts the hash join
into a Filter Joins (FJ) if (i) the probe-side join key is
unique, and (ii) if no attribute is required from the probe
side in the result of the join. In this case, FJ builds an Exact
Filter (EF), rather than a hash table, on the build side. An
EF is a bitvector where every build key corresponds to a
single bit. FJ then probes the EF to decide whether a tuple
from the probe side should pass the join.

In Figure 6, we examine the breakdown of the normalized
response-time at the hardware- (left) and software-levels
(right), with and without using FJ. We make a best effort
categorization of Quickstep’s methods. To illustrate this,
the intermediate-result materialization category (Int. res.

844

Table 7: Consumed bandwidth in GB/s for join mi-
crobenchmark for single- and multi-threaded execu-
tions.

Single-threaded Multi-threaded
Sm. Md. Lr. Sm. Md. Lr.

R 0 0 0 2.6 30.2 12.1
C 0 0 0 0.4 18.6 3.1
Qs 0 0 0 0 9.6 13.8
V 0 1 0.9 0 8.5 17.3
Tw 0 0 1.3 0 15.4 23.1
Ty 0 0 1.2 0 11.5 21.3

0

0.2

0.4

0.6

0.8

1

W/o FJ W/ FJ

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Res/Dep. Dcache

Decoding Icache

Branch misp. Retiring

0

0.2

0.4

0.6

0.8

1

W/o FJ W/ FJ

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

ProbeFilter BuildFilter
Aggregation HT Probe
HT Build Data acc. meth.
Int. res. mat.

Figure 6: Normalized response time breakdowns at
the hardware- (left) and software-levels (right) for
Quickstep when it runs the large join microbench-
mark query, as single-threaded, with and without
using Filter Join (FJ).

mat) includes methods such as bulkInsertTuplesWithRe-

mappedAttributes() and appendUntypedValue(). Data-
access methods (Data acc. meth.) include methods such
as getUntypedValue(), getTypedValue(), and next().

FJ improves the response time by ∼50%. Quickstep does
not suffer from Dcache stalls, even without FJ. This shows
the overhead that Quickstep carries. Quickstep spends (with
and without FJ) half of its time on intermediate-result ma-
terialization. Late materialization is known to be a major
performance bottleneck for OLAP systems [1].
DBMS V, Tectorwise & Typer spend the majority of
their time on Dcache stalls for both middle- and large-sized
joins. Hence, hash join is Dcache-stalls bound even for the
middle size, whose build-side table (supplier) is 700K tuples.

We also examine Typer’s and Tectorwise’s function-call
traces. They both spend almost 100% of their time inside
the join and aggregation functions. Their codebases are ef-
ficiently implemented, without instruction overhead.
Build vs. Probe Phases: Hash join is composed of two
phases: build and probe. Both phases compute, based on a
key, a hash value. They then make a hash table lookup for
an insertion purpose while building, and for a read purpose
while probing. We observe that the micro-architectural be-
havior of both build and probe phases are largely Dcache-
stalls dominated. Hence, the random-data accesses dom-
inate both phases. We omit the breakdowns of the CPU
cycles in the interest of space.

Probe phase dominates the execution time for single-th-
readed execution (61% of the time), while build phase domi-

0%

20%

40%

60%

80%

100%

1 6 4 8 12 3 5 7 14 15 16 9 13 17 18 20

Non-

join

queries

Small/low-

hit-rate

joins

Large with low-hit-

rate/small joins

Large joins

C
P

U
 c

yc
le

s
(%

)

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 7: Breakdowns of the CPU cycles for a large
subset of TPC-H queries for single-threaded execu-
tion.

nates the execution time for multi-threaded execution (53%
of the time), both for Typer and Tectorwise. This is due
to the scalability bottlenecks of build phase that relies on
atomic exchange instructions for concurrent hash-table in-
serts.
Single vs. Multi-threaded Execution: Multi-threaded
execution does not change micro-architectural behavior. Th-
is is because none of the systems is able to sufficiently stress
the memory bandwidth. Table 7 shows that the maximum
consumed bandwidth is 23.1GB/s; this is well below the
maximum random-data access bandwidth of 60GB/s. Hence,
when the hash join algorithm is running, the memory band-
width is largely underutilized . We omit the breakdowns
of the CPU cycles for the multi-threaded execution in the
interest of space.

By this finding, we confirm the existing work that uses
co-routines to improve hash join performance [14, 25]. Co-
routines enable the overlapping of long-latency memory stalls
with computation for a more efficient utilization of the mem-
ory bandwidth. Psaropoulos et al. [26, 27] show that mem-
ory bandwidth starts being saturated with 28 or more cores.

6. TPCH
We present a TPC-H benchmark evaluation. We first pro-

file a large subset of TPC-H queries when they are run by
DBMS V. We then choose six representative queries, and
continue with the cross-system comparison.

We identify two main dimensions in the categorization
of the TPC-H queries: join size and hit rate. Join size is
defined by the size of the probe-side hash table, as it defines
how cache-resident the hash join is. Hit rate is defined by
the number of times that the probe side finds a matching
entry at the build side. If this value is less than 10%, we
identify the join as a low hit-rate join. Low hit-rate enables
us to use bloom filters to reduce the number of hash probes
[6]. The smaller the join size is and the lower the hit rate
is, the less the Dcache stalls the join suffers from.

Figure 7 presents the breakdowns of the CPU cycles for
single-threaded execution. Based on their micro-architectu-
ral behavior, there are four main classes of queries. Q1 and
Q6 are the non-join queries and have relatively high retiring-
cycles ratios. Q4, 8 and 12 are queries with small-sized joins
or large-sized joins, both with low hit-rates. They suffer
from Dcache stalls at ∼25%. Q3, 5, 7, 14, 15 and 16 are

845

ch

0%

20%

40%

60%

80%

100%

R C Qs V Tw Ty R C Qs V Tw Ty R C Qs V Tw Ty R C Qs V Tw Ty R C Qs V Tw Ty R C Qs V Tw Ty

Q1 Q6 Q3 Q5 Q9 Q18

C
P

U
 c

yc
le

s
(%

)

Query ID

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 8: Breakdowns of the CPU cycles for TPC-H Q1, Q6, Q3, Q5, Q9 and Q18 for single-threaded
execution.

Table 8: Normalized response times for TPC-H
queries for single-threaded execution.

Q1 Q6 Q3 Q5 Q9 Q18
R 25.7 16.7 9.3 10.4 4.7 2.7
C 21 4.5 3.4 5 3.4 1.9
Qs 5 6.4 1.8 4.6 1.8 0.3
V 1 1 1 1 1 1
Tw 1.1 0.6 1.1 1 0.7 0.3
Ty 0.7 0.7 1.5 1.4 0.9 0.3

queries with large joins mixed with low hit-rate large joins
or small joins. These queries suffer from Dcache stalls at
∼35%. Lastly, Q9, 13, 17, 18 and 20 are joins with large
sizes with high hit-rates. These queries suffer from Dcache
stalls at ∼45%.

We choose Q1, 6, 3, 5, 9 and 18 to continue with the
cross-system evaluation. Figure 8 shows the breakdowns of
the CPU cycles for single-threaded execution. Table 8 and 9
show normalized response times, and Table 10 and 11 show
consumed bandwidth values for single- and multi-threaded
executions. We present the breakdowns of the CPU cycles
for multi-threaded execution only for Q6 in Figure 9, as they
are the same as the single-threaded breakdowns for all the
other queries and systems.
Q1 is an aggregation-heavy query with high temporal-loca-
lity. All the systems have high retiring-cycles ratios. DBMS
R and C are 25.7 and 21 times slower than DBMS V, which
highlights their instruction overhead. Quickstep is 5 times
slower than DBMS V, due to its aggregation overhead (shown
in Section 3). DBMS V and Tectorwise have close perfor-
mances, which shows that DBMS V’s real-life system over-
head is compensated in an aggregation-heavy query. Typer
is 30% faster than DBMS V and Tectorwise, as Typer does
not suffer from materialization overhead.
Q6 is a scan-intensive query that scans three columns and
evaluates five predicates over them. We use Typer’s branched
and Tectorwise’s branch-free versions. As the selectivity of
the query is very low (1.9%), most of the time is spent in
predicate evaluations.

Due to its instruction and data overhead, DBMS R is 16.7
times slower than DBMS V. DBMS C is 4.1 times slower
than DBMS V with instruction overhead. Quickstep suffers
from its selection operator overhead that is similar to the

Table 9: Normalized response times for TPC-H
queries for multi-threaded execution.

Q1 Q6 Q3 Q5 Q9 Q18
R 23.1 16.7 4.9 11.6 4.8 1.9
C 18.9 4.1 2.3 6.5 6.7 1.2
Qs 4.4 4.9 0.8 4.3 1.4 0.3
V 1 1 1 1 1 1
Tw 1 0.6 0.4 0.9 0.6 0.3
Ty 0.6 0.7 0.5 1.1 0.7 0.3

0%

20%

40%

60%

80%

100%

R C Qs V Tw Ty R C Qs V Tw Ty

ST MT

C
P

U
 c

yc
le

s
(%

)

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 9: Breakdowns of the CPU cycles for TPC-H
Q6 for single- (ST) vs. multi-threaded (MT) execu-
tions.

selection microbenchmark. It is 4.9 times slower than DBMS
V. It suffers from Dcache stalls due to 4K Aliasing.

DBMS V, Tectorwise, and Typer have high retiring cycles
at single-threaded execution, but significantly suffer from
Dcache stalls at multi-threaded execution (see Figure 9).
Because all three systems approach the bandwidth limits
(see Table 11). DBMS C’s and Quickstep’s breakdowns of
the CPU cycles are similar at single- and multi-threaded
executions due to their low bandwidth stresses.
Q3 is a join-intensive query where three large tables of TPC-
H, lineitem, orders and customer are joined. DBMS R and C
are significantly slower than DBMS V. Quickstep is 1.8 times
slower and 20% faster than DBMS V, at the single- and
multi-threaded executions. Quickstep implements two im-
portant join optimizations: Filter Joins (FJ) and Lookahead

846

Table 10: Consumed bandwidth in GB/s for TPC-H
queries for single-threaded execution.

Q1 Q6 Q3 Q5 Q9 Q18
R 0 0 0 0 0 0
C 0 0 0 0 0.1 0.1
Qs 0 0 0 0 0 0.2
V 0.4 2.2 0.4 0.1 0.4 1
Tw 0 5 0.9 0.2 1.1 0.6
Ty 1 5 0.1 0.1 0.3 1.3

Information Passing (LIP) filters. FJ replaces the build-side
hash table with a bitvector, as explained in Section 5. LIP
filters are bloom filters that are passed down in the query
plan so that a join can drop rows that would satisfy the
current join, but not a future join.

We turn on/off FJ and LIP filter, and we measure how
useful they are for Q3. FJ improves Q3’s response time
by 47%, and LIP filters further improve it by 28%; overall,
providing a 65% reduction in the response time. Despite
eliminating the major costs of hash joins in Q3, Quickstep
still spends a significant amount of time on retiring instruc-
tions, which shows that it nevertheless suffers from overhead
that is identified in Section 3, 4 and 5.

Tectorwise and Typer are slower than DBMS V, because
DBMS V, as the hit rate is low (1%), uses bloom filter on its
join with lineitem and the result of the orders and customer
join. To test our hypothesis, we perform a subquery analysis
for Q3 by excluding, and then including, the lineitem join.
We see that the Dcache stalls are DRAM-dominated without
the lineitem join, whereas L2- and L3-dominated with the
lineitem join, which supports our conclusion.

Tectorwise is faster than Typer. Tectorwise separates
hash computing from hash probing by saving computed ha-
shes in an intermediate vector. This enables the overlapping
of costly random-data accesses at the hash probing phase.
Typer, on the other hand, performs hash computation and
hash probing one-after-the-other. It also combines the filter-
ing condition and hash table probe operation in a single if
condition. This mixes the random-data access further with
a sequential scan of a column, which is used to filter the
data (such as: if(o orderdate[i] < c1 & ht1.contains(

o custkey[i]))). As a result, Typer is not able to overlap
the random-data accesses as much as Tectorwise does. This
shows that materialization overhead of the vectorized engine
pays off for the hash join operation unlike the case for pro-
jection and selection. DBMS V, Tectorwise and Typer are
all Dcache-stalls dominated in their execution time, due to
hash join’s large number of random-data accesses.
Q5 is a join-intensive query similar to Q3. DBMS R and
C are 10.4 and 5 times slower than DBMS V. Quickstep is
4.6 times slower than DBMS V, as Q5 is not able to benefit
from FJ and only partially benefits from LIP filters (by a
30% decrease in the execution time).

DBMS V and Tectorwise have a comparable performance,
as DBMS V uses a bloom filter while joining the lineitem ta-
ble. The join’s hit-rate of 3%. Similarly, DBMS V spends
less time on Dcache stalls compared to Tectorwise. Tector-
wise is faster than Typer as Tectorwise can overlap random-
data accesses. Nevertheless, all three high-performance sys-
tems spend the majority of their time on Dcache stalls.

Table 11: Consumed bandwidth in GB/s for TPC-H
queries for multi-threaded execution.

Q1 Q6 Q3 Q5 Q9 Q18
R 7.4 41.9 30.4 22.8 21.3 24.2
C 0 5.9 12.8 11.2 8.2 7.4
Qs 4.9 6.7 8.5 7.6 7.8 10.4
V 22.9 40.8 12.1 9.7 16.2 21.7
Tw 18.9 56.2 22.4 20.7 27.7 17.8
Ty 29.1 57.9 16.7 14.4 21.9 21.1

Q9 is a join-intensive query with large joins and high hit-
rates. DBMS R and C are 4.7 and 3.4 times slower than
DBMS V. Quickstep is 1.8 times slower than DBMS V.
LIP filters improve Q9’s time by 55% thanks to filtering
out lineitem tuples in its join with the sub-tree of joins of
partsupp, part and supplier.

DBMS V is not able to benefit from bloom filters for Q9
as the hit rate is high for all the joins. Hit rate is 20% for the
join between the orders and lineitem table, and 50% for the
join between the partsupp table and the sub-tree of joins of
the rest of the tables. Tectorwise is once again faster than
Typer thanks to its random-data access overlapping ability.
DBMS V, Tectorwise and Typer all spend the majority of
their time on Dcache stalls as Q9 is join-intensive.
Q18 contains a large group by on the lineitem table based on
l orderkey, without any filter on top of the lineitem table.
It creates 105M groups out of the 420M-sized lineitem table
(the scaling factor is 70).

DBMS V is 3.3x times slower than Tectorwise and Typer.
Because DBMS V’s query optimizer produces a sub-optimal
plan. The optimal plan does a single group by over the
lineitem table, filters it based on the having condition, and
feeds the result into a series of joins with orders, customer
and another lineitem. DBMS V, however, is not able to
push the large group by down the tree. It requires a full
join among the lineitem, orders and customer tables, which
it further joins with the filtered group by. This results in
high response time, together with high Dcache stalls.

DBMS R and C are 2.7 and 1.9 times slower than DBMS V
and spend 40% of their time on retiring instructions. Quick-
step is as fast as Tectorwise and Typer. Q18 benefits from
LIP filters by 30%. It does not suffer from the intermediate-
result materialization, as the intermediate results are small
(due to the having condition) for Q18.
Tectorwise and Typer have relatively high retiring-cycles

ratios. Typer does thread-local pre-aggregations for each
morsel. Then, Typer globally combines the local pre-aggre-
gations for the final group by. Similarly, Tectorwise creates
local groups per vector. Then, it combines the groups glob-
ally at the end. Hence, they both work with smaller-sized
hash tables that are more cache-resident, which results in
high retiring-cycles ratios.

7. MIXED QUERY WORKLOAD
We present a mixed query workload evaluation. Scan-

intensive queries are bandwidth-bounded, hence do not scale
after a certain number of cores. Join-intensive queries do not
create enough memory traffic, hence leave the bandwidth
underutilized. In this section, we concurrently run a scan-
and join-intensive query, where we create enough memory
traffic and also use all the cores on the chip.

847

n

0

1

2

3

4

Br. BF Br. BF Br. BF Br. BF Br. BF Br. BF

10% 50% 90% 10% 50% 90%

Tectorwise Typer

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 10: Normalized response time breakdowns
for predication for single-threaded execution.

Table 12: Normalized response times for mixed
query workload evaluation.

Proj.+Q3 Q6+Q3
Proj. Q3 Q6 Q3

Qs 1 1.1 1 1
V 1.1 1.6 1.1 1.5
Ty 1.1 1.9 1.0 1.4

We examine the following two scenarios: (i) projection
microbenchmark query with the degree of four running with
TPC-H, Q3, and (ii) TPC-H, Q6 running with TPC-H, Q3.
We use Quickstep, DBMS V and Typer to evaluate the con-
currency scenarios. We choose these three systems, as they
stress the memory bandwidth at different levels.

We use eight threads for projection and Q6, and use six
threads for Q3 on Typer, as projection does not scale after
eight cores on Typer. We use ten threads for projection and
Q6, and use four threads for Q3 on DBMS V, as Q3 does
not scale after four cores on DBMS V1. We use the same
configuration for Quickstep as for Typer.

Table 12 presents concurrent response times normalized
to the corresponding non-concurrent response times. For
DBMS V and Typer, Q3’s response time is significantly
higher when it runs with the projection and TPC-H, Q6,
whereas, for Quickstep, Q3’s response time does not change
signficiantly. Because DBMS V and Typer sufficiently stress
the memory bandwidth to interfere with Q3, while Quick-
step does not. On the other hand, projection’s and Q6’s re-
sponse times do not change significantly. Hence, concurrent
execution enables us to use the underutilized cores left by
the scan-intensive query. However, it causes interference in
the shared memory bandwidth, hence results in a decreased
execution time for the join-intensive query.

We also examine the micro-architectural behavior. The
results are as expected. Q3’s Dcache stalls are increased sub-
stantially when running with projection/Q6 on Typer and
DBMS V, whereas remain the same on Quickstep. The total
consumed bandwidth of a concurrent execution is the sum

1We microbenchmarked Q3 on DBMS V by varying the se-
lectivity of the filter on the lineitem table from 100% to 50%.
We realized that Q3 starts not scaling when the selectivity
drops below 70%. This suggests that the reason for not scal-
ing is the load imbalance issue of the exchange operator that
creates uneven loads at lower selectivities.

0

1

2

3

4

5

Br. BF Br. BF Br. BF Br. BF Br. BF Br. BF

10% 50% 90% 10% 50% 90%

Tectorwise Typer

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 11: Normalized response time breakdowns
for predication for multi-threaded execution.

of the individual bandwidth consumptions unless the sum
reaches to the maximum bandwidth. We omit the graph
and table for these for brevity.

8. PREDICATION
We present predication evaluation. Listing 1 presents an

example of predication. Line 1 to 3 present regular branched
execution, whereas Line 4 to 6 present the predicated execu-
tion. Predication takes the conditional expression out of the
if() statement and assigns the expression to the variable
decision. Then, it uses the decision variable to compute
the final result. If the decision is zero, it will not affect the
final result, whereas if the decision is one, it will update
the final result as in the branched execution. Predication
requires more computation but allows for avoiding costly
branch mispredictions.

1 // branched ve r s i on
2 i f ((a < v1) & (b < v2) & (c < v3))
3 r e s u l t += (d + e) ;
4 // branch−f r e e , p r ed i ca ted ve r s i on
5 bool d e c i s i o n = (a < v1) & (b < v2) & (c < v3) ;
6 r e s u l t += (d e c i s i o n ∗ (d + e)) ;

Listing 1: Predication example.

The conditional expression uses bitwise and as opposed
to logical and. Compiler generates a branch instruction for
each logical and. Hence, a logical and triggers branch predic-
tor even if it is not in an if() statement. However, bitwise
and translates into a set of bitwise operations followed by a
single conditional branch, which can be eliminated by taking
the expression out of the if() statement.

Figure 10 shows normalized response time breakdowns for
single-threaded execution where all values are normalized to
the left-most bar. We see that branch mispredictions are a
major source of cost. Predication reduces the response time
for all the cases except for Typer at 10% selectivity.

Typer improves performance the highest at 90%, although
branch misprediction cost is the highest at 50%. This is
because the computation overhead that predication brings
is less at 90% compared to 50%, as the unpredicated query
computes the aggregation for most of the tuples at 90%.

Typer suffers significantly from branch mispredictions at
90% selectivity. Because Typer uses bitwise and to imple-
ment the conjunction, hence suffers from the overall selectiv-
ity of the conjunction rather than the individual predicate

848

0

0.2

0.4

0.6

0.8

1

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

Proj. Sel. 10% Sel. 50% Sel. 90% Join

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

p.
Figure 12: Normalized response time breakdowns
for SIMD for single-threaded execution.

Table 13: Consumed bandwidth in GB/s for SIMD
for single-threaded execution.

Proj. Sl.10% Sl.50% Sl.90% Join
W/o SIMD 6 4 8 6 2.8
W/ SIMD 8 8 8 8 4.5

selectivities. In this case, it is 90% × 90% × 90% = 73%,
which is less predictable than 90%.

Figure 11 presents normalized response time breakdowns
for multi-threaded execution. It shows that the majority of
the performance gains are lost due to bandwidth limitations
for all the queries. Hence, while predication can significantly
reduce the response time, its multi-core benefits are limited
by the maximum memory bandwidth.

We also profiled predicated TPC-H, Q6 on Typer and
Tectorwise, and we reached similar conclusions. We omit
the graphs for Q6.

9. SIMD
We present SIMD evaluation. SIMD instructions perform

multiple arithmetic/logic operation in a single instruction.
We test Tectorwise when running the projection, selection
and join microbenchmarks, with and without using SIMD.
As our Broadwell server does not support AVX-512 instruc-
tions, we do all the SIMD experiments on a Skylake server
supporting AVX-512 instructions.

The Skylake server has a different memory hierarchy than
that of the Broadwell server. As a result, the reported values
that do not use SIMD do not exactly match with the val-
ues reported earlier in the paper (see Section 2, Hardware
subsection for more details).

9.1 Projection & Selection
Figure 12 shows the normalized response time breakdowns.

Table 13 presents single-core bandwidth consumption val-
ues. We use the predicated, branch-free versions of the se-
lection queries as SIMD is more effective when branch mis-
predictions are eliminated. The figure shows that there is a
70% to 87% decrease in the amount of time spent for retir-
ing cycles for all four cases. As retiring cycles are correlated
to the number of retired instructions, SIMD successfully re-
duces the number of retired instructions.

0

0.2

0.4

0.6

0.8

1

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

W/o

SIMD

W/

SIMD

Proj. Sel. 10% Sel. 50% Sel. 90% Join

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 13: Normalized response time breakdowns
for SIMD for multi-threaded execution.

Table 14: Consumed bandwidth in GB/s for SIMD
for multi-threaded execution.

Proj. Sl.10% Sl.50% Sl.90% Join
W/o SIMD 71.4 49.9 76.2 63.7 34.8
W/ SIMD 79.4 73.1 81.4 79.2 40.4

While the number of retired instructions is reduced, Dcache
stalls are increased by 20% to 2.3x. Hence, overall SIMD
gains are limited by the increased Dcache stalls. Table 13
shows that the projection and selection queries are single-
core-bandwidth bound when using SIMD, as the maximum
per-core bandwidth is 8GB/s. Hence, per-core SIMD gains
are limited by per-core bandwidth.

Figure 13 shows normalized response time breakdowns,
and Table 14 presents the bandwidth consumption for multi-
threaded execution. SIMD gains are less at the multi-th-
eaded execution, due to approaching the bandwidth limits.

We also run projection and predicated selection without
SIMD on Typer on the Skylake server. Typer saturates the
per-core and multi-core bandwidth and does not scale after
8 cores. Hence, its SIMD gains would be less than that
of Tectorwise that, without SIMD, is not able to saturate
per-core or per-socket bandwidths.

9.2 Join
Figure 12 shows that SIMD significantly reduces the num-

ber of retired instruction and does not increase the Dcache
stalls. Table 13 shows that single-core bandwidth consump-
tion is well below the maximum (7GB/s), without and with
SIMD. Hence, SIMD is able to exploit the available core
bandwidth and reduce the response time, without increasing
the Dcache stalls time. SIMD gains are less pronounced at
the multi-threaded execution, due to the stress on the mem-
ory bandwidth. As Table 14 shows, join consumes 40GB/s
of the 60GB/s random access bandwidth.

10. HARDWARE PREFETCHERS
We present the hardware prefetcher evaluation. We study

four hardware prefetchers that today’s server processors pro-
vide: L1 next line (L1 NL), L1 streamer (L1 Str.), L2 next
line (L2 NL) and L2 streamer (L2 Str.) prefetchers. We
turn on each prefetcher individually and examine its effect
on the micro-architectural behavior.

849

0

0.2

0.4

0.6

0.8

1

All

dis.

L1

NL

L1

Str.

L2

NL

L2

Str.

All

en.

All

dis.

L1

NL

L1

Str.

L2

NL

L2

Str.

All

en.

Single-threaded Multi-threaded

N
o

rm
a

liz
e

d
 r

e
sp

o
n

se
 t

im
e

Retiring Branch misp. Icache Decoding Dcache Res/Dep.

Figure 14: Normalized response time breakdowns
for hardware prefetcher for single- and multi-
threaded executions.

Figure 14 shows the normalized response time breakdowns,
and Table 15 shows the consumed bandwidth values when
running the projection query of degree four on Typer for
single- and multi-threaded executions.

Prefetchers reduce the response time by 75% for single-
threaded execution. This shows that hardware prefetchers
are highly useful for a sequential-scan-heavy query. For
multi-threaded execution, prefetchers reduce the response
time less than single-threaded execution. Hence, the benefits
of the prefetchers are limited by the maximum bandwidth.

We also examine the projection on Tectoriwse and the
branched and branch-free selection on Typer and Tector-
wise. The results agree with our findings for the projection
query on Typer. We also examined the join microbench-
mark. Prefetchers reduce the response time modestly by ∼

20% for the large-sized join both for Typer and Tectorwise.

11. HYPERTHREADING AND TURBO

BOOST
We present the hyper-threading (HT) and turbo-boost

(TB) evaluation. We first compare single-core performance
only having TB enabled. We examine DBMS V, Tectorwise
and Typer for the projection (of degree four) query, the
large join query, branched and branch-free versions of the
selection query (at 50% selectivity), TPC-H, Q1, Q6, and
Q3. The maximum speedup we observe is by 27% for TPC-
H, Q1 that runs on Typer. As Q1 is arithmetic-operation-
heavy, and Typer does not suffer from the materialization
overhead, turbo-boost worked the best. The other improve-
ments were modest and were 10 to 20%. TB’s benefits are
less as the number of cores is increased. Hence, the single-
core results provide the best case. Hence, TB-alone provides
only modest performance improvements.

Next, in addition to TB, we enable HT. We examine how
much HT improves the performance. We examine two sce-
narios: 2H and 28H. 2H shows the response time of using 2
HTs that share a physical core normalized to the response
time of using one physical core. 28H shows the response
time of using 28 HTs that share 14 physical cores normal-
ized to the response time of using 14 physical cores. All the
queries scale well across 2 physical cores.

Table 16 presents the results for a selection of queries we
have covered up to now. Proj. is the projection query with
the degree of four, and Join is the large-sized join query. 2H

Table 15: Consumed bandwidth in GB/s for hard-
ware prefetcher for single- (ST) and multi-threaded
(MT) executions.

All dis. L1 NL L1 S L2 NL L2 S All en.
ST 1 3 3 3 8.4 10.1
MT 32.9 42.4 43.2 41.2 62.5 62.8

reduces the response time maximum by 34%, for Typer when
running Q3. As Typer is not able to effectively overlap the
random-data accesses at the software-level, HT enables over-
lapping them. Similarly, branched selection query at 50%
selectivity benefits 34% on Tectorwise and 32% on Typer as
it can overlap the branch misprediction stalls. For the rest
of the cases, 2H improve the performance modestly by 20%
on average. 28H improves performance less than that of 2H
due to the increased stress on memory bandwidth.

Table 17 shows how useful HTs are for different prefetcher
configurations, for the projection (of degree four) and large
join query on Typer. The less aggressive the prefetchers are,
the more benefits HTs provide. Hence, while prefetchers sig-
nificantly improve the performance, it limits the benefit of
HTs. For join, HT benefits do not change much, as prefetch-
ers are not very useful for join.

Table 18 presents the case for SIMD, for the projection
query (of degree four), selection query at 10% selectivity
(branch-free), and large join query on Tectorwise (using the
Skylake server). It shows that HT is less useful when using
SIMD, though the difference usually is not high.

12. LESSONS LEARNED
OLAP systems should first optimize their instruction foot-

print. The sources of instruction overhead could be legacy
codebases, inefficient implementations, or intermediate-result
materialization [29].

Projection and selection performance are sensitive to over-
head, as they are usually rapid. Having an inefficient data-
access method inside the projection operator or using a sim-
ple bitvector operation inside the selection operator loop
can significantly increase the execution time. Intermediate-
result materialization is a major source of overhead and
should be avoided. Using selection vectors is a good al-
ternative to using bitvectors and intermediate-result mate-
rialization.

Filtering-based techniques, such as Filter Join, Lookahead
Information Passing, block-skipping by metadata processing
and bloom filters on low hit-rate joins, are promising tech-
niques to reduce the work being done. However, they do
not eliminate the instruction overhead. Combining filtering-
based techniques with efficient query-operator implementa-
tion can both reduce the work being done and eliminate the
instruction overhead.

Vectorized engines are faster than compiled engines, only
if their materialization cost pays off. The materialization
costs pay off for hash join, as vectors of computed hashes
enable the overlapping of costly random hash-table accesses,
but the costs do not pay off for projection and selection.
Compiled engines suffer from mixing random-data accesses
with hash computation and/or condition checks, preventing
them from overlapping the random-data accesses.

Scan-intensive queries stress the memory bandwidth, wh-
ich results in earlier saturation of the cores, whereas join-

850

Table 16: Normalized response times for hyper-
threading.

DBMS V Twise Typer
2H 28H 2H 28H 2H 28H

Proj. 0.95 1.03 0.82 1.00 0.92 1.00
Join 0.80 0.84 0.78 0.83 0.77 0.82
Q6 0.82 1.03 0.78 0.93 0.76 0.95
Q3 1.03 1.01 0.85 0.90 0.66 0.71

Sel.50%-Br. - - 0.66 0.96 0.68 0.94
Sel.50%-BF - - 0.83 1.01 0.87 1.01

inten- sive queries saturate the cores, hence leaving the mem-
ory bandwidth underutilized. Concurrent execution can pro-
vide a scenario where both core and memory resources are
fully utilized. However, concurrently executing queries in-
terfere with each other in the shared memory bandwidth,
which results in an increased response time for the join-
intensive query. Therefore, OLAP systems should carefully
schedule their concurrent queries and be aware of potential
interference. Isolation mechanisms, such as Intel’s Cache Al-
location Technology and dynamically disabling and enabling
the prefetchers, can be useful to mitigate the interference
[22].

SIMD and predication are useful for improving single-
threaded performance but, due to bandwidth limitations,
they fall short on multi-threaded performance. Hardware
prefetchers are essential for high-performance scans but are
not so useful for joins. Hyper-threading and turbo-boost
are effective for a few particular scenarios but mostly pro-
vide modest speedups. Therefore, hardware (software) de-
velopers should design hardware (software) based on soft-
ware (hardware) characteristics for optimal performance.

13. RELATED WORK
There is a large body of work on the micro-architectural

analysis of database workloads. Ailamaki et al. [2] and
Hardavellas et al. [8] present analytical and transactional
workload characterization. Tozun et al. [33, 34] characterize
disk-based OLTP systems. Sirin et al. [29] characterize
in-memory OLTP systems. Our work complements these
studies by characterizing OLAP workloads.

Kersten et al. [18] examine vectorized and compiled OLAP
engines without getting deep into the micro-architectural be-
havior. Sompolski et al. [31] present a comparison between
vectorized and compiled engines in terms of particular opti-
mizations, such as predication and SIMD. Our work extends
and complements these works in terms of breadth and depth
of the analysis.

Ferdman et al. [7] present micro-architectural analysis of
a suite of cloud workloads, by concluding that there is a
fundamental mismatch among what today’s server proces-
sors provide and what the cloud workloads demand. Our
work agrees with this work, and extends its conclusions to
modern OLAP workloads.

Yasin et al. [36] introduce Top-Down Micro-architecture
Analysis Methodology (TMAM) deployed by Intel VTune as
general-exploration. Sirin et al. [30] improve TMAM which
is adopted by Intel VTune in version 3 and onwards.

Yasin et al. [37] analyze cloud workloads. Sridharan and
Patel [32] examine the evaluation of workloads on the pop-
ular data analysis language R, over a commodity processor.

Table 17: Normalized response times for hyper-
threading for different hardware prefetcher config-
urations on Typer.

Proj. Join
2H 28H 2H 28H

All dis. 0.66 0.74 0.75 0.80
L1 NL 0.91 0.94 0.78 0.81
L1 Str. 0.92 0.93 0.76 0.81
L2 NL 0.80 0.86 0.75 0.81
L2 Str. 0.93 1.01 0.75 0.81
All en. 0.92 1.00 0.77 0.82

Table 18: Normalized response times for hyper-
threading with and without SIMD on Tectorwise.

Proj. Sel.10%-BF Join
2H 28H 2H 28H 2H 28H

W/o SIMD 0.72 0.94 0.71 0.76 0.77 0.83
W/ SIMD 0.82 0.96 0.71 0.93 0.74 0.74

Awan et al. [3, 4] present a micro-architectural analysis of
Spark. Kanev et. al. [15] present a micro-architectural pro-
filing of scale-out workloads. Our work complements these
studies by the analysis of modern OLAP workloads.

14. CONCLUSION
In this work, we have presented a micro-architectural anal-

ysis of a set of OLAP systems. We have examined the break-
downs of the CPU cycles, memory bandwidth consumption
values and normalized response times. The results show
that traditional commercial OLAP systems suffer from their
large instruction footprint, which makes them orders of mag-
nitude slower than high-performance columnstores. High-
performance columnstores execute tight instruction streams;
however, they spend 25 to 82% of their CPU cycles on
stalls. Scan-intensive queries suffer from bandwidth satura-
tion, whereas join-intensive queries suffer from long-latency
data-cache misses. A concurrent execution of scan- and join-
intensive queries can improve the utilization. However, it
creates interference in the shared bandwidth, which results
in sub-optimal performance.

15. ACKNOWLEDGMENTS
We thank the anonymous reviewers and the members of

the DIAS laboratory for their constructive feedback and sup-
port throughout this work. We thank Doruk Cetin, Timo
Kersten, Georgios Psarapoulous, Stella Giannakopoulou and
Bikash Chandra for their useful comments. This project has
received funding from the European Union Seventh Frame-
work Programme (ERC-2013-CoG), under grant agreement
no 617508 (ViDa), and Swiss National Science Foundation,
Project No.: 200021 146407/1 (Workload- and hardware-
aware transaction processing).

16. REFERENCES
[1] D. Abadi, P. Boncz, and S. Harizopoulos. The Design

and Implementation of Modern Column-Oriented
Database Systems. Now Publishers Inc., 2013.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on A Modern Processor: Where Does
Time Go? In VLDB, pages 266–277, 1999.

851

[3] A. J. Awan, M. Brorsson, V. Vlassov, and
E. Ayguade. Performance Characterization of
In-Memory Data Analytics on a Modern Cloud Server.
In BDCloud, pages 1–8, 2015.

[4] A. J. Awan, M. Brorsson, V. Vlassov, and
E. Ayguade. Micro-Architectural Characterization of
Apache Spark on Batch and Stream Processing
Workloads. In BDCloud, pages 59–66, 2016.

[5] P. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by A Relational
Engine. In SIGMOD, pages 479–490, 2006.

[6] P. Boncz, T. Neumann, and O. Erling. TPC-H
Analyzed: Hidden Messages and Lessons Learned
from an Influential Benchmark. In TPCTC, pages
61–76, 2013.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In ASPLOS, pages 37–48, 2012.

[8] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database Servers on Chip
Multiprocessors: Limitations and Opportunities. In
CIDR, pages 79–87, 2007.

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two
Decades of Research in Column-oriented Database
Architectures. IEEE Data Engineering Bulletin,
35(1):40–45, 2012.

[10] Intel. Disclosure of Hardware Prefetcher Control on
Some Intel Processors.
https://software.intel.com/en-us/articles/disclosure-
of-hw-prefetcher-control-on-some-intel-processors.

[11] Intel. Intel Memory Latency Checker.
https://software.intel.com/en-us/articles/intelr-
memory-latency-checker.

[12] Intel. Understanding How General Exploration Works
in Intel VTune Amplifier, 2018.
https://software.intel.com/en-
us/articles/understanding-how-general-exploration-
works-in-intel-vtune-amplifier-xe.

[13] Intel. Intel(R) 64 and IA-32 Architectures
Optimization Reference Manual, 2019.

[14] C. Jonathan, U. F. Minhas, J. Hunter, J. Levandoski,
and G. Nishanov. Exploiting Coroutines to Attack the
”Killer Nanoseconds”. PVLDB, 11(11):1702–1714,
2018.

[15] S. Kanev, J. P. Darago, K. Hazelwood,
P. Ranganathan, T. Moseley, G. Wei, and D. Brooks.
Profiling A Warehouse-scale Computer. In ISCA,
pages 158–169, 2015.

[16] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki.
Fast Queries over Heterogeneous Data Through
Engine Customization. PVLDB, 9(12):972–983, 2016.

[17] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP
OLAP Main Memory Database System Based on
Virtual Memory Snapshots. In ICDE, pages 195–206,
2011.

[18] T. Kersten, V. Leis, A. Kemper, T. Neumann,
A. Pavlo, and P. Boncz. Everything You Always
Wanted to Know About Compiled and Vectorized

Queries but Were Afraid to Ask. PVLDB,
11(13):2209–2222, 2018.

[19] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh,
M. Gleeson, S. Hase, A. Holloway, J. Kamp, T. Lee,
J. Loaiza, N. Macnaughton, V. Marwah,
N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait. Oracle Database
In-Memory: A Dual Format In-memory Database. In
ICDE, pages 1253–1258, 2015.

[20] P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L.
Price, S. Rangarajan, A. Surna, and Q. Zhou. SQL
Server Column Store Indexes. In SIGMOD, pages
1177–1184, 2011.

[21] V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven Parallelism: A NUMA-aware Query
Evaluation Framework for the Many-core Age. In
SIGMOD, pages 743–754, 2014.

[22] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In ISCA, pages 450–462, 2015.

[23] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing Main-Memory Join on Modern Hardware.
IEEE Trans. Knowl. Data Eng., 14(4):709–730, 2002.

[24] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang,
M. Spehlmann, H. Memisoglu, and S. Saurabh.
Quickstep: A Data Platform Based on the Scaling-Up
Approach. PVLDB, 11(6):663–676, 2018.

[25] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with Coroutines: A Practical Approach
for Robust Index Joins. PVLDB, 11(2):230–242, 2017.

[26] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with Coroutines: A Systematic and
Practical Approach to Hide Memory Latency in Index
Joins. The VLDB Journal, Dec 2018.

[27] G. Psaropoulos, I. Oukid, T. Legler, N. May, and
A. Ailamaki. Bridging the Latency Gap between NVM
and DRAM for Latency-bound Operations. In
DAMON, pages 13:1–13:8, 2019.

[28] V. Raman, G. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. Storm, and L. Zhang. DB2 with BLU Acceleration:
So Much More Than Just a Column Store. PVLDB,
6(11):1080–1091, 2013.

[29] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki.
Micro-architectural Analysis of In-memory OLTP. In
SIGMOD, pages 387–402, 2016.

[30] U. Sirin, A. Yasin, and A. Ailamaki. A Methodology
for OLTP Micro-architectural Analysis. In Damon,
pages 1:1–1:10, 2017.

[31] J. Sompolski, M. Zukowski, and P. A. Boncz.
Vectorization vs. Compilation in Query Execution. In
Damon, pages 33–40, 2011.

[32] S. Sridharan and J. M. Patel. Profiling R on A
Contemporary Processor. PVLDB, 8(2):173–184, 2014.

[33] P. Tözün, B. Gold, and A. Ailamaki. OLTP in
Wonderland: Where Do Cache Misses Come From in
Major OLTP Components? In Damon, page 8, 2013.

[34] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and
A. Ailamaki. From A to E: Analyzing TPC’s OLTP

852

Benchmarks: The Obsolete, The Ubiquitous, The
Unexplored. In EDBT, pages 17–28, 2013.

[35] TPC. Transcation Processing Performance Council.
http://www.tpc.org/.

[36] A. Yasin. A Top-Down Method for Performance
Analysis and Counters Architecture. In ISPASS, pages
35–44, 2014.

[37] A. Yasin, Y. Ben-Asher, and A. Mendelson. Deep-dive
Analysis of The Data Analytics Workload in
CloudSuite. In IISWC, pages 202–211, 2014.

853

